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Abstract

Background: Members of the transient receptor potential (TRP) superfamily are proteins that are critical for insects
to detect changes in environmental stimuli and also play key roles in their sensory physiology. Moreover, this family
provides potential targets for the design of insecticides. In contrast to a large number of studies conducted on
Drosophila melanogaster, molecular studies to characterize TRP channels in agricultural pests are lacking.

Results: In this study, we identified 15 TRP channel genes in the genome of a notorious agricultural pest, the oriental
fruit fly (Bactrocera dorsalis). Comparative analysis of the TRP channels (TRPs) in B. dorsalis with those in D. melanogaster,
Glossina morsitans, Musca domestica and the closely related Ceratitis capitata, and TRPs from mosquitoes, Hymenoptera,
Lepidoptera, Coleoptera and Hemiptera reveals that members of TRPA and TRPP subfamily are most diverse among
insects. The results also suggest that Tephritidae family have two TRP-Polycystin 2 members even though most insects
either possess just one or none. The highest expression levels of these two genes are in the testes of B. dorsalis,
implying a role in regulating sperm function. We analyzed the expression profiles of the TRP channels identified in this
study at different life stages using quantitative real time PCR. The results of this study demonstrate that all TRP
channels are mainly expressed in adults, especially at mature stages. The one exception to this trend is BdTRPM, which
is more highly expressed in the eggs of B. dorsalis, implying an important role in early development. We also detected
the spatial expression of TRP channels in mature adult fruit flies by investigating expression levels within various tissues
including those involved in sensory function, such as antennae, compound eyes, mouthparts, legs, and wings, as well

ovaries, and testes).

as tissues critical for homeostasis and physiology (i.e, Malpighian tubules, the brain and gut as well as fat bodies,

Conclusion: The results of this study establish a solid foundation for future functional characterization of B. dorsalis TRP
channels as well as those of other insects and will help future insecticide design targeting these channels.
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Background

Transient receptor potential (TRP) superfamily proteins
are six transmembrane domain cationic channels with
some calcium permeability, implicated in many cellular
functions [1]. This superfamily, whose members are
found in all animals, can be activated by a variety of
mechanisms and play critical roles in sensory physiology
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including vision, hearing, taste, touch, gravity, olfaction,
humidity, thermo- and osmosensation [1, 2]. In insects,
these channels have a profound impact on behaviors and
physiological functions [2-5].

The first TRP channel to be identified was Drosophila
TRP; this family member was initially identified and
characterized in phototransduction about three decades
ago [6]. Numerous TRP-like channels have subsequently
been identified in eukaryotes; these are arranged into
seven subfamilies based on their primary amino acid
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sequence homology, TRP-Canonical (TRPC), TRP-Ankyrin
(TRPA), TRP-No mechanoreceptor potential C (TRPN),
TRP-Vanilloid (TRPV), TRP-Melastatin (TRPM), TRP-
Mucolipin (TRPML), and TRP-Polycystin (TRPP) [1, 2].
These seven subfamilies are themselves broadly divided into
two groups with TRPC, TRPA, TRPN, TRPV, and TRPM
classified as group 1 TRPs because they share the most se-
quence similarity with the founding member of this super-
family, Drosophila TRP. In contrast, group 2 TRPs
comprise the TRPP and TRPML subfamilies that are dis-
tantly related to their group 1 counterparts [1]. Sixteen
TRP members have been identified and characterized in
Drosophila. The TRPC subfamily comprises TRP,
TRP-Like (TRPL), and TRPgamma (TRPy). The TRPA
subfamily includes TRPA1, Painless (Pain), Pyrexia (Pyx),
and Waterwitch (wtrw), while the TRPN subfamily has
just a single member that is not found in mammals, No
mechano-receptor potential C (NompC). The TRPV sub-
family includes inactive (Iav) and Nanchung (Nan), while
TRPM is the only member of the subfamily bearing this
name. The TRPP subfamily has polycystin-2 (Pkd2) and
brivido (Brv). In contrast to most TRP members which
have 6 transmembrane domains, Brv proteins contain be-
tween 8 and 10 transmembrane segments and are not
known to form ion channels independently previously [7].
But recently, the Drosophlia Brvl is proved to forms a
mechanosensitive cation channel and is essential for
gentle-touch sensation [8]. Finally, TRPML subfamilies
only contain TRP Mucolipin [1, 2]. Previous research has
demonstrated the presence of a diverse range of TRP
superfamily members amongst insect species [9]; if the
Brv genes are not counted, most insects possess between
13 and 14 TRP components, approximately half the num-
ber in mammals [10].

