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Abstract

Background: We study Phylotree, a comprehensive representation of the phylogeny of global human mitochondrial
DNA (mtDNA) variations, to better understand the mtDNA substitution mechanism and its most influential factors.
We consider a substitution model, where a set of genetic features may predict the rate at which mtDNA substitutions
occur. To find an appropriate model, an exhaustive analysis on the effect of multiple factors on the substitution rate is
performed through Negative Binomial and Poisson regressions. We examine three different inclusion options for each
categorical factor: omission, inclusion as an explanatory variable, and by-value partitioning. The examined factors
include genes, codon position, a CpG indicator, directionality, nucleotide, amino acid, codon, and context
(neighboring nucleotides), in addition to other site based factors. Partitioning a model by a factor’s value results
in several sub-models (one for each value), where the likelihoods of the sub-models can be combined to form a
score for the entire model. Eventually, the leading models are considered as viable candidates for explaining
mtDNA substitution rates.

Results: Initially, we introduce a novel clustering technique on genes, based on three similarity tests between
pairs of genes, supporting previous results regarding gene functionalities in the mtDNA. These clusters are then
used as a factor in our models.
We present leading models for the protein coding genes, rRNA and tRNA genes and the control region, showing
it is disadvantageous to separate the models of transitions/transversions, or synonymous/non-synonymous substitutions.
We identify a context effect that cannot be attributed solely to protein level constraints or CpG pairs.
For protein-coding genes, we show that the substitution model should be partitioned into sub-models according to the
codon position and input codon; additionally we confirm that gene identity and cluster have no significant effect once
the above factors are accounted for.

Conclusions: We leverage the large, high-confidence Phylotree mtDNA phylogeny to develop a new statistical approach.
We model the substitution rates using regressions, allowing consideration of many factors simultaneously. This admits
the use of model selection tools helping to identify the set of factors best explaining the mutational dynamics when
considered in tandem.
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Background
The human mitochondrial DNA (mtDNA) is a short cir-
cular haploid and non-recombinant chromosome, which
is maternally inherited. It has different codons, replication,
and proofreading mechanisms compared to the autosomal
DNA [1–3]. The lack of recombination allows for a
simpler analysis of the complex substitution process
underlying the phylogenetic mechanism, compared to re-
combinant DNA. Specifically, all historical human
mtDNA can be modeled using a common phylogenetic
tree, with the leaves corresponding to extant individuals.
Branchings in the tree describe separations of lineages that
lead to different offspring today. The root of the tree can
be designated as “mitochondrial Eve” [4]. The process of
inferring the tree structure from sampled DNA sequences
has been studied extensively in the literature, and methods
such as maximum likelihood [5], maximum parsimony [6]
and neighbor joining [7] were proposed and compared [8,
9]. Several software packages implementing these methods
are publicly available [10, 11].
There are a few comprehensive mtDNA databases such

as MITOMAP [12], mtDB [13] and Phylotree [14] that are
regularly updated. In this work we use the highly trusted
phylogenetic tree reconstructed by Phylotree. Phylotree
has been updated several times throughout the years and
currently (Build 17) consists of 24,275 sequences of extant
individuals (reference files) and 5,437 internal nodes.
Behar et al. [15] published a refinement of the tree which
included a high confidence reconstruction of its root
which they termed RSRS (Revised Sapiens Reference Se-
quence). In our work we use the most updated tree and
the RSRS root, and assume it reliably describes the true
phylogenetic history. Since the observed mtDNA se-
quences are located in the leaves, we can refer explicitly to
the three sources of potential uncertainty in generating
the list of substitutions inferred from the tree: First, we as-
sume that the phylogeny of the tree specifying its topo-
logical structure as given by Phylotree is correct. This
assumption was previously justified in several papers [15–
18], where it was mainly supported by the sparsity of sub-
stitutions in branches in deeper layers of the tree and the
resulting successful haplogroup estimations.
The second source of uncertainty relates to the ancestral

sequences in the hidden layers of the tree. Most nodes can
be confidently reconstructed by maximum parsimony,
however, there may still be some uncertainty in the recon-
struction [17].
Finally, considering the identity and number of specific

substitutions along the branches, it is possible that several
substitutions occurred at one site on the same branch, but
the sequences in the nodes only contain the initial and
final state of the site on this branch. For example, in a cer-
tain site there might be a C base transitioning to T,
followed by a transversion to A. It may be the case that

