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Abstract

Background: The current literature on single cell genomic analyses on the DNA level is conflicting regarding
requirements for cell quality, amplification success rates, allelic dropouts and resolution, lacking a systematic
comparison of multiple cell input down to the single cell. We hypothesized that such a correlation assay would
provide an approach to address the latter issues, utilizing the leukemic cell line OCI-AML3 with a known set of
genetic aberrations.

Results: By analyzing single and multiple cell replicates (2 to 50 cells) purified by micromanipulation and serial
dilution we stringently assessed the signal-to-noise ratio (SNR) from single as well as a discrete number of cells
based on a multiple displacement amplification method, with whole exome sequencing as signal readout. In this
setting, known OCI-AML3 mutations as well as large copy number alterations could be identified, adding to the
current knowledge of cytogenetic status. The presence of DNMT3A R882C, NPM1 W288 fs and NRAS Q61L was
consistent, in spite of uneven allelic read depths. In contrast, at the level of single cells, we observed that one-third
to half of all variants were not reproduced in the replicate sample, and this allelic mismatch displayed an
exponential function of cell input. Large signature duplications were discernible from 5 cells, whereas deletions
were visible down to the single cell. Thus, even under highly optimized conditions, single cell whole genome
amplification and interpretation must be taken with considerable caution, given that allelic change is frequent and
displays low SNR. Allelic noise is rapidly alleviated with increased cell input, and the SNR is doubled from 2 to 50 cells.

Conclusions: In conclusion, we demonstrate noisy allele distributions, when analyzing genetic aberrations within
single cells relative to multiple cells. Based on the presented data we recommend that single cell analyses should
include replicate cell dilution assays for a given setup for relative assessment of procedure-specific SNR to ensure that
the resolution supports the specific hypotheses.
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Background
Detailed characterization of sparse cancer subpopula-
tions, and even single cells, by next generation sequen-
cing (NGS) modalities is rapidly gaining momentum,
potentially adding valuable information on the biology
underlying neoplasia and progression. These approaches
hold important bearings for future personalized therapy
in both mono- and oligoclonal disease entities, where
the cancerous stem cell population is the ultimate thera-
peutic target. Arguably, single cell analysis is not a new
phenomenon, and has to some extent been described by
both cytogenetics and flow cytometry, although NGS
offers unprecedented possibilities for high throughput,
informational content and scalable sensitivity. In parallel
with the development of single cell research whole
exome sequencing (WES) has progressed to a mature
method in cancer research and laboratory diagnostics
with high informational value, though the extent of its
use is still driven by cost versus diagnostic or research
benefit.
Until fairly recently, the use of NGS in single cell ana-

lysis has been limited, partly due to the requirement of a
relatively large amount of input material. This problem
can now be circumvented by whole genome amplifi-
cation (WGA), but reports on the quality and
consistency of these techniques are still lacking. Cur-
rently, there are three major WGA-methods; the mul-
tiple displacement amplification (MDA), degenerate-
oligonucleotide-primed PCR (DOP-PCR) and multiple
annealing and looping-based amplification cycles (MAL-
BAC). A comparison of the three, according to variant
detection, has recently been performed [1, 2], without a
clear conclusion on which is the most optimal approach.
Importantly, several sources of contributing noise are
introduced during WGA, such as decreased coverage uni-
formity, regional loss of coverage, polymerase errors, al-
lelic imbalance and allele dropout. The last term is not
consistently defined throughout different studies [3].
Added to these different results is the fact that, while sin-
gle cell resolution is the ultimate feat for characterization
of discrete subclonal contribution to leukemogenesis and
potential targeted therapy, allelic substitutions or dropouts
will invariably occur with increasing frequency when
fewer and fewer cells are analyzed, questioning the value
of apparently somatic observations. In some aspects, the
present literature remains ambiguous and incoherent
regarding the quality of single cell DNA genomic analysis
with large variation in the reported allelic dropout rates
[3], with values as high as 40–50% reported using MDA
[4, 5], which is currently the most commonly used method
[3]. In spite of these attempts to map the allelic dropout
rate, one piece is evidently missing: The evaluation of
single cell performance and resolution in NGS, compared
to a low number of multiple cells, which is the focus here.

