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Abstract

Background: Trihelix transcription factors (TTF) play important roles in plant growth and response to adversity
stress. Until now, genome-wide identification and analysis of this gene family in foxtail millet has not been
available. Here, we identified TTF genes in the foxtail millet and its grass relatives, and characterized their functional
domains.

Results: As to sequence divergence, TTF genes were previously divided into five subfamilies, I-V. We found that
Trihelix family members in foxtail millet and other grasses mostly preserved their ancestral chromosomal locations
during millions of years’ evolution. Six amino acid sites of the SIP1 subfamily possibly were likely subjected to
significant positive selection. Highest expression level was observed in the spica, with the SIP1 subfamily having
highest expression level. As to the origination and expansion of the gene family, notably we showed that a
subgroup of subfamily IV was the oldest, and therefore was separated to define a new subfamily O. Overtime,
starting from the subfamily O, certain genes evolved to form subfamilies III and I, and later from subfamily I to
develop subfamilies II and V. The oldest gene, Si1g016284, has the most structural changes, and a high expression
in different tissues. What’s more interesting is that it may have bridge the interaction with different proteins.

Conclusions: By performing phylogenetic analysis using non-plant species, notably we showed that a subgroup of
subfamily IV was the oldest, and therefore was separated to define a new subfamily O. Starting from the subfamily
O, certain genes evolved to form other subfamilies. Our work will contribute to understanding the structural and
functional innovation of Trihelix transcription factor, and the evolutionary trajectory.
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Background
Transcription factor is a type of DNA binding protein, and
interacts with cis element of promoter regions of target
genes, regulating the expression of them. At present, more
than 60 transcription factor families have been found in
plants [1]. Trihelix transcription factor is among the earliest
transcription factor families discovered in plants [1].
Trihelix transcription factors (TTF) feature a conserva-

tive domain containing three series of alpha helix struc-
ture [2, 3]. TTFs were reported to play multiple regulatory
roles in plant growth, development process, and response
to adversity stress [4–7]. According to the changes in their
alpha helix domain [8], they were previously divided into
five subfamilies, respectively referring as I(or SH4), II(or
GT-1), III(or GTγ), IV(or SIP1), and V(or GT-2). Each
subfamily was named as to their respective first member
found. Pea (Pisumsativum l.) GT-1 factor is the earliest
identified TTF, which specifically combined with GT ele-
ments of light-induced gene rbcS–3A’s promoter [4]. In to-
bacco (Nicotiana tabacum) [6], Arabidopsis (Arabidopsis
thaliana) [7], and rice (Oryza sativa) [5], homologous
GT-1 genes were cloned. GT-2 was the first GT-factor iso-
lated, containing two separate Trihelix domains [9, 10],
each involved in DNA binding. Arabidopsis’s ETAL LOSS
(PTL) gene belongs to the GT-2 family, and can regulate
the growth of petals and sepals. It was also found to regu-
late flower organ formation of shape [11–13]. Rice SHAT-
TERING1 (SHA1) gene, encoding a SH4 type of
transcription factor, is the only identified member found
in the SH4 subfamily, playing an important role in cell dif-
ferentiation activation. A mutant SHA1 gene was found to
cause the disappearance of the seed holding in rice [14].
GTγ subfamily has four members identified in rice, OsGT-
γ-1、OsGTγ-2、OsGTγ-3, and OsGTγ-4, which were re-
lated to cold, drought, and salt stress response [15].
Certain SIP1 genes have been identified in the tobacco
and Arabidopsis, related to the development of plant em-
bryo, leaf development, and cell proliferation [16–18]. Re-
cently, expression profiles of Trihelix genes were available
in tomato [19] and Populus trichocarpa, under biotic and
abiotic stresses in the latter [20]. A new gene BnSIP1 was
discovered in Brassica napus [21] mediating abiotic stress
tolerance and ABA signaling.
Foxtail millet (Setaria italica) is one important arid