only the starting C and finishing A are estimated in the
nodes’ sequences. This results in underestimation of the
number of substitutions in that site by assuming only one
C → A transversion occurred. A variety of similar events
can happen, where multiple substitutions follow in a
branch in the same site. Soares et al. [18] argue that in a
long branch in the human mtDNA phylogeny, the
probability that one of the highly mutated sites in mtDNA
(site 152) has multiple substitutions on the same branch is
below 1%. Since most of our analyses do not consider such
fast sites, the probability of repeated unobservable substi-
tutions is probably negligible. Finally, even were there
multiple unobserved substitutions along one branch, these
will generally result in slightly noisy observations to which
the regression models we use are quite robust; subse-
quently, we feel confident in assuming all substitutions are
specified by Phylotree. This greatly simplifies the statistical
analysis as it requires no additional inference on latent
information.
In this work we focus on genic regions in mtDNA,

though our methods can be easily extended to other
sub-regions. We take advantage of the large quantity of
high quality mtDNA substitution data to perform compre-
hensive statistical modeling and find the best fitting model
using the Akaike information criterion (AIC) [19]. Our
data driven approach focuses on analyzing the significance
of the effect of possible factors on the substitution rate.
Relevant factors might include the current base/codon,
the sub-region in which the site is located, its neighboring
nucleotides and more. Assessing the importance of each
factor can help in understanding the underlying biological
principles affecting mtDNA substitutions. For example, if
some genes (or sub-regions) are likely to follow the same
substitution model, then from a biological point of view
they are possibly functionally related and from a statistical
standpoint we can aggregate these genes to gene-clusters
to increase the power of future research.

Our main contributions are as follows

1. We utilize the most updated Phylotree data and
execute an exhaustive analysis on the effect of
multiple factors on the substitution rates through
both Poisson and negative-binomial regressions.
We examine for each factor if it should be included
as an explanatory variable in the substitution model,
and/or if the substitution model should be
partitioned according to it. The factors we examine
include categorical factors that are not constant per
site (for example: the input codon, amino acid,
nucleotide, and context can vary at a given site
along the tree). We incorporate these factors into
the regression by adding for each factor an exposure
term that represents the time spent in each possible
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value of the categorical factor, thus, allowing for
non site-based partitions. We also examine if it is
beneficial to model all substitutions together or
separate them into transitions/transversions or
synonymous/non-synonymous substitutions.
To the best of our knowledge, our regression
approach is a new statistical perspective on
modeling DNA substitution data, allowing to
quantify the significance of all factors simultaneously.
A detailed description of our approach is given in the
Methods section.

2. Our results show it is advantageous to model
transitions and transversions together as well as
synonymous and non-synonymous substitutions.
We show that neighboring nucleotides should be
included in the substitution model (as explanatory
variables or partitioning factors) even when protein
level constraints and the CpG pairs are taken into
account. For protein coding genes, the substitution
model should be partitioned into sub-models
according to the codon position and input codon;
each sub-model should include the direction of
replication as an explanatory variable while genes
identities should not be included in the model.
A detailed description of these results is given in
the Results section.

3. We apply a novel clustering technique on genes
that is based on three similarity tests between each
pair of genes as detailed in the Methods section.
Our new method supports previously found gene
functionalities.

Previous works and points of interest
There is a large corpus of previous work on substitution
models for DNA. Extensive literature considers a revers-
ible continuous Markov chain model such as JC69 [20],
F81 [5] and HKY85 [21]. These models describe the
probability for every base to transition to every other
base after a specific time duration using a rate matrix
whose constraints differ between the possible models.
When considering only the number of substitutions per
site, models with substitution rates that are independent
of the current nucleotide (such as JC69 and F81) induce
a Poisson distribution on each site.
An important setting is when substitutions at each site

have a Poisson distribution, but different sites have a dif-
ferent Poisson rate parameter. If the rate of each site is
drawn from a Gamma distribution, the marginal distri-
bution is Negative Binomial (NB), as was described and
used by Tamura and Nei [22].
A different body of research deals with more specific

testing of different factors and phenomena that could
affect DNA substitution rates such as hot-spots [23], CpG
pairs [24] and context (neighboring nucleotides) [25, 26].