The oriental fruit fly, Bactrocera dorsalis (Hendel)
(Diptera: Tephritidae), is a polyphagous pest. This species
is recognized as one of the most destructive fruit industry
pests because of its wide distribution, rapid invasiveness,
and the high level of damage it causes [11, 12]. As the
long-term and excessive use of chemical insecticides to
mitigate the problems caused by this species have led to
serious resistance issues [13, 14], it is now urgent to de-
velop alternative targets. In this context, TRP channels
have become key insecticide targets because of their crit-
ical physiological and cellular functions. Previous re-
searches have shown that both pymetrozine and
afidopyropen act by modulating TRPV channels [15, 16],
and that TRPA1l in the mosquito vector for malaria,
Anopheles gambiae, is potently and directly activated by
citronellal [17]. Thus, TRPs have become potential targets
for insecticide development as well as for improved repel-
lents to control insect-borne diseases [18, 19]. Investigat-
ing the molecular characteristics of TRPs in B. dorsalis
will enable a better understanding of this system in a key
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agricultural pest and will provide a firm foundation for fu-
ture insecticide design targeting these channels.

In this study, we identified 15 TRP members in B. dor-
salis genome and transcriptome data deposited in the
GenBank database and examined the expression patterns
of these TRPs at different developmental stages and in
various B. dorsalis tissues.

Results
Identification, sequence analysis, and splice variants of
TRP channels in B. dorsalis
We identified 15 TRP channel genes in B. dorsalis that
share homology with known Drosophila TRP channel se-
quences. Phylogenetic analysis reveals that these chan-
nels include three TRPC, four TRPA, one TRPN, two
TRPYV, one TRPM, three TRPP, and one TRPML subfam-
ily members, respectively (Fig. 1 and Table 1). Sequence
analysis revealed the presence of six transmembrane do-
mains in all B. dorsalis TRPs with the exception of
BdorBrv, which has eight transmembrane segments
(Table 1). Most of group-1 TRPs possess multiple
N-terminal ankyrin repeats domain (Table 1); BLASTP
analyses of protein sequence alignments show that all B.
dorsalis TRPs have a high level of sequence identity
(above 50%) versus those in D. melanogaster, with the
exception of the TRPP subfamily members (Table 1).
Data show that while Drosophila has just one Pkd2 gene,
B. dorsalis has two; BdorPkd2—1 and BdorPkd2-2. The
Mediterranean fruit fly, Ceratitis capitata also possess
two Pkd2 genes, while other insects we investigated just
have one or none (Table 2). We validated the ORF se-
quence of BdorPkd2-1 and BdorPkd2-2 via RT-PCR;
compared with DmelPkd2, both these genes have a
much shorter N-terminal (Fig. 2) and contain a large
loop that separates the first two transmembrane do-
mains (Fig. 2), a characteristic feature of group-2 TRPs
[1]. No ankyrin repeats were detected in either
BdorPkd2-1 or BdorPkd2-2 (Fig. 2 and Table 1). We
only identified one Brv gene in B. dorsalis and other
Diptera insects we investigated, with the exception of D.
melanogaster, which has three (Table 2). Although we
also identified one Brv gene in Tribolium castaneum
(XP_015838037.1), it doesn’t cluster with other Brv pro-
teins (Fig. 1). The reason May be that the sequence of
the transmembrane segments of this protein is incom-
plete. To confirm whether Brv proteins are specific to fly
species, the genomes of more insect species need to be
investigated and the complete sequence of the identified
Brv gene in T. castaneum need to be obtained and char-
acterrized. The numbers of TRP superfamily members
among different insect species are varied, even in the
same order, such as Diptera (Table 2).

As we identified splice variants for BdorTRPL, we
performed RT-PCR on compound eyes using specific
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Fig. 1 Phylogenetic analysis of TRP channels in B. dorsalis and other insects. The tree was constructed using the software MEGA 5.05 with 1000
bootstrap replicates based on the Maximum Likelihood method. The numbers on branch nodes denote levels of bootstrap support. Species
abbreviations are Aaeg, Aedes aegypti, Adar, Anopheles darlingi, Agam, Anopheles gambiae, Amel, Apis mellifera, Apis, Acyrthosiphon pisum, Bdor,
Bactrocera dorsalis, Bmor, Bombyx mori, Ccap, Ceratitis capitata, Cqui, Culex quinquefasciatus, Cele, Caenorhabditis elegans, Dmel, Drosophila
melanogaster, Danio, Danio rerio, Gmor, Glossina morsitans, Homo, Homo sapiens, Mdom, Musca domestica, Tcas, Tribolium castaneum