and semi-arid crop, being a staple diet for people in
some regions in China, India, and other Asian countries.
Owing to its economic importance, its genome was se-
quenced [22, 23], together with further sequencing ef-
forts [24–27], providing a rich genomic and genetic
resources for biological research and breeding practice
[28]. These precious efforts and accumulating resources
empower researches in the Setaria community. Recently,
tens of researches were performed to understand key
functional gene families of the crop [29–43]. These

researches described certain important transcription
factor genes and gene families, such as Dof genes, en-
coding a class of transcription factors involved in nu-
merous physiological and biochemical reactions affecting
growth and development [43], TRANSPARENT TESTA
GLABRA 1 genes, encoding a WD40 repeat transcrip-
tion factor with multiple roles in plant growth and de-
velopment, particularly in seed metabolite production
[41], lipid transfer protein genes (LTPs), encoding a class
of cysteine-rich soluble proteins having small molecular
weights [38], MYB genes [44], APETALA2/ethylene-re-
sponsive element binding factor (AP2/ERF) genes [45],
NAC genes [46] and so on .
Here, we identified TTF genes in foxtail millet, and

characterized their molecular characteristic, genome dis-
tribution, and possible biological function. Moreover, by
performing an evolutionary genomics analysis in selected
plants, moss, green algaes, and yeast, we explored the
evolution and origin of the TTF genes and inferred their
possible evolutionary trajectories about their origin and
divergence.

Methods
Data collection
Genome data of foxtail millet, rice, and sorghum were down-
loaded from JGI database (http://genome.jgi.doe.gov/). To
identify putative Trihelix family members, the Hidden Mar-
kov Model (HMM) profiles of Trihelix (PF13837) were
retained from the Pfam database (http://pfam.xfam.org/) and
were used to identify the putative Trihelix proteins with the
best domain e-value cutoffs of < 1 × 10− 4. The rice Trihelix
sequences [1] were used as the query to perform a BLASTP
search in these species [47], with a cutoff e-value of< 10− 10.
By using SMART program [48] (http://smart.embl-heidel-
berg.de/) and the National Center for Biotechnology Infor-
mation (NCBI) database (http://www.ncbi.nlm.nih.gov/), we
detected the candidate protein by characterizing the typical
Trihelix feature structure domain. We checked the
ExPASy database (http://www.expasy.org/) to retrieve
information as molecular weight, isoelectric point of
TTF proteins [49]. Based on the above method and
TFDB 4.0 database (http://planttfdb.cbi.pku.edu.cn/)
[50], we obtained TTF homologs from other species:
Ae. tauschii, T. urartu, barley, Brachypodium, maize,
Saccharomyces cerevisiae, Chlamydomonas reinhard-
tii, Coccomyxa subellipsoidea, Volvox carteri, Physco-
mitrella patens, and Selaginella moellendorffii.

Gene structure analysis
According to the downloaded gff3 annotation file, the re-
quired data is extracted and the format is modified by the
home-made Perl program. By using GSDS 2.0 (http://
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gsds.cbi.pku.edu.cn/), we analyzed genetic structure of
TTF genes [51].

Motif identification
By using protein conservative motif online search program
MEME 4.11.3 (http://meme-suite.org/tools/meme), we ana-
lyzed conservative motif of TTF gene family, and set the
relevant parameters of motif repeat number to be “any”,
motif length to be 6 ~ 200 aa, and motif prediction number
to be 25 [52, 53]. By using WebLogo 3.6.0 (http://weblogo.-
threeplusone.com/), we characterized conservative region in
amino acid sequence [54].

Gene localization and divergence
We used BioPerl program to estimate synonymous nucleo-
tide substitution per synonymous site (Ks), and then draw-
ing the circle diagram through the home-made Python
program. All millet Trihelix genes are noted in the chromo-
some, genome evolution homologous duplicate events are

connected by color lines with Ks. Ks: 0–0.35 black; 0.35–
0.45 green; 0.45–0.65 red; 0.65–2 blue [55].