For instance, context is considered an important factor in
coding sequence non-randomness utilized for efficiency
and accuracy in protein synthesis [27]. In their work,
Aggarwala and Voight [25] showed that most of the vari-
ability in polymorphism levels in autosomal DNA can be
attributed to the context, and used these results to detect
irregularities correlated with neurodevelopmental and psy-
chiatric disorders; indeed, our results also show that con-
text is a significant explanatory variable, even when other
explanatory variables are considered.
Johnston and Williams [28] study gene retention in

mtDNA across eukaryotes and its relevant causes. In their
work, they show GC content and protein hydrophobicity
to be significant factors in mtDNA gene retention. These
factors are perhaps most related to the evolutionary con-
servation score and protein domain factors [29] that we
include in all sub-models as a regression effect.
Another relevant body of works by Zoller and Schneider

[30, 31] investigates what are the most relevant substitu-
tion rate matrix parameters for codon and amino acid
models by applying principal component analysis (PCA)
on the empirically estimated parameters. Thus, they utilize
a two-step approach of first estimating the rate for each
site without using any explanatory factors, and then
post-processing the estimates to expose the effects of such
factors. Our approach, on the other hand, is based on
modeling the rates while accounting for explanatory fac-
tors by considering many possible models and examining
which ones fit best; we also concentrate on mtDNA.
Some papers consider the codon structure instead of re-

lating directly to the bases. For example, Zaheri et al. [32]
propose to model the codon substitution rate matrix using
a Kronecker product of nucleotide substitution rate matri-
ces. Several codon-substitution models based on the re-
versible continuous Markov chain model have been
suggested, where usually the key parameter is the damping
of non-synonymous transition rates [33]. In the regression
models we test, we consider both the codon and the amino
acid it encodes as relevant factors and test their effect on
the substitution rate. Subsequently, we test whether the
basic unit of the model should be a nucleotide, a codon or
an amino acid, or several at once, while considering all op-
tions as viable. There is a vast literature comparing nucleo-
tide, amino-acid and codon based models [34–37], and all
but the last support codon based models. Indeed, our re-
sults agree that codons are the major basic unit required
for inference on the number of substitutions.
Site-based partitioning of the substitution model into

independent substitution sub-models implements the as-
sumption that each group of sites has evolved under the
same evolutionary process. Partitioning was applied ad
hoc in several works, mainly according to codon pos-
ition and genes [38–41]. Due to the intractable nature of
performing an exhaustive search over all partitioning
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options, several partitioning search algorithms were de-
veloped, such as a hierarchical clustering method sug-
gested by Li et al. [42], and the popular PartitionFinder
open source program [43] which efficiently finds optimal
partitions using a heuristic search algorithm. In this
work we chose to implement an exhaustive search over
all possible partitioning options for several reasons; first,
heuristic searches are not guaranteed to find the optimal
partitioning scheme [42], so an exhaustive search is al-
ways preferred, if computationally possible. Second, the
previously mentioned methods perform site-based parti-
tioning, allowing to partition over site based factors such
as genes and codon position. However, factors that
change along the tree in each site, such as nucleotide,
amino acid, codon and neighboring nucleotides cannot
be incorporated into this site-based partitioning method.

Methods
Data preprocessing
The substitutions’ data was obtained from the Phylotree
website [14], where the tree was constructed so that only
substitutions that were shared by at least three complete
sequences were included (with a few exceptions). The
substitutions A16182c, A16183c, C16519T/T16519C
were not considered for phylogenetic reconstruction
since they are mutational hot-spots, so their respective
sites are excluded from the data. In the phylogeny tree
there are 12,961 substitutions and 5,437 haplogroups.
There are 1,113 haplogroups that have one representa-
tive mtDNA sequence (reference file) and 3,578 that
have two (some haplogroups have none). We examined
these sequences and found 20,696 substitutions that
were not included in the tree (most of them singletons)
and added them to the data, resulting in a total of
33,657 substitutions. The empirically observed transi-
tion/transversion ratio is 21.97 in the mtDNA overall
and 22.4 in the genic regions. The empirically observed
nonsynonymous/synonymous substitution ratio is 0.418.
The approach taken in this paper requires filtering the

substitutions by additional parameters other than the
site in which they occurred. For example, we are inter-
ested in filtering substitutions according to the neighbor-
ing nucleotides. These filtrations are achieved by first
forming for every node in the tree the full mtDNA se-
quence it represents, and then storing the corresponding
parameters for every site in each branch.