primers and sequenced the products to confirm their ~would be expected to explain the generation of iden-
form. The results of this step show that at least two tified forms. The splice forms were generated by two
splice forms of BdorTRPL are present; transcripts of mutually exclusive exons; the second and third (Fig.
BdorTRPL1 are more abundant than those of 3b); thus, the ORF of BdorTRPLI is 3744 base pairs
BdorTRPL2 in the compound eyes of B. dorsalis (bp) and codes for a protein that comprises 1247
(Fig. 3a). We therefore further analyzed the genome amino-acid residues. Data show that BdorTRPL2 con-
and transcriptome data deposited in the NCBI data- tains an ORF comprising 3755 bp that codes for a
base to investigate the positions of splicing sites that protein consisting of 1250 amino-acid residues.
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Table 1 TRP channels identified from B. dorsalis
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TRP from B. dorsalis
Subfamily  Gene Genomic NCBI Length  Protein region  Number of CG no. of the Sequence identity
name Sequence ID accessionno.  (amino identified (TM) ankyrin D. melanogaster  between
(Transcripts)  acids) repeats orthologue B. dorsalis and D.
melanogaster

Group-1 TRPs

TRPC BdorTRP NW_011876214.1 XM_011199037 1255 TM1-6 4 CG7875 75%
BdorTRPL NW_011876127.1 XM_019992825 1250 TMI1-6 4 CG18345 70%
BdorTRPy NW_011876374.1 XM_019991203 1148 TMI1-6 4 CG5996 86%

TRPA BdTRPAI NW_011876386.1 XM_011210731 1244 TMI1-6 13 CG5751 79%
BdorPain NW_011876390.1 XM_011211573 930 TMI1-6 9 CG15860 52%
BdorPyx NW_011876344.1 XM_011205344 975 TMI1-6 9 CG17142 73%
BdorWtrw NW_011876251.1 XM_011200137 981 TM1-6 9 CG31284 89%

TRPN BdorNompC NW_011876379.1 XM_019991381 1705 TM1-6 29 CG11020 88%

TRPV Bdorlav NW_011876375.1 XM_011208858 897 TM4-6 5 CG4536 85%
BdorNan NW_011876301.1 XM_019989557 832 TMI1-6 5 CGs842 85%

TRPM BdorTRPM NW_011876216.1 XM_019988876 2095 TM1-6 0 CG44240 77%

Group-2 TRPs

TRPP BdorPkd2-1 NW_011876199.1 XM 011216470 662 TMI1-6 0 CG6504 39%
BdorPkd2-2 NW _011876391.1 XM 011211817 639 TMI1-6 0 CG6504 37%
BdorBrv NW_011876251.1 XM_011200123 711 T™MI1-8 0 CG13762 38%

TRPML  BdorTRPML NW_011876336.1 XM_011204634 695 TMI1-6 0 CG8743 72%

Sequence differences between BdorTRPL1 and BdorTRPL2
include between 18 and 21 N-terminal amino-acid residues
(Fig. 3c). The amino acid sequence of BdorTRPL comprises
six transmembrane domains (i.e., TM1 to TM6) and four
ankyrin repeats. The TRP domain, which follows the sixth
transmembrane segment, was detected in BdorTRPL. TRP
box 1 and TRP box 2 are the most conserved portions of
this domain (Fig. 3c) [1].

We also detected two splice variants for BdorPyx by
performing RT-PCR on abdomen samples. Data reveal a
higher long form (BdorPyx-L) expression level compared
to the short form (BdorPyx-S) (Fig. 4a); the ORF of
BdorPyx-L comprises 2928 bp and codes for a protein
consisting of 975 amino-acid residues, while that of
BdorPyx-S is 2553 bp in length and codes for a protein
of 850 amino-acid residues. This splicing is generated by

Table 2 Number of TRP subfamily members in the genome of B. dorsalis and several other Diptera insects

Number of TRP subfamily members in the genome of B. dorsalis and several other Diptera insects