Multiple sequence alignment and evolutionary tree
construction
Multiple sequence alignment of millet, rice, sorghum,
Ae. tauschii, T.urartu, barley, Brachypodium and maize
TTF gene family were performed by using Clustal X
version 2.0 [56]. According to the sequence alignment,
phylogenetic tree of TTF genes were built by PHYLIP
3.695 program with the Neighbor-joining method
(http://evolution.genetics.washington.edu/phylip.html),
and the Bootstrap value 1000 was adopted.

Selection pressure analysis
Using PAML 4.8 Codeml program (http://abacus.gene.u-
cl.ac.uk/software/paml.html), we tested whether the se-
quences to bear the positive selection with four
comparison models of M1a, M2a, M7, and M8 [57].

Fig. 1 Millet Trihelix transcription factor family conservative motif analysis. Dark color pieces were generated by MEME software, light color pieces
show possible Motif (using a motif scanning algorithm). The areas enclosed by boxes are a conserved domain, black indicates the N-terminal, and
red indicates the C-terminal
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Orthologs in foxtail millet, rice and sorghum
Using OrthoMCL program (http://orthomcl.org/orthomcl/)
[58], we analyzed chromosome segments duplication
between foxtail millet, rice, and sorghum Trihelix
genes, with the default settings, which initially re-
quired an all-against-all BLASTP, and then the rela-
tionships between the genes were deduced by the
MCL clustering algorithm. The result is graphic by
Circos software (http://circos.ca/) [59].

Expression analysis
Transcriptome and RNA - seq data was downloaded from
the foxtail millet database (http://foxtailmillet.genomic-
s.org.cn/page/species/index.jsp), and TTF expression data
extracted by using home-made Perl program. The foxtail
millet TTF genes expression cluster from each tissue was
analyzed using Cluster 3.0 software (http://bonsai.hgc.jp/
~mdehoon/software/cluster/software.htm), and the RPKM
values were log2 transformed. The heat map of hierarchical
clustering was visualized with TreeView1.1.3.

Protein interaction network
We used STRING 10.5 database (http://string.embl.de/)
[60] to analyze millet TTF interaction with other foxtail mil-
let proteins. We set the minimum required interaction score
to be high confidence (0.700), and max number of interac-
tors to be 5.

Results
Identification and genomic distribution
We identified 27 TTF genes in the foxtail millet genome
database (Additional file 1: Table S1). The shortest se-
quence has 212 amino acid residues, while the longest
one has 878 amino acid residues. The estimated protein
molecular weights fall in a range 23,453.7~ 96,360.6, and
the isoelectric points in a range 4.9184~ 11.2729.
The predicted 27 millet TTF genes have 36 transcripts

(Additional file 2: Figure S1). Twenty-one genes (21 or
77.8%) were found to have a single transcript, while 6 of
them have multiple transcripts, with Si7g009787 having
the most (5). They have considerably divergent genic
structures, with 1–17 exons. For example, 12 genes, e.g.,

Fig. 2 Millet Trihelix transcription factor family duplication analysis in the chromosome. All millet Trihelix genes are noted in the chromosome,
genome evolution homologous duplicate events are connected by color lines with Ks. Ks: 0–0.35 black; 0.35–0.45 green; 0.45–0.65 red; 0.65–2 blue
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Si6g014062, Si9g036682, have a single exon, while the
gene Si1g016284 has 17 exons and its gene structure is
broken into short pieces by inserted introns.
We characterized the motif in the TTFs and found that

they are diverse in motif composition, supporting previous
finding of divergent evolution with characterization of
exons and introns. Identified motifs often contain > = 15

amino acid residues even 200 amino acid residues. Some
motifs, such as Motif 8, are conserved in different subfam-
ilies (Fig. 1), while other motifs shared by subfamilies are
much variable (Additional file 3: Table S2).
In foxtail millet, TTF genes in each subfamily have similar

motif (Fig. 1). All six subfamily III genes contain Motif 4.
The subfamilies I and IV feature the containing of Motif 8