In consideration of this gap, we decided to revisit the con-
cept, evaluating and suggesting a simple, but essential,
strategy for quality assessment of single and sparse cell
assays based on allelic read depths.
Our study employs a well-characterized leukemia cell

line, OCI-AML3 [6], and one of the most established
methods for WGA: MDA. We set out to investigate and
formalize a signal-to-noise ratio (SNR), and to elaborate
on the components of this, correlate single and sparse
cell allelic read depths, allele frequency dispersion and
distributions, and to characterize allele dropout as a
clear continuous function of cell input. Often, as is the
case with OCI-AML3, no clear normal control sample
exists, which otherwise can be implemented for somatic
variant calling and copy number analysis – the latter
through read depth ratios. However, as we also set to
demonstrate, allelic imbalance directly reflects large
chromosomal copy number variation in these unpaired
samples. It is our assumption that such general analyses
can be utilized regardless of amplification or capture
methods, and thus an assessment on the performance of
the individual WGA methods is beyond the focus of this
paper.

Methods
Cell culturing
The OCI-AML3 cell line was obtained from Deutsche
Sammlung von Mikroorganismen und Zellkulturen
(DSMZ, Braunschweig, Germany) and cultured in
RPMI-1640 medium (Invitrogen, Thermo Fisher Scien-
tific, CA, USA) with 5% FCS and antibiotics (penicillin,
streptomycin). The culture was physically isolated from
other cultures throughout the incubation. Harvesting
was performed in the exponential growth phase.

Micromanipulation, whole genome amplification and
genotyping
The cultured OCI-AML3 cells were dispensed in RPMI/
PBS-medium and replicates of single, 2, 5 and 10 cells
were subsequently separated by micromanipulation
under a dissection microscope, using a fine glass pipette.
The 25 and 50 cell sample replicates were created using
serial dilutions. The aliquots of 1, 2, 5, 10, 25 and 50
cells were manipulated into 200 μL PCR tubes in a total
volume of 4 μL PBS and prepared for WGA (REPLI-g
Single Cell Kit, Qiagen, Hilden, Germany). Genomic
characterization of WGA DNA included 21 short tan-
dem repeat loci (STR, PowerPlex 21 System, Promega,
WI, USA), also employed in forensic genome identifica-
tion, of which 18 loci were known to be heterozygous in
OCI-AML3, fragment analysis of known NPM1W288fs

mutation [7] and qPCR of the DNMT3AR882C mutation
[8]. Median allele dropout was calculated by comparing
replicate sample loci from STR. The described molecular
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analyses were performed in six single cell replicates and
in triplicates for 2–50 cell input.

Whole exome sequencing, sequencing processing and
variant analysis
For exome sequencing 1, 2, 5, 25 and 50-cell replication
assays were prepared as described above. Sample repli-
cates likewise underwent WGA with subsequent WES
on the Illumina HiSeq 2500 platform (Aros Applied
Biotechnology, Eurofins, Aarhus, DK (5–50 cell as-
says), and Rigshospitalet, Center for Genomic Medi-
cine, Copenhagen, DK (1 and 2-cell assays)). Two
micrograms from each WGA sample were submitted to li-
brary preparation performed by the sequencing provider
using Nextera Rapid Capture 37 Mb kit (Illumina, San
Diego, CA, USA). Sequencing of the ten amplified samples
aimed at a theoretical mean depth of coverage of 90. Fastq
files of 100 bp paired-end reads were aligned and proc-
essed using BWA and Picard, and variant calling were per-
formed with Genome Analysis ToolKit (GATK 3.6, Broad
institute, Cambridge, MA, USA. See Additional file 1:
Table S1 for full details). Phred-scaled genotype likeli-
hoods was derived directly from GATK variant output
(see GATK User Guide, software.broadinstitute.org).
Downstream annotation of single nucleotide variants
(SNVs) was performed in VariFant (varifant.com, Aarhus,
DK) and variant analyses were performed with Mathema-
tica (Wolfram Research, Champaign, IL, USA). Allelic
mismatch was computed by comparing replicate assays
for each cell subsets, i.e. from distinct biological input of
equal cell concentration. Copy number alterations (CNA)
were resolved by allelic imbalance in chromosomal variant
allele frequency assessment (read depth threshold ≥30)
and kernel density estimation, using Gaussian smoothing
and Silverman’s rule for bandwidth selection. Calculation
of read depth ratios from paired control was not possible.