Genes clustering
Some genes are known to have similar functionality [1],
and genes that belong to the same “functional family”
have similar names. For instance, there are two ATP
genes in the human mtDNA (named ATP6 and ATP8),
which encode subunits of ATP synthase. Aggregation of
genes that follow the same substitution model is

desirable, as it effectively reduces the number of distinct
sub-models required to characterize the data, thus, redu-
cing the degrees of freedom and improving the quality
of the resulting estimates. Yet, blindly aggregating genes
together by functionality can lead to aggregating genes
with different substitution models, or to missing a previ-
ously unknown similarity in substitution models be-
tween genes of different functional families.
To better support any choice of aggregation, we have

devised several similarity tests between genes. Each test
examines the hypothesis that two genes share some muta-
tional characteristics and returns an appropriate p-value.
The combined results for all tests can either support or
oppose the aggregation of every two genes. The tests are:

1. Compare the per-site substitution count of the two
genes using the Kruskal-Wallis test [44].

2. Fit a NB model to the number of substitutions per
site for each gene separately, and for the
aggregation of the two genes. Compare the results
using a Generalized Likelihood Ratio (GLR) test.

3. Perform a NB regression with the gene as an
explanatory variable — its p-value corresponds to
whether the genes should be joined.

Note that tests two and three are very much alike and
test similar null hypotheses but they are not identical. If
several genes behave identically with respect to the sub-
stitution model, we expect none of the hypotheses to be
rejected between every pair of these genes. We applied
each one of the three above mentioned tests to each pair

of genes ð 13
2

� �
¼ 78pairsÞ and compared the obtained

p-values to a Bonferroni corrected critical value α ¼ 0:05
78 .

A p-value lower than this threshold means that the null
hypothesis that the two compared genes are “similar”
(the meaning of this is different for each test) was
rejected. We used the results to cluster together genes
whose comparison yielded p-values higher than the crit-
ical value. The rule we applied for clustering genes was
that in order to be joined, two genes must be “similar”
under all tests. The resulting clustered genes’ groups are
as follows (see the Results section for details):

1. NDCO: ND1, ND2, ND3, ND4L, ND4, ND5, ND6,
CO1, CO2, CO3

2. ATP: ATP6, ATP8
3. CYB

Variables affecting the substitution rate
The models consider the following categorical factors:

1. Genes
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2. Clustered genes as described in the previous section
3. The input nucleotide which was present before the

substitution occurred (A/C/G/T)
4. The input amino-acid which was present before the

substitution occurred (21 amino-acids)
5. The input codon which was present before the

substitution occurred (64 codons)
6. The codon position (1/2/3)
7. The right and left neighboring nucleotides
8. Whether the site was part of a CpG pair and if so

was it the first or second position
9. Directionality (indicator to whether or not the gene

is located on the light strand; considering mtDNA
protein coding genes its value is 1 only for ND6 and
0 for the other genes)

Additional site-based factors included in all models are
evolutionary conservation as calculated by phyloP100way
vertebrate (based on multiple alignments of 100 vertebrate
species and measurements of amino-acid evolutionary
conservation) [29] and protein family, transmembrane
and low complexity protein domains as found by Bateman
et al. [45]. These factors are numerical explanatory vari-
ables (not-categorical) previously evaluated per-site on the
entire mtDNA.

Poisson and negative binomial regressions
Poisson point process is a memoryless count process im-
plying exponentially distributed waiting time between
events. Assuming that the substitution process at a given
site is a Poisson process requires the assumption that it is
memoryless, i.e., that the number of substitutions in a
time interval is independent of the number of substitu-
tions in other, non-overlapping time intervals. The substi-
tution rate, which we will denote here asλ, may however
depend on both observed and unobserved variables.
Examples of possibly relevant observed variables are gene,
codon position and other variables mentioned in the pre-
vious subsection. When all relevant variables are observed,
and the memoryless assumption holds, the substitution
process can be modeled as a conditional Poisson process.
Assuming that the dependence of log(λ)on the variables is
linear, we model log(λ) using a linear combination of the
input explanatory variables by applying a Poisson regres-
sion with a log link function. The optimal solution can be
found through Fisher’s scoring method [46] or by convex
optimization schemes (such as gradient descent).
It might be the case that in addition to the relevant

observed variables, there are also latent variables (variables
that were not deemed as relevant, or hidden variables that
were not observed at all) affecting the substitution rate. In
this case, the substitution process can be properly
modeled as a conditional over-dispersed Poisson process.