Fig. 3 Reconstructed phylogenetic tree of grass TTF genes. Here, gene IDs show their respective origin: Os for rice, Si for Setaria italia, Sb for sorghum, Ae
for Aegilops tauschii, Tu for Triticum urartu, Hv for barley, Bd for Brachypodium, and Zm for maize. We used shapes and colors to distinguish different
species, with red circles, green circles, blue triangles, light pink triangles, blue squares, yellow squares, brown diamonds, deep purple diamonds to
represent the TTF genes in Setaria italia, rice, barley, sorghum, maize, Brachypodium, Aegilops tauschii, and Triticum urartu, respectively. The number on the
branches is support value by bootstraping
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Fig. 4 Colinearity analysis of TTF genes between foxtail millet, rice, and sorghum. Chromosomes from any two grasses form a circle, and a pair of
collinear TTF genes are linked with a curvy line in red and blue, showing orthologous pairs or paralogous ones. Millet chromosomes: Si1 ~ Si9;
Rice chromosomes: Os01~Os12; Sorghum chromosomes: Sb01~Sb10. a: Millet-Rice. b: Millet-Sorghum
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and 9 while the subfamily II and the subfamily V features
Motif 2.
TTF genes contain a conservative structure domain in

the N terminal (except Si1g016284) (Fig. 1), while GT-2
contains the domain structure in the C terminal and 2
repeatitive and conservative structure domain. The GT-1
and GT-2 subfamilies are much more similar than to
other subfamilies.

With the exception of Si1g016284, the other genes con-
tain a conservative domain near the N-terminal, in which
1/5 of the amino acid residues are quite conservative, with
Trp (W) - 1, Trp (W) - 64 and Cys(C) - 100 being highly
conserved (Additional file 4: Figure S2).
According to gene localization in the foxtail millet gen-

ome, we found that, TTF genes are distributed in 8 foxtail
millet chromosomes but chromosome 4, with chromosome

Fig. 5 Reconstructed phylogenetic tree of TTF genes in involved species. Here, gene IDs show their respective origin: Si for Setaria italia, Pp for
moss, Sm for fern, Sc for yeast, Cr for Chlamydomonas reinhardtii, Cs for Coccomyxa subellipsoidea, and Vc for Volvox carteri. We used shapes and
colors to distinguish different species, with red circles, blue triangles, and green squares to represent TTF genes in Setaria italia, moss, fern,
respectively and pink diamonds to represent TTF genes in yeast, Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, and Volvox carteri. The
number on the branches is support value by bootstraping
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1 and 7 having 7 genes, chromosome 3, 6 and 8 having only
1 gene, and the others having 2–5 genes (Fig. 2). On
chromosome 1 and 7, they form small clusters distributed
in their middle and ending parts. Besides, there are 11
genes with Ks < 0.35, including a subfamily I gene (Si5g
004811), 2 subfamily II genes (Si7g010147, Si9g036121), 4
subfamily III genes (Si1g017397, Si1g019071, Si1g019502,
Si2g030145), 4 subfamily V genes (Si2g033157, Si1g016578,
Si9g034382, Si7g012121), showing possible gene divergence
after foxtail millet’s split from sorghum [55].

Evolutionary establishment of the family
To understand the evolution of the gene family, we in-
volved their homologous genes from its grass relatives,
rice (Oryza sativa), sorghum (Sorghum bicolor), Aegilops
tauschii, Triticum urartu, barley (Hordeum vulgare),
Brachypodium (Brachypodium distachyon), and maize
(Zea mays). Firstly, by using PHYLIP, we reconstructed
the phylogenetic tree of TTF genes (Fig. 3). These
grasses share genes from each subfamily, excepting T.
urartu, in which none subfamily I gene was found in the
present genome sequence. The subfamily IV has the
most members in all species.
Through the OrthoMCL program, we identified 32