Cytogenetics
Chromosome preparations were examined on bulk OCI-
AML3 material according to standard laboratory proto-
cols after 24-color karyotyping with the 24XCyte kit as
described previously [9]. Cytogenetic and molecular
cytogenetics analyses were done according to ISCN 2013
principles [10].

Results
Allele dropout as a function of cell input
We initially set out to determine the extent of allelic
change between replicate assays as marker for the repro-
ducibility of WGA. Microsatellite genotyping of STR
consistently showed a high frequency of allele dropout
in single and low cell numbers from the evaluation of
partial or complete loss of heterozygosity (LoH) and full
loci dropout (Fig. 1a). Median dropouts from these

assays, employing micro-manipulated cells in the 1–10
cell assays, ranged from 3 to 11 of 21 loci, inversely cor-
relating with cell number. Complete LoH of a locus or
full locus dropout was absent from 10 input cells and
above. Next, we assessed the WGA performance by
allelic reproducibility by means of WES, comparing rep-
licate cell sample variant sets. A mean of 9.4 × 107 reads
was achieved (8.3–12.7 × 107) with 99.3% of the se-
quences mapped to human reference genome (GRCh37),
thus yielding alignment efficacy comparable to bulk
exome sequencing [11]. In spite of this, allelic mismatch
measured from duplicate sequencing remained a signifi-
cant problem, where close to 50% of the SNVs were not
detected in the second single cell replicate (Fig. 1b,
based on GATK-passed variants), while decreasing expo-
nentially to one-third at 5 cells. Restriction of variants to
coding regions alone alleviated the high discrepancy
between single cell replicates to one-third, thus noise is
exacerbated outside targeted regions. Mismatch was
defined as LoH, change of the variant allele or total
dropout, while the latter was found negligible. These re-
sults strongly indicate that the frequent loss of one allele
in the replicate originated from large variations in vari-
ant read depth by uneven amplification or amplification
errors. This notion is supported by correlation analysis
(0.51 < ρSpearman < 0.84) of variant genotype likelihood of
the 50 cell-assay to its replicate and lower input
counterparts (Fig. 1c), and from the fact that low
input assays contained a higher number of detected
variants (Additional file 2: Figure S1). A very low genotype
correlation was evident when comparing 50 cells with
amplified genomes from single cells. This effect was
exacerbated, when single and two-cell replicates were
compared (data not shown).

Detections of known cell line mutations from variable cell
input
Despite the inconsistencies in variant read depths, the
ability to detect known cell line mutations was generally
consistent by all laboratory modalities. Thus, detection
of DNMT3AR882C mutation by qPCR was found in all
replicates from 2-cell input and above. Moreover, the
NPM1 type A somatic mutation, leading to frameshift
p.W288fs, was detected in all fragment analyses. All
sequence subset replicates confirmed the mutations,
inspected in IGV (Broad Institute), with a broad range of
coverage (Median 81× (8–315×)) and allele depths
(Additional file 3: Figure S2). Also, the NRASQ61L

mutation [12], was detected in all sequencing result sets.
Mean variant allele frequencies (VAF) were 41.5% (25.9–
75%) and 44.5% (31.3–57.1%) in DNMT3A and NPM1,
respectively. These observations were supported by the
relatively high overlap and consistency, when comparing
SNVs from the cell replicates and proposed somatic
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variants in the COSMIC Cell Lines Project (55–66%).
Only a minor decrease in variant overlap was found in the
single cell replicate (Fig. 1d).

Detection of large stretches of allelic imbalance
Next, we turned to copy number assessment, since
OCI-AML3 displays a range of partial or complete gains
or losses. In order to address the question of whether
CNA can be resolved at low cell input, we took advan-
tage of allelic imbalance to detect CNA. While other
methods exist, such as evaluating log-scaled read depth
ratios, the method described here does not directly re-
quire a paired control sample but is compared with the
results from conventional cancer cytogenetics. As stated,
the difference in read depths, allele dropouts and highly
variable allele frequency values (Fig. 2a) have a profound
impact on single cell and sparse cell resolution. This is