If the over-dispersion is properly modeled by a
Gamma distibution, the resulting substitution model fol-
lows a conditional NB distribution. This can be modeled
using a NB regression, similarly to Poisson regression.
The notion of underlying Gamma distributed rates for
every site was previously considered by Tamura and Nei
[22] and became a standard approach in inference over
the phylogenetic tree [10, 11, 47].
We follow this view and perform both Poisson regres-

sions and NB regressions to model the substitution rate
at each site. If the Poisson model is less preferable
(based on the AIC score of the models), then this means
there are still missing relevant factors. In this case, a la-
tent Gamma-like distribution accommodates for the un-
certainty, resulting in a better fitting NB regression.

Adding exposure to the Poisson and negative binomial
regressions
We define a state S as a specific set of values of the ex-
planatory variables discussed above. For example, the
state S = {Site = 7765,Codon =GAG,Neighbor =A} corre-
sponds to site 7765 with an input codon GAG, codon pos-
ition 3 and right neighbor A. Note that once the site,
codon, and neighbor are known, all other variables are also
known (the site determines the relevant gene, clustered
gene, codon position, directionality and the additional
site-based factors; the codon determines the amino acid
and when the codon position and neighbor are known the
input nucleotide and CpG condition can also be deter-
mined). Subsequently, a substitution in the corresponding
site of a state will change the nucleotide of that site, so the
codon defining the state will change. For example, a transi-
tion from G to A in site 7765, which is in codon position 3
for the state given above will result in a new state.
Assuming the substitution process is a Poisson process

in each site dictates that the expected number of substi-
tutions is proportional to the amount of time spent in
each state. Since a substitution changes the state, this
kind of model is only viable when the rate is very small
such that in each state it is highly unlikely that more
than one substitution per branch can occur. Indeed,
when looking on the observed data, less than 0.5% of the
tree branches contain simultaneous substitutions in the
same state at two different sites.
Therefore, we calculated the time spent in the tree in

each state and added this time as an exposure variable;
for instance, to include the input codon as an explana-
tory variable, we calculated for each site how much time
was spent in each codon over the whole tree. While this
could potentially augment the data times 64, in fact at
each site there were no more than four different codons
throughout the tree. Adding the time as an exposure
variable to a regression with a log link function (such as
the Poisson and NB regressions we applied) means that
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given the feature vector x (whose coordinates are com-
posed of indicator variables for the categorical explana-
tory variables which were included in the regression),
the regression finds the optimal β coefficients such that
log(λ) = βTx + log(exposure time), forcing λ, the expected
number of substitutions to be proportional to the time
spent at the state as required.
When modeling separately transitions/transversions, we

generate separate regressions: one with the number of
transitions as a response, and the second with the number
of transversions; both regressions have the same input
feature vector x but differ in the resulting coefficients
vectorβ. The same is true for synonymous and non-syn-
onymous substitutions.
In addition, we add an exposure variable to the case

where we separate synonymous and non-synonymous
substitutions. When the number of synonymous substitu-
tions is modeled separately, there are states in which a
synonymous substitution is impossible. Consider for ex-
ample the codon GTT that codes for the Valine (Val)
amino acid: in its first and second position there are no
possible synonymous substitutions, while in its third pos-
ition there are three possible synonymous substitutions —
one transition (GTT→GTC) and two transversions
(GTT→GTA, GTG). In the same manner, we can calcu-
late the number of possible non-synonymous substitutions
for each codon position and divide them into possible
transitions and transversions. We expect the number of
synonymous substitutions at each state to be proportional
to the number of possible synonymous substitutions with
respect to the number of possible transitions and transver-
sions. Subsequently, when the number of synonymous/
non-synonymous substitutions was modeled separately,
we added the number of possible synonymous/non-sy-
nonymous substitutions as an exposure explanatory vari-
able, when taking into account the number of possible
transitions/transversions and weighting them accord-
ing to the transversions/transitions ratio empirically
found in the data(r = 0.04551103). In these cases the
regressions for synonymous substitutions find the
optimalβcoefficients such that: log(λ) = βTx + log(expo-
sure time) + log(#A + r ⋅ # B), where #A is the number of
possible synonymous transitions and #B is the number of
possible synonymous transversions. Note that our expos-
ure correction does not increase the rate at which substitu-
tions occur, but simply adjusts the weighting between the
rates of synonymous and non-synonymous substitutions.
This method also accounts for the special case where no
substitutions are synonymous (or no substitutions are
non-synonymous) by setting the exposure to zero.