TTF homologous gene pairs in millet and rice, including
19 orthologous gene pairs and 13 non-orthologous ones
(Fig. 4a). Millet and sorghum share 31 colinear genes,
including 18 orthologs in colinearity (Fig. 4b). The
orthologous pairs are those homologs at the anticipated
genomic locations from two genomes and often the best
1–1 match. For a non-orthologous pair, a millet gene may
have another non-best hit in the other grass, many quite
likely related to the grass-common tetraploidization occur-
ring ~ 100 million years ago. Often these non-orthologous
pair could be called as outparalogous pair. A total of 9
genes (Si1g017444, Si1g017674, Si3g022565, Si5g002238,
Si7g010246, Si7g010590, Si7g012121, Si8g026391, Si9g0
40176) are conservative in chromosomal locations in all 3
genomes, showing their existence in grass common
ancestor.
To find their a deeper history of the family, we recon-

structed a phylogenetic tree involving homologs from rep-
resentative organisms from different domains, including
Saccharomyces cerevisiae (yeast), Chlamydomonas rein-
hardtii (green algae), Coccomyxa subellipsoidea (green
algae), Volvox carteri (green algae), Physcomitrella patens
(moss), Selaginella moellendorffii (fern), and foxtail millet
(Fig. 5). Notably, the involved genes from these organisms
can also be classified into 5 previously defined subfamilies
(I~V) in grasses. There is only one TTF-like gene found in
the algae and yeast (too old to form a Trihelix characteristic
domain), while Physcomitrella patens and Selaginella moel-
lendorffii have 37 and 20 TTF genes, respectively. A close
check of the subfamily IV helped identify a certain group of

genes, involving copies from the yeast and algae genes, and
plant genes, therefore had existed before the divergence of
major life domains. Therefore, we separated them from
other subfamily IV genes, to define them as an extra group,
or subfamily O. That is, with homologs from all species, we
divided TTF genes into six subfamilies.
Genes forming subfamily IV were much diverged, in-

volving the oldest lineages. Thus, we chose the subfamily
IV to perform a natural selection analysis. By using the
PAML Codeml program to perform likelihood ratio test,
we estimated selective pressure on each lineage of the
constructed tree. We found that 6 amino acid sites were
likely subjected to significant positive selection (Table 1).

Expression profile in the different organs
We adopted heat map to display expression profile of mil-
let TTF genes from different tissues, involving root, stem,
spica and leaf (Fig. 6, Additional file 5: Table S3). Here, we
define the standard for high expression gene is more than
the average expression of all genes(the average RPKM
value is 15.7). There were 9 genes (33.3%), 11 genes
(40.7%), 14 genes (51.9%) and 3 genes (11.1%) with high
expression in root, stem, spica and leaf, respectively. In all

Table 1 Natural selection pressure analysis

Pr (w > 1) post mean for w

1 S 0.975* 2.942

28 D 0.585 1.851

81 L 0.791 2.434

93 Q 0.894 2.718

102 S 0.874 2.663

103 K 0.553 1.782

104 P 0.816 2.497

105 L 0.949 2.869

106 A 0.962* 2.903

107 T 0.974* 2.937

108 A 0.876 2.669

109 E 0.878 2.673

115 E 0.549 1.764

130 R 0.782 2.409

138 M 0.961* 2.903

141 S 0.888 2.701

142 V 0.948 2.865

144 V 0.754 2.328

165 A 0.971* 2.931

172 V 0.960* 2.900

183 T 0.948 2.865

186 A 0.866 2.640

Positively selected sites (*: P > 95%; **: P > 99%)
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organs, genes in spica had the highest expression level.
Subfamily IV had the highest expression level in all sub-
families. Si1g019071 and Si1g019502 were not observed to
be expressed in any tissues, Si5g004811 not in the root,
and Si9g040176 not in the stem and leaf.
In addition, expression has been down-regulated in

many structurally variable genes. Si9g040176 had more
copies of Motif 9 than others in subfamily I, possibly

subjected a recent motif addition and is down-regulated.
In subfamily III Si8g026391 had fewer copies of Motif 21
than the genes Si7g010102, and Si9g037484 had the sim-
plest structure in the subfamily IV indicating a motif dele-
tion, and they are also down-regulated. In the subfamily V,
compared to other genes, Si2g033157 lost the domain in
the C terminal region, and it is down-regulated. In con-
trast, though Si7g009787, having the most transcripts, and

Fig. 6 Expression of millet Trihelix transcription factor genes in the different organs
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Si1g016284, being the oldest gene in the family, are each
variable in structure, they had higher expression, showing
possible functional benefit of plants due to their variable
structure.