also the case for detection of allelic imbalance: Whereas
both partial loss and gain could be resolved from the
50-cell assay on chromosome 1 (Fig. 2b), only the p-arm
loss at could be visually resolved from the single cell
assays (Fig. 2c). More sophisticated, the kernel density
estimation technique enabled the detection of large
duplications from 50 down to 5 or 2 cells (Additional
file 4: Figure S3). Noise reduction, such as median
filtering, was necessary for the general detection and
relative comparison of CNAs (Fig. 3 and Additional
file 5: Figure S4), at the cost of sensitivity as exempli-
fied by false negative loss on chromosome 13 (Fig. 3
and Additional file 6: Figure S5). Collectively, these
data show that the detection of copy gains in single
cells is very difficult, heavily affected by noisy allele
distributions, but was – in this case – directly visible
from 2 to 5 cells and upwards.
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Fig. 1 Loci dropouts, allelic mismatch and read depth variation from sparse cell assays. The correlation between molecular marker dropout and
low cell input is evident from microsatellite genotyping (STR) based on 21 different loci compared to bulk DNA from OCI-AML3 (a). This dropout
was manifested by a complete absence of a specific marker loci (A, red), unambiguous loss of heterozygosity (a, orange) or partial dropout (a,
blue), represented as imbalance in heterozygosity. Intersection of variants from replicate genome amplification and exome sequencing (b) shows
allelic mismatch between duplicate assays, i.e. degree of reproducibility, as an approximately exponential function of cell input. Inclusion of all
raw GATK-passed variants led to an allelic mismatch of approximately 50% (b, blue line). The proper inclusion of only coding variants decreased
this number to one-third (B, orange), whereas setting a coverage threshold (red) did not additionally improve the result. Allelic read depths are
highly influenced by the number of cells used for amplification as demonstrated here by the relative comparison of phred-scaled
likelihood of each being called heterozygous (P = 10(-PL/10)) to one replicate of the 50-cell assays (c, 0.51 < ρSpearman < 0.84) – directly a
result of read depth variation of both reference and alternate alleles. Comparison of the single nucleotide variant (SNV) sets from 1 to 50
cells against the reported somatic SNVs in the COSMIC database (286 SNVs, Cell Lines Project v85, OCI-AML3) revealed only a minor
decrease in variant overlap (d, blue) as cell input decreased. This was also the case, when focusing on the more confident subset of 31
SNVs marked as reported previously in COSMIC (d, orange)
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Independent confirmation of copy number variation
Since WES is still at an experimental level with regards
to CNA detection allele frequency shifts from sequen-
cing were compared to 24-color karyotyping and litera-
ture in order to independently confirm deduced copy
numbers (Table 1 & Fig. 4). Whereas translocation involv-
ing chromosome 1 and 7 was observed (der(1;7)(p11;q22)),
the originally described der(1)t(1;18)(p11;q11) was, evi-
dently, not. Thus, corroborated by partial duplication of
the affected chromosomes from WES allele frequency
analysis the published karyotype may be previously
inadequately described. Also, del(19q), not described
in the literature, was consistently found in single cells
and greater, but absent in the updated color karyotype
48,X,-Y,+ 1,der(1;7)(p11;q22),+ 5,i(5) (p10),+ 8,del(13)
(q13q21),dup(17)(q21q25) [6]. As such, this may point
to a copy neutral aberration on chromosome 19,
which, in contrast to the previous translocation, may
be a clonal newcomer. Summarizing, WES analysis of
CNAs from a low cell number by means of allele fre-
quency shifts matched the conventional color karyo-
type. Also, LoH, with copy or copy neutral loss, is
unambiguously manifested down to the single cell.

Generalizing the concept of allelic noise in sequencing
We have previously observed that the standard deviation
of heterozygous allele frequencies from whole exome
bulk sequencing is rather constant between samples of
approximately same read coverage, where the frequen-
cies assume Gaussian distributions (not shown). By
selecting chromosomes not effected by allelic imbalance
from CNAs, such as chromosome 2 and 3 used here,
this characteristic formed a more objective evaluation of
allelic resolution. Defined as the level of true signal com-
pared to the level of the background noise, SNR can be
expressed as μ/σ, where the reciprocal is recognized as
the coefficient of variation (CV). We find that the SNR

from 50 cells is more than doubled compared to the
single cell replicates (Additional file 7: Table S2) and
approximates a log-linear function (Fig. 5). Also, the het-
erozygous allele frequency distributions from 50-cell
replicates were found to approximate the normal distri-
bution (Anderson-Darling test), as is the case with high
quality bulk sequencing (not shown).