Channel type

Species name TRPC TRPA TRPN TRPV TRPM TRPP TRPML  Total

TRP  TRPL TRPy TRPAL TRPAS HsTRPA Pain Pyx  Wtrw  NompC Iav Nan TRPM Brv Pkd2 TRPML
Diptera
Fly
Drosophila melanogaster 1 1 1 1 0 0 1 1 1 1 1 1 1 3 1 1 16
Glossina morsitans 1 1 1 1 0 0 2 1 1 1 1 1 1 1 1 1 15
Musca domestica 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 14
Bactrocera dorsalis 1 1 1 1 0 0 1 1 1 1 1 1 1 1 2 1 15
Ceratitis capitata 1 1 1 1 0 0 1 1 1 1 1 1 1 1 2 1 15
Mosquito
Aedes aegypti 1 1 1 1 0 0 1 1 2 1 1 1 1 0 1 1 14
Anopheles gambiae 1 1 1 1 0 0 1 1 2 1 1 1 1 0 1 1 14
Anopheles darlingi 1 1 1 1 0 0 2 1 1 1 1 1 1 0 0 1 13
Culex quinquefasciatus 1 1 1 2 0 0 4 1 1 1 1 1 1 0 0 1 16
Hymenoptera
Apis mellifera 1 1 1 0 2 1 1 1 1 1 1 1 1 0 0 1 13
Lepidoptera
Bombyx mori 1 1 1 1 1 0 1 1 2 1 1 1 1 0 0 1 14
Coleoptera
Tribolium castaneum 1 1 1 1 1 0 1 1 1 1 1 1 1 om 1 1 14 (15)
Hemiptera
Acyrthosiphon pisum 1 1 1 1 0 0 1 0 2 1 1 1 1 0 1 1 13

The data of TRPs for 4. mellifera, B. mori, T. castaneum and A. pisum are manly from (Peng et al., 2015) [7], with the exception of Brv. T. castaneum may contain Brv as shown in parentheses.

The data of TRPs for A. mellifera, B. mori, T. castaneum and A. pisum are manly from (Peng et al., 2015) [9], with the exception of Brv. T. castaneum may contain Brv

as shown in parentheses
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Fig. 2 The amino acid sequence alignment of Pkd2 in B. dorsalis and D. melanogaster. The last residue in each line is indicated on the right,
aligned sequences are shown as white letters on black, and conservatively substituted residues are shaded. Dashes indicate gaps introduced to
maximize similarities, and the six predicted transmembrane regions are denoted TM1 to TM6
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the excision of a 375 bp fragment within the sixth exon
(Fig. 4b). Thus, compared to the six transmembrane do-
mains seen in BdorPyx-L, this excision is potentially re-
sponsible for the generation of the truncated polypeptide
in BdorPyx-S that just possesses four (Fig. 4c).

TRP channel transcript levels in different B. dorsalis
developmental stages

We used qRT-PCR to investigate the levels of temporal
expression in B. dorsalis TRPs. Multiple stages were
tested in this study including eggs, larvae, pupae, imma-
ture (one day old), and mature (13 days old) adults. Re-
sults reveal that BdorTRP is expressed to a relatively
high level in adult stages as well as in seven day old
pupae (Fig. 5a). Although adults possess abundant tran-
scripts of both the two BdorTRPL splice forms (Figs. 5b
and c¢), BdorTRPL1 is expressed in adults while
BdorTRPL?2 is also expressed in larvae and pupae. We
were barely able to detect BdorTRPy in eggs even though
this form was commonly present in all other tested stages
(Fig. 5d). Immature adults also express abundant
BdorTRPA1, and transcripts of this channel were more
common in mature females than males (Fig. 5e). BdorPain
is more highly expressed in adults than in other stages
(Fig. 5f). Results show that the long and short forms of
BdorPyx were expressed differently depending on B. dor-
salis life stage; both larval and pupal stages mainly express
the short form transcripts while adults mainly express the
long form (Fig. 5g). Indeed, similar to BdorTRE, abundant
BdorWtrw transcripts were also detected in seven day old
pupae and adults (Fig. 5h), while BdorNompC, Bdorilav,

BdorNan, BdorPkd2-1, and BdorPkd2-2 were all more
highly expressed in mature males compared to all other
stages (Figs. 5i, j, k, n and o). BdorBrv is widely expressed
across all the tested stages except eggs (Fig. 5m). Data
show that just BdorTRPM was highly expressed in eggs
among tested TRPs (Fig. 5l), while mature females
expressed the highest number of BdorTRPML transcripts
(Fig. 50). All the TRPs we tested are mainly expressed in
adults, with the exception of BdorTRPM which is
expressed to a greater extent in eggs than in other stages.