Time estimation
To find the exposure of each factor’s value, we require
an estimate of the time-length of each branch in the tree

(or alternatively, the time of each branching event in the
tree). As proposed by [48], we used a Poisson regression
with an identity link function for time inference on all
nodes in the tree. Substitutions that occurred in the tips
of the tree were assigned the time t = 0. Notice that the
assigned times are uncalibrated — since the exact timing
of any branching in the tree is unknown, only the pro-
portions between timings can be inferred. This also im-
plies that all obtained substitution rate estimates are
relative — all of them can be multiplied by a constant
and all time estimates divided by the same constant
without changing the likelihood. Notice that ideally we
should have incorporated the estimation error term into
the regression to account for additional variance, this
was not done due to the difficulty of obtaining reliable
confidence intervals in the said approach. Additional file 1:
Table S1 contains uncalibrated time estimations for each
node in the Phylotree dataset.

Exhaustive search algorithm
For protein coding genes we examined 31,185 models
composed of three different inclusion options for each
categorical variable. The number of examined models is
not three to the power of the number of factors since
there are many exceptions where models are removed
when they are contained in another model. For instance,
we did not consider models with both codon and amino
acid factors, nor models with both codon and input nu-
cleotide factors, since the codon variable contains the in-
formation given by both; hence, the number of possible
models resulting from the variation of the codon, amino
acid and input nucleotide inclusion options is 11 instead
of 27. For the same reason, we did not consider models
with both the gene and clustered gene, so the number of
possible inclusion options for the gene and clustered
genes variables is five instead of nine. When the data
was partitioned according to the codon position, the
right and left neighbor variables were coerced to follow
the same choice of inclusion. Hence, the number of pos-
sible inclusion options for the codon position and right
and left neighboring nucleotides is 21 instead of 27. We
also note that for models with the codon as an explana-
tory variable which were partitioned according to the
codon position we included only the right and left
neighboring nucleotides outside of the codon (left neigh-
bor for the first codon position, right neighbor for the
third codon position and none for the second codon
position). Finally, some of the resulting models were re-
moved from the analysis since the inclusion of certain
factors contained all information on the value of another
factor (for example, genes contain information about the
directionality since only ND6 has opposite directional-
ity). Such models were removed from Table 2.
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Overall we examined 11 ⋅ 5 ⋅ 21 ⋅ 33 = 31, 185 models,
calculated as the product of the number of options for
each variable as specified before: codon / amino acid /
input nucleotide, gene / clustered gene, codon position /
neighboring nucleotides, directionality, CpG pair status,
and the possible response models.
For the rRNA genes and control region, we do not in-

clude the direction of replication since all sites have the
same directionality. Subsequently for these we inspect
486 models each - three options for CG pair, right and
left neighbors, sub-regions/genes and input nucleotide
and two options for the response (transition\transversion
or all). For the tRNA genes, there are three times as
many models (since the direction of replication is in-
cluded) amounting to 1,458 models.
We note that this exhaustive search over all options

was necessary since the inclusion of each categorical
variable may affect the other variables. For example, if
the model is partitioned into sub-models according to
the input codon, it may no longer be statistically useful
to divide into sub-models according to the gene.
We finish this section with some technical remarks:

The models we examined are composed of 8,671,658
sub-models when considering the partitions according
to all categorical variables; so we performed 8,671,658
NB and Poisson regressions, out of which 51,333
(0.006%) NB regressions and 18,074 (0.002%) Poisson re-
gressions did not converge. Since all sub-models are
needed for calculating the AIC score of each model, it was
necessary to include the models that did not converge. To
do so, we assigned these models likelihoods according to a
Poisson distribution with a parameter λ equal to the num-
ber of observed substitutions in each state and the degrees
of freedom were taken to be the number of different states
(rows) in the sub-model. In addition, there are 3,212,855
sub-models that are composed of one state or include zero
substitutions, whose likelihood and degrees of freedom
were taken to be one (except for sub-models that included

one state with at least one substitution whose likelihood
was calculated according to a Poisson distribution). The
total running time amounts to less than three days on a
64 core cluster.