Discussion
Recent advances in hardware designs, such as microflui-
dic systems, have generated a steep rise in papers dealing
with detailed characterization of cancers down to the
single cell level. While such studies, aimed at defining
intratumoral heterogeneity and evolution, have contrib-
uted significantly, there has been no consensus on how
to perform and report quality control, be it single cells
used or pooling results from multiple single cells. In fact,
a recent exhaustive review found that the term allelic
dropout is ambiguously defined [3], which is why we
introduce the addition of SNR, or the reciprocal coeffi-
cient of variation, as a more unambiguous estimation of
quality for individual low-input samples. One major
problem in quality control is that the difference from
bulk analysis to the single cell level lacks intermediate
comparison to sparse cell analysis. Performing serial
dilutions for calibration purposes is one of the oldest
tricks of the trade, which has more or less escaped
notice as for relative assessment of single cells with
regards to sensitivity and specificity. Thus, at the present
time, the literature has conflicting elements on the
extent of allelic dropout, which cast doubt on the usabil-
ity of the underlying methods and generated data from
single cell studies, when addressing biological questions.
We hypothesized that a controlled setting, involving cell
dilution, could address the questions regarding the
extent of allelic dropout or allelic mismatch, SNR and
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of trisomy 8 as shown in the supplement (Additional file 4: Figure S3)
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varying read depths in a given setup, which is currently
lacking in the literature.
Several technologies hold the promise of accomplish-

ing single cell purification, such as Fluidigm integrated
fluidic circuit (IFC) systems (South San Francisco, CA,
USA) and fluorescence-activated cell sorting, as we
implement in parallel studies. C1 part of the Fluidigm
product line has previously been shown to have a
suboptimal capture efficacy for medium IFCs (PN 101–
2711 A1 White Paper, Fluidigm, [13–16]), and for this
reason, we opted to use micromanipulation, which is
operator-controlled with immediate visual quality assur-
ance of the captured cells and numbers.
Apart from cell capture, other variables include the

cell source, amplification method, the workflow con-
cerning WES library preparation and sequencing depth.
Each of these factors will contribute to the distribution
of noise but can be characterized collectively, when
keeping cell input as the independent variable and other
factors fixed. Here, we opted for working with MDA

using a well-known hematopoietic cell line, since it
should theoretically provide an input population with
the intraclonal heterogeneity of primary cancer cell
isolates brought to a minimum. Though in vitro devel-
opment of molecular lesions in cell lines is a theoretical
inherent problem, which could interfere with this experi-
mental design, it is a minor issue here given that all
experimentation was performed with the same batch of
cells.
While we demonstrate compatible results between

STR analysis and WES, the resolution from the latter is
much higher. Whereas, genotyping covered 21 loci, here
amounting to more than four hundred individual sites to
be analyzed from the replicate dilution assays, each
exome analysis offers additional data points by approxi-
mately three orders of magnitude from coding variants
alone. We thus suggest the presented approach to
explore questions relating to noisy distributions and
allele dropout in single and sparse cell analysis in order
to describe the underlying biology more confidently.

Table 1 Comparison of detected cytogenetic aberrations

Analysis dup(1q) del(1p) der(1)t(1;18) (p11;q11) der(1;7) (p11;q22) +i(5p) + 8 del(13) dup(17) del(19q)

Quentmeier & al. + – + – + + + + –

24-color karyotyping + – – + + + + + –

Exome sequencing +a + – +b +c + + +a +
a Gains were detected from 5 cells and up, whereas losses were detected down to single cells. b The translocation involves a copy-gain and is thus matched by
whole exome sequencing allele frequency analysis. c Observed as gain