Protein-protein interaction
Protein interaction analysis shows that six of the foxtail mil-
let Trihelix transcription factor families have interaction re-
lationship (Fig. 7). Among them, Si1g016284 belongs to
subfamily O, Si7g009787 belongs to subfamily IV,
Si1g017397 belongs to subfamily III, Si7g010147 be-
longs to subfamily II, Si7g012121 and Si1g016578 belong
to subfamily V. The protein-protein interaction informa-
tion is from curated databases and experimentally deter-
mined. In addition, we also introduced textmining and
co-expression to enrich the interaction information. We
found that Si1g016284 from subfamily O has the most
interaction with other proteins (7). It also has inter-
action with Si7g009787 and Si1g017397, which have
five interacting proteins respectively. The genes,
Si7g010147, Si7g012121 and Si1g016578 have two inter-
acting proteins respectively.
The oldest TTF gene, Si1g016284, played a significant

role in the interaction. It seems to serve as a bridge
connecting the Trihelix family and other millet pro-
teins, and is co-expressed with many proteins (6), sug-
gesting that these proteins function synergistically.
Structurally, Si1g016284 has two extra domains, Lacta-
mase_B and RMMBL, in addition to the characteristic
of the Trihelix family. The five non-Trihelix proteins
interacting with it have variable domains, such as Lac-
tamase_B, RMMBL, Beta_Casp, CPSF100_C, WD40,
ZnF_C3H1, YTH, and/or HAT, showing a multiple-
facet nature of Silg016284.

Discussion
As a multi-functional transcription factor family, TTFs
were the first ones identified in plants [1]. Here, starting
from research in foxtail millet and extending into other
organisms, we explored their functional changes, expres-
sional features, genomic duplication and phylogenetics.

Eventually, we identified an oldest subfamily, referred as
O, in the constructed phylogenetic tree. Interestingly,
the single foxtail millet gene Si1g016284 in subfamily O
is the one having the most exons (Additional file 2: Fig-
ure S1). It has a single ortholog in yeast or any algae
species, and two orthologs in fern and three orthologs in
moss. Actually, this seems to be weird in that we would
have expected that it might be the most conservative
one to have highest similarity with the homologs from
far diverged life domains. This shows that, though
broken into 17 segments, the gene might have not been
pseudogenized but rather likely functional.
Starting from the subfamily O, primitive TTF genes

continued to expand in the plant domain. As to the re-
constructed tree topology, we found that certain genes
evolved to form subfamilies III and I, and later from
subfamily I to develop subfamilies II and V (Fig. 5).
In each subfamily, there is evidence that genome dupli-

cations contributed to accumulate more copies. For ex-
ample, in foxtail millet, a group of genes in subfamily IV
appeared after its divergence from other grasses (Fig. 3),
and moss has the most TTF genes with new copies seem-
ingly having been continuously produced (Fig. 5).
The primitive TTF gene, Si1g016284, has conserved

domain in its C terminal region, as genes forming sub-
family O from different life domains. Contrastively, the
conserved domains were found in N terminal or both
terminals in the other foxtail millet genes (Fig. 1).
Besides, subfamily GTγ were not found in Lycophta

and S. Moellendorffii (Fig. 5), consistent to previous re-
port [61]. This shows that though as an old subfamily,
they may have been pseudogenized or removed from
certain plants.

Conclusions
TTF genes were previously divided into five subfamilies,
I-V. By performing phylogenetic analysis using non-
plant species, notably we showed that a subgroup of
subfamily IV was the oldest, and therefore was separated
to define a new subfamily O. Starting from the subfamily
O, certain genes evolved to form other subfamilies. The

Fig. 7 Interaction network diagram of Trihelix transcription factor and other proteins in foxtail millet
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oldest gene, Si1g016284, has the most structural
changes, and a high expression in different tissues.
What’s more interesting is that it may have bridge the
interaction with different proteins. Our work will con-
tribute to understanding the structural and functional
innovation of Trihelix transcription factor, and the evo-
lutionary trajectory.
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