Tissue distribution of TRP channels in B. dorsalis

Insect external structures, including antennae, compound
eyes, mouthparts, legs, and wings, are all important for
sensing environmental stimuli. The internal tissues such
as Malpighian tubules, brain, gut and fat bodies as well as
ovaries and testes are critical for insect homeostasis. To
investigate the possible roles of the identified TRPs in B.
dorsalis, we therefore measured TRP expression levels in
different tissues of mature adults. Results show that tran-
scripts of BdorTRP, BdorTRPL1, and BdorTRPL2 are
much higher in compound eyes and brains than in other
tissues (Figs. 6a-b). In compound eyes and mouthparts,
mRNA level of BdorTRPLI is higher than that of
BdorTRPL2 (Figs. 6b). While higher transcripts of
BdorTRPL2 were detected in wing, fat body, gut, Malpig-
hian tubules, ovaries and testes than BdorTRPLI in these
tissues (Figs. 6b). BdorTRPy is mainly expressed in wings,
legs and brains (Fig. 6¢). In contrast, hardly any transcripts
of BdorTRPA1 were found in wings and legs, but are abun-
dant in antennae, mouthparts, brains and gut (Fig. 6d). Data
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also show that BdorPain is expressed to a high level in legs
(Fig. 6e), while BdorPyx is mainly expressed in the antennae
of B. dorsalis. It is also noteworthy that primer-amplified
BdorPyx comprises two isoforms which coexpressed in this
analysis in a ratio strongly favoring the longer variety in
compound eyes, legs, brains, fat body, ovaries and testes
(Fig. 6f). High messenger RNA (mRNA) levels of
BdorWtrw, Bdorlav, and BdorNan were also found in legs
and wings (Figs. 6g, i and j). The highest expression level of
both BdWtrw and BdNompC were detected in brains (Figs.
6g and h). Abundant transcripts of BdorTRPM and
BdorTRPML were detected in Malpighian tubules (Figs. 6k
and p), while a high BdorTRPM and BdorTRPML mRNA
level was also found in ovaries and gut respectively (Fig. 6k
and p). The highest expression levels of BdorBrv,
BdorPkd2—-1 and BdorPkd2-2 were observed in testes in all
cases (Fig. 6m-o0). Apart from testes, BdorBrv is also highly
expressed in fat bodies and legs (Fig. 6m).

Discussion

We identified 15 B. dorsalis TRPs in this study that can be
divided into seven subfamilies on the basis of their struc-
ture and phylogenetic analyses. Our data show that B. dor-
salis possesses three TRPP members including BdorBrv,
BdorPkd2-1 and BdorPkd2-2. The numbers of TRPP
channels are known to vary amongst insect species; while
most contain just one Pkd2 gene (e.g., Drosophila), this
channel is entirely absent in some lepidopterans and hy-
menopterans (e.g., Bombyx and Apis) (Table 2) [10]. D.
melanogaster have three Brv genes, but we detected only
one Brv gene in B. dorsalis. The rest insects we investi-
gated also have one Brv or none. It is thought that TRPP
comprises the most ancient TRP subfamily because mem-
bers of this group are known from taxa spanning yeast to
mammals [20, 21]. However, the sequence identities of
TRPP members between B. dorsalis and D. melanogaster
are relatively low; previous studies have shown that the
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evolutionary rate of TRPP channels has been accelerated
relative to other TRPs and members of this subfamily
might perform different physiological functions in distinct
insect species [10, 22]. Although B. dorsalis have the same
number of TRPA genes with D. melanogaster, members of
this subfamily are most diverse among arthropod species,
particularly in insects [9]. In this study, more TRPA gens
were detected in mosquitos than in flies. The TRPA1 gene
was lost in Hymenoptera, but insects belonging to this
order have Hymenoptera- specific TRPA (HsTRPA) prob-
ably compensates for the lack of TRPAI [10, 23]. TRPA
subfamily members are involved in sensing compounds,
temperature and humidity. The more complicated lifestyle
an insect live, the more TRPA members they may have.
Due to the expansion of Pain and TRPA5 channels, the
social insect S. invicta have 27 TRP genes, much more
than most insects [9]. The amplification and reduction of
TRPs in different insects indicate that the evolution of this
superfamily is related to specific habitats and life histories
of individual species. Future studies are needed to investi-
gate the physiological significance of the expanded TRPs.

All of the TRPs detected in this study are highly
expressed in adults (especially mature individuals), with
the exception of BATRPM. We know that these channels
are critical to just about every sensory modality in insects
and so impact behaviors as diverse as phototaxis, thermo-
taxis, gravitaxis, the avoidance of noxious tastants and
smells, and proprioception [2]. The biology of B. dorsalis
adults and the environmental conditions within which
they live are more diverse than their other life stages; in-
deed, multiple behaviors are only seen in adult flies, in-
cluding courtship, mating, flight, and egg-laying. These
observations are important because while most TRPs
could barely be detected in eggs, the highest TRPM ex-
pression level was found during this life stage; this channel
may be required for early B. dorsalis development as it is
critical for Mg2+ and Zn?* homeostasis [24, 25] and mem-
bers of this subfamily are necessary for initial embryonic
development in mice [26].