Fig. 3 Deterioration of allele frequencies (AF) and copy number signals by decreased cell input. Each plot reflects median filtered (neighborhood
range of 100 variants) AF of all chromosomes from duplicate assays. AF shifts as a result of copy number changes are readily identified for a high
number of input cells (50), whereas this pattern is not readily discernible from the duplicate single cell assay (2 and 25 cell plots are found in the
Additional file 5: Figure S4). The noise reduction also resulted in a false-negative del(13) comprising less than 100 variants (Additional file 6: Figure S5)
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Despite highly comparable percentage of genomic refer-
ence mapping between single cell sequencing and ex-
pected from previous bulk exome sequencing, large
variations in allelic read depth and allele frequencies
were observed. Still, we resolved large reproducible
stretches of LoH on chromosome 1 and 19 down to sin-
gle cells, which has not been described previously. These
particular losses do not appear by conventional cytogen-
etics, and thus may represent a copy-neutral LoH. Fur-
thermore, the lack of t(1;18) is ascribed inadequately
characterization of the original important study, which
also pinpointed the archetypical NPM1 mutation in
myeloid malignancies. The positive outcome here is that
even in very few cells, as exemplified by five-cell assay
here, it is possible to clearly detect trisomies and dele-
tions. Likewise, mutation calling is deemed rather robust
in replicates, although allele dropout may occur in few
cell assays. The clear advantage of these methodologies
to characterize rare, heterogeneous subpopulations, or
even to potentially profile the discrete biology of each
single cell, is evident.

Conclusions
Based on the data presented, it may be argued that
single cell DNA WES is still highly problematic by its
variable nature, but, more importantly, peer researchers
must be able to evaluate published results on a solid
basis and calls for improved QC. We conclude that,

while the possibility to detect known mutations from
single cells is apparently consistent, the detection of un-
known somatic mutations will be affected by allele read
depth and frequency variation and calls for caution. The
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Fig. 4 Color karyotyping of the OCI-AML3 cell line leading to the ISCN karyotype 48,X,-Y,+ 1,der(1;7)(p11;q22),+ 5,i(5) (p10),+ 8,del(13)
(q13q21),dup(17)(q21q25) [6]. The only discrepancy between exome sequencing and resulting cytogenetic profile was large deletion of 19q,
classified as a copy neutral LoH and detectable down to the single cell
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lesson learned is that read frequency distributions and
SNR, in relative comparison to multiple cells, must be
included in every study. This is valid regardless of the
capture or amplification method in order to assess the
feasibility of detecting biological diversity – in contrast
to technical variability.
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Additional file 1: Table S1. Exome sequencing alignment and variant
calling commands. (PDF 45 kb)

Additional file 2: Figure S1. The number of GATK-passed variants in-
crease as cell input decreases. (PDF 39 kb)

Additional file 3: Figure S2. Variability of allele depths. The known
driver mutations are shown along with another focus variant MET T1010I
of unknown relevance. (PDF 34 kb)

Additional file 4: Figure S3. Kernel density estimates of allele
frequencies enables the detection of trisomy down to two cells. Variant
alleles are normally a bimodal distribution, whereas trisomies display a
trimodal distribution as shown for chromosome 8. The Gaussian function
was used as kernel and bandwidth selection was based on Silverman’s
rule ((4σ^5/3n)^1/5). The functions have been scaled to same maximum
(at VAF = 1) for relative comparison. As a result, the Y-axis is unitless.
(PDF 117 kb)

Additional file 5: Figure S4. Deterioration of allele frequencies (AF) and
copy number signals by decreased cell input. The plots show the median
filtered (range of neighborhood was set to 100 variants) allele
frequencies (AF). All AFs (replicate mean) below 0.5 was mirrored to the
equal distance above for an improved signal-to-noise ratio. While the sig-
nal deteriorates for copy gains with smaller cell input, the signal of the
deletions does not. (PDF 429 kb)

Additional file 6: Figure S5. Scatter plot of OCI-AML3 chr 13 showing
medial q-arm deletion and possible small distal deletion of both 50-cell
assay replicates. Scatter plots of replicate allele frequencies reveal known
partial chr 13 deletion. Short stretches of loss of heterozygosity, relative
to the total number of called variants or size of the chromosome, does
not severely affect the distribution of heterozygous variant allele frequen-
cies. This is apparent from both Q-Q plots, frequency comparison to an
unrelated bulk sequencing sample and test for normality (Anderson-Dar-
ling). (PDF 374 kb)

Additional file 7: Table S2. Noise assessment in sparse cell sequencing
analysis. The table shows and increase in signal-to-noise as cell input in-
creases. Only the 50-cell assays were found to approximate a normal dis-
tribution (Anderson-Darling). (PDF 65 kb)
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