Results
Genes clustering
In the Methods section we suggest several similarity
tests to examine the null hypothesis that two genes are
similar. These tests were applied to each pair of genes
and their p-value was compared to a Bonferroni cor-
rected critical value ofα ¼ 0:05

78 . Our results are summa-
rized in Table 1. Under all tests, the null hypothesis
could not be rejected for pairwise comparison of genes
from the group ND1–6 and CO1–3, suggesting that they
should be clustered together. From here on, we shall refer
to this group of genes (ND1–6 and CO1–3) as NDCO.
ATP6 and ATP8 can also be joined under all tests and will
be referred to as ATP. The combined groups: NDCO, ATP
and CYB are used as a “clustered genes” explanatory vari-
able in the modeling process. We note that our clustering
procedure was made without taking into consideration
the biological functionality underlying the different genes
[1]; subsequently, the tests we performed further support
the previously found biological partitions.

Exhaustive search algorithm
We aim to find the best substitution model, where we use
AIC as a criterion for comparing models. We use the term
model to denote a specific choice of inclusion for each
one of the categorical variables that might affect the sub-
stitution rate as listed in the Methods section. The inclu-
sion options for each variable are as follows: for each
categorical explanatory variable we can choose between
(1) not including it in the model, (2) including it as an ex-
planatory variable or (3) partitioning the data according to
it and building a separate sub-model for each part of the

Table 1 The results of the clustering tests on the different pairs of genes; each cell in the table contains the indices of the null
hypotheses which were rejected (ranging from 1 to 3). Empty cell means that none of the null hypotheses were rejected, and hence
the genes are similar. Due to symmetry, cells below the diagonal are not marked. Tests 1–3 compare the substitution count distribution
through (1) Kruskal-Wallis, (2) negative-binomial model and (3) negative-binomial regression. The resulting clusters by our tests are
(NDCO: ND1–6, CO1–3), (ATP: ATP6, ATP8) and CYB
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data. Each model is therefore composed of a varying num-
ber of sub-models according to its specific inclusion op-
tions. For example, a model that partitions the data
according to the codon position and does not include all
other variables will be composed of three sub-models —
one for each codon position. We calculate the AIC score of
the full model as the sum of AIC scores of all of its
sub-models (this is possible since the AIC score is linear in
the log-likelihood and in the number of parameters).
We calculated the AIC for each one of these models

with the response as (1) the sum of all substitutions, (2)
two separate models, one for the number of synonymous
substitutions and the other for the number of
non-synonymous substitutions and (3) two separate
models, one for the number of transitions and the other
for the number of transversions.

Protein Coding Genes
Overall, we examined 31,185 models and ordered them
by their minimal AIC score (obtained by either Poisson
regression, or NB regression); the top 20 results of our
algorithm are given in Table 2 and all results appear in
Additional file 2: Table S2. For each model we specify
which factors partitioned the model into sub-models
(marked as ), and which factors were included / not
included in all the resulting sub-models (marked as /

correspondingly).
All top 20 models:

� Partition into sub-models according to the codon
position

� Include the input codon (as an explanatory variable
or partition according to it) and subsequently do not
include the input amino acid and input nucleotide

� Include the direction of replication (as an explanatory
variable or by partition)

� Do not divide the substitution’s type to separate
models for transitions/transversions or synonymous/
nonsynonymous substitutions.

� Result in a substantially lower AIC score for the NB
model compared to the Poisson model

Also, most of the top 20 models include the right and
left neighbors.
The model with the lowest AIC score is composed of

192 sub-models with different codon positions and input
codons (64 sub-models for each of the 3 codon positions,
hence 192 = 64·3 sub-models). The explanatory variables
in each model are the right and left nucleotide neighbors,
the directionality and the additional site-based variables
that were included in all models.
Another interesting result relates to the subject of model

partitioning, which was discussed in the introduction. As
previously mentioned, there are several algorithms that
heuristically find best fit partition schemes [42, 43]. While
these algorithms necessarily result in site-based partitions,
our results show that the model with the lowest AIC score

Table 2 Top 20 models for protein-coding genes ordered by their minimal AIC score (out of Poisson and NB AIC scores). Each categorical
variable obtains one of the following signs: , and that mark partitioning, inclusion as an explanatory variable and omitting the
variable correspondingly. The value “All” in the response column means all substitutions were modeled together in these top models
(and not separately for transitions/transversions and synonymous/non-synonymous substitutions
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partitions the data according to the input codon in addition
to the codon position. Indeed, previous works [38, 40] have
shown that partitioning the substitution model according
to the codon position is beneficial. However, partitioning
according to the input codon with additional conditions
was not considered yet due to practical limitations [49],
though it is shown here to be advantageous.
We examined the effect of neighboring nucleotides and