The data presented here show that BATRP and the
two splice forms of BATRPL have high levels of expres-
sion in compound eyes and the brain, suggesting their
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roles in light sensation. Drosophila TRP is expressed pre-
dominantly within rhabdomeric membranes of photo-
receptor cells and is required for light responses [6]. At
the same time, TRPL also participates in phototransduc-
tion and is responsible for remaining light responses in
the trp mutant [27]. Interestingly, we detected abundant
transcripts of TRPLI in the mouthparts, suggesting that this

channel might modulate B. dorsalis feeding. The two spice
forms of BdorTRPL are differentially expressed. BdorTRPL2
may regulate the function of fat bodies, gut, Malpighian tu-
bules. The TRPy channel is also highly enriched in photo-
receptor cells in Drosophila and is therefore thought to be
essential to the phototransduction process [28]. Although
no TRPy expression was observed in previous work in the
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eyes of Spodoptera littoralis [5], we were able to detect low
expression in B. dorsalis compound eyes. It is also note-
worthy that TRPy mRNA is abundant in B. dorsalis wings
and legs; proprioceptive neurons are distributed in the
joints of appendages in fruit flies, including in the legs and
wings [29], where TRPy is expressed in proprioceptive or-
gans and contributes to fine motor control [30]. Moderate
TRPy transcripts were detected in the brain of B. dorsalis,
while in S. littoralis and Periplaneta Americana, TRPy is
highly expressed in the brain and the central nervous

system [5, 31]. TRPAL1 is involved in numerous sensory
processes, including temperature sensation and the avoid-
ance of noxious heat, aversive odorants, tastants,
non-volatile irritants, bright lights, and mechanical stimuli
[2, 32]. The presence of sensory organs for smell, hearing,
and gravity in insect antennae [2] may therefore explain the
relatively high B. dorsalis TRPAI expression level in these
tissues. Dominant expression of TRPA1 homologs in anten-
nae has been reported previously [33, 34], and we also show
robust expression of TRPAI in B. dorsalis gut samples.
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TRPA1 channel may play a critical role in B. dorsalis gut
immune responses because it promotes the expulsion of
bacteria from the gut via a uracil/Duox pathway and is also
required for intestinal stem cell proliferation in response to
oxidative stress [35, 36]. Similar to TRPAI, Pain is widely
distributed in B. dorsalis and is also important for the sen-
sation of gravity and the avoidance of noxious heat, mech-
anical stimulation, and dry environments [2]. We therefore
hypothesize an extended role for BdorPain via its involve-
ment in signaling pathways that control various physio-
logical processes. Mechanosensation allows animals to
respond to soft touches, noxious sensations, sound, and
gravity, and may also contribute to hygrosensation, while
Pyx is involved in gravity sensation [2], Wtrw is necessary
to detect dry air [37], and NompC is important for light
touches, locomotion, and hearing [2, 29]. Organs used for
mechanosensation are distributed throughout insect legs
and wings, coincident with our findings that relatively high
expression levels of Pyx, Wirw, and NompC also occur in
the legs of B. dorsalis. Pyx also regulates resistance to nox-
ious heat [38]; the highest level of expression for this chan-
nel was detected in B. dorsalis antennae. Similarly, the
TRPV channels Iav and Nan are expressed in Johnston’s
organ and play key roles in gravity and sound sensation [2];
we detected moderate expression levels of both these chan-
nels in B. dorsalis antennae alongside high levels in legs
and wings. The distribution of Iav and Nan in internal tis-
sues is also indicative of their potential roles in regulating
B. dorsalis physiological processes; as noted, TRPM is es-
sential for Mg>* and Zn>* homeostasis and D. melanogaster
knocked out this channel have shortened Malpighian tu-
bules [25]. This gene is also essential for life in these flies as
mutations result in the death of pupae [25]. Indeed, TRPM
is expressed at a high level in B. dorsalis Malpighian tubules
as well as in several other external structures, suggestive of
a role in Mg®* and Zn** homeostasis and the sensation of
environmental stimuli. Studies revealed that Drosophila
TRPM functions in noxious cold sensation and gentle
touch mechanosensation [22]. Given the highly expression
level of Brv in testes, fat bodies and legs, this gene might
regulate B. dorsalis sperm function, immune response, taste
and mechanosensation. In Drosophila, Brv genes have been
implicated in cool sensation in adults and Brv-1 is required
for gentle touch [8, 39]. Previous evidence showed that the
antennae contribute to cold sensation [2]. Moderate Brv ex-
pression level was detected in B. dorsalis antennae suggest-
ing this protein may also regulate cool sensation in this
species. A single Pkd2 is present in Drosophila which local-
izes to the flagellated sperm tail where it is required for
storage [40, 41]. Although TRPP is absent from the genome
of several insects such as Bombyx mori, Anopheles darling
and Culex quinquefasciatus (Table 2) [9], B. dorsalis has
two of these channels both expressed to a high level in tes-
tes. We hypothesize that these two Pkd2 members perform
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different roles in sperm function. TRPML participates in
locomotion, autophagy, and the clearance of apoptotic cells
[2]. This channel is highly expressed in B. dorsalis Malpig-
hian tubules and gut, therefore it might regulate the func-
tions of these two tissues in the oriental fruit fly.

Conclusion

The number and function of TRPs varies amongst insect
species [9]. In this study, we have investigated the mem-
bers of TRPs in the genome of the notorious agricultural
pest, B. dorsalis and several other Diptera species. We
also detected the expression patterns of TRPs in B. dor-
salis. The results of this research expand our knowledge
of these critical sensory channels and provide key add-
itional information that will prove valuable to future
molecular-level functional studies. This study also lays
the foundations for the future development of novel
strategies to safely and efficiently control this key insect
pest species.

Methods

Insects

Individual B. dorsalis flies were reared at 27 °C+1 °C
and at 75% t 1% relative humidity; all individuals were
subjected to a photoperiod cycle comprising 14 h of
light and ten hours of dark. Hatched larvae were main-
tained on an artificial diet [42]. Larvae were then trans-
ferred into small plastic boxes containing sand before
pupation and pupae were kept at 27 °C+1 °C until
adults emerged. Adult flies were fed another artificial
diet comprising yeast extract and dry sugar mixed at a
1:1 ratio (w/w) and housed in wooden cages measuring
35 c¢m by 35 ¢cm by 35 cm [43].

Identification of TRP channels

To search exhaustively all TRP genes in each species, we
screened several types of database including assembled
genomes, reference sequence (RefSeq) database from
National Center for Biotechnology Information (NCBI)
(https://www.ncbinlm.nih.gov/refseq/) and transcrip-
tomic data acquired from NCBI Sequence Read Archive
(SRA) Databases (https://www.ncbi.nlm.nih.gov/genbank/
tsa/). The B. dorsalis genome has been available from the
United States Department of Agriculture National Agricul-
tural Library Database (https://i5k.nal.usda.gov/Bactrocer-
a_dorsalis). The genomes of Glossina morsitans, Aedes
aegypti, Anopheles darling, Anopheles gambiae and Culex
quinquefasciatus has been available from vectorBase
(https://www.vectorbase.org/). The genomes of Ceratitis
capitata [44] and Musca domestica [45] were downloaded
from NCBI database. We obtained the genome data of Apis
mellifera, Bombyx mori, Tribolium castaneum, Acyrthosi-
phon pisum from Hymenoptera Genome database (http://
hymenopteragenome.org/), Silkworm Genome database
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(http://silkworm.genomics.org.cn/),  Beetlebase  (http://
www.beetlebase.org/) and AphidBase (http://bipaa.genoues-
t.org/is/aphidbase/) respectively. Firstly, candidate B. dorsa-
lis TRP genes were identified by TBLASTN searches
against genome and transcriptomes with an E-value cutoff
of 1e™ >, using known TRP protein sequences of D. melano-
gaster, Apis mellifera and humans (Homo sapiens). Then,
candidate genes were further verified using BLASTP versus
non-redundant NCBI protein sequences without species
limits and with a cut-off e-value of le > [46]. The same
procedure was used to identify TRP genes of other Diptera
species and Brv genes of A. mellifera, B. mori, T. casta-
neum, A. pisum by a homology-based approach.

Reverse transcription PCR (RT-PCR)

To investigate the splice variants of TRP channels and to
confirm the identified Pkd2 channels in B. dorsalis,
primers (Additional file 1: Table S1) were designed to
amplify part of the open reading frames (ORFs) of TRPL,
Pyx and Pkd2 genes. Total RNA was isolated from the
compound eyes, abdomens, and whole bodies of six adult
flies using the Trizol reagent (Invitrogen, Carlsbad, CA,
USA) and was treated with RQ1 DNase I (Promega, Madi-
son, WI) to eliminate genomic DNA (gDNA). Single-
strand complementary DNA (cDNA), synthesized from
the Total RNA (1 pg) using a RevertAid First Strand
c¢DNA Synthesis Kit (Thermo Scientific), was then used as
a template for PCRs. All amplifications were carried out
using Phusion high-fidelity DNA polymerase (Thermo
Scientific) according to the manufacturer’s instructions
and products were separated to check their sizes via elec-
trophoresis onto a 1.0% agarose gel. Purified PCR prod-
ucts were then cloned into a pEASY-Blunt Zero Cloning
Vector (TransGen, Beijing, China) following the manufac-
turer’s instructions before being sequenced.

Phylogenetic analysis and sequence alignment

In order to classify the TRP channels we identified
into different subfamilies, amino acid sequences were
phylogenetically characterized in each case. Thus, pro-
tein structural information for all candidate TRPs was
identified via an InterProScan (http://www.ebi.ac.uk/
Tools/InterProScan/) search, and sequences were
aligned using the software ClustalW2 (http://www.e-
bi.ac.uk/Tools/msa/clustalw2/). ~ Phylogenetic  trees
were constructed using MEGA 5.05 with 1000 boot-
strap replicates based on the Maximum Likelihood
method. Poisson correction model and the partial de-
letion method for gaps were used. Branch support
values were expressed as percentages. The accession
numbers of all the TRP channels used in this study
are listed in Additional file 1: Table S2.
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Quantitative real time PCR (qRT-PCR)

Samples from different developmental stages were col-
lected to investigate the spatiotemporal distribution of
TRPs in B. dorsalis; these included eggs (between one
hour and two hours old), larvae (one day, four days, and
seven days old), pupae (one day, four days, and seven
days old), immature males and females (one day old),
and mature males and females (13 days old). 13-day- old
adults mixed with the same number of males and fe-
males were dissected into antennae, compound eyes,
mouthparts, legs, wings, the brain, fat bodies, gut, Mal-
pighian tubules, ovaries and testes. For temporal distri-
bution analysis, approxmatily 100 eggs were used for a
pool and 6 were used for a pool for the rest stages. For
tissue distribution, 30 adults were included in a pool.
The replicates are different pools of individuals from in-
dependent cages on the same day. At least three sample
biological replicates were carried out in each case.

We extracted RNA using the TRIzol reagent (as dis-
cussed above) and measured RNA quantities using a
Nanodrop 2000 spectrophotometer (Thermo Scientific
Inc., Bremen, Germany). Reverse transcription was then
performed with 1 pg of RNA using TransScript one-step
gDNA removal and ¢cDNA Synthesis SuperMix (Trans-
Gen Biotech, China). Synthesized cDNA was then used
as a template for qRT-PCR; this was performed with a
Stratagene Mx3000P thermal cycler (Agilent Technolo-
gies, Wilmington, DE). The reaction mixtures used in
each case contained 12.5 pL of 2 x TransStart Top
Green qPCR SuperMix (TransGen Biotech, Beijing,
China), 0.4 pL of positive reference dye, 0.4 puL of each
primer (0.2 pM), and 2 pL of template cDNA. Sterile
distilled water was then added to these mixtures up to a
final volume of 25 pL. The thermal cycling conditions
used in this study comprised 30 s at 95 °C, 40 cycles at
95 °C for five seconds each, and 34 s at 60 °C. Three
sample replicates were performed for each group, and
no-template negative controls were included in each run
to detect possible contamination or carryover. A series
of gene-specific primers were designed for qRT-PCR
using the software Primer 3 (http://bioinfo.ut.ee/pri-
mer3-0.4.0/) (Additional file 1: Table S1); these primers
were utilized to investigate the relative expression of se-
lected samples, while a melting curve analysis was per-
formed between 60 °C to 95 °C for all reactions to
ensure the specificity and consistency of generated prod-
ucts. The specificity of all qRT-PCR reaction products
was established via electrophoresis on a 1.0% agarose gel
prior to sequencing, and all experiments were performed
independently at least twice to ensure their reliability
and reproducibility.

We quantified the transcript levels of different genes
using the 22T method [47], and ensured comparable
quantities of c¢cDNA by amplifying o-tubulin as a
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reference gene as this possesses excellent spatiotemporal
expression stability in B. dorsalis [48]. We set the lowest
expression level stage to one for this analysis in order to
calibrate relative levels in different development stages;
relative expression levels were therefore assessed by com-
paring the situation in each target gene in other develop-
mental stages to that of the lowest stage. The same
developmental stage method was also applied for analysis
of relative expression levels in various tissues. The data of
relative expression levels in different development stages
and various tissues were analyzed using one-way analysis
of variance (ANOVA), followed by a Tukeys multiple
comparison test when significant differences were tested.
For the comparison of expression differences between
splice forms, unpaired t test were applied. All statistical
analyses were performed using the software GraphPad
Prism 5.0 (San Diego, CA).

Additional file

Additional file 1: Table S1. Primers used in this study. Table S2.
Accession number of TRP channels used in this study. (DOCX 28 kb)
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