CpG pairs as explanatory variables and found that neigh-
boring nucleotides have a significant effect and should be
included as explanatory variables in the model. Our defin-
ition of neighboring nucleotides refers to nucleotides out-
side of the codon when the input codon is included in the
model, so for the first codon position we take into account
only the left neighbor, for the second codon position no
neighbors are considered and for the third codon position
only the right neighbor is considered.
Comparing models 1 and 5 in Table 2 (that differ only

by the inclusion of the neighboring nucleotides) using a
GLR test allows to examine the H0 hypothesis that the
neighboring nucleotides have an insignificant effect on
the substitution rate. The result (p-value <1e− 12) shows
that the neighboring nucleotides have a significant effect
on the substitution rate. However comparing models 5
and 6 (that differ only by including the CpG trait as an
explanatory variable) using a GLR test shows that the
CpG trait effect alone is insignificant. Note that the lead-
ing model partitions the data according to the input
codon and codon position, and also includes neighbors,
so it technically contains the CpG trait information. To
conclude, our results show that neighboring nucleotides
have a significant effect on the substitution rate and
should be added as an explanatory variable, whereas in-
cluding the CpG trait alone is not enough.

Control region, rRNA and tRNA genes
Similarly to the protein-coding genes, we applied our ex-
haustive search algorithm on the rRNA and tRNA genes,
and on the control region separately. Our top 10 results are
given in Tables 3, 4, 5 and all results appear in Additional
file 3: Tables S3, Additional file 4: Tables S4, Additional file
5: Tables S5 correspondingly. Note that for these regions,
many of the previously specified explanatory variables are
no longer relevant as these regions are not composed of co-
dons. In addition, the response is no longer divided to syn-
onymous/non-synonymous substitutions.
In all Tables 3, 4, 5 the separation between transitions

and transversions leads to inferior models compared to
models that analyze the combined set, similarly to the re-
sults on the protein-coding genes. The leading 50 models
in all tables include the input nucleotide either as a parti-
tioning factor (mostly) or as an explanatory variable.
Looking at the leading 10 models for the rRNA we can

see that only the right neighbor affects the model while
the left neighbor is left out. For the rRNA, there are only
two genes (12S and 16S) and these do not have a
conclusive effect. As for the tRNA, we can see that the dir-
ection of replication is a partitioning factor, and that the
genes constitute an explanatory variable. For the control
region, instead of genes we observe that sub-regions
(Hyper-Variable Segments (HVS) 1–3 and the sub-regions
between these) constitute an important partitioning factor.

Poisson Vs. negative binomial regression
The leading models show AIC scores that are substantially
lower for NB regression than for Poisson regression. As
stated before, NB regression is preferable when there are
missing relevant factors, and a latent Gamma-like

Table 3 Top 10 rRNA models ordered by their minimal AIC score (out of Poisson and NB AIC scores)
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distribution replaces the uncertainty, resulting in a more
appropriate NB regression; thus this indicates that there
might be additional factors we have not considered that
affect the substitution rate. Such factors can be for ex-
ample the clade in which the substitution occurred, the
actual time if the molecular clock assumption is not valid
or perhaps an inherent randomness suggesting that a con-
ditional NB model (or perhaps another model that takes
this randomness in substitution rate into account) is in-
deed preferable compared to a conditional Poisson model.
It is important to note that even if the leading model

had a lower AIC score for the Poisson model than the NB
model, it would still not mean necessarily that we have
found all relevant factors. To see why, consider for

example model #258 as ranked by the AIC score in the
protein coding genes analysis (which appears in Add-
itional file 2: Table S2): this model has the lowest Poisson
AIC score out of all models and its NB AIC score is sig-
nificantly higher than its Poisson AIC score (AIC = 30,049
for the Poisson model and AIC = 48,021 for the NB
model). The model partitions the data according to codon
positions, directionality, and genes and includes the CpG
pair trait and input codon as explanatory variables. If we
had not considered the first 257 models, this would have
been our leading model, suggesting that we have consid-
ered all relevant factors. However, this is clearly not the
case as our leading model has a lower AIC score, and its
AIC score is lower for the NB regression.

Table 4 Top 10 tRNA models ordered by their minimal AIC score (out of Poisson and NB AIC scores)

Table 5 Top 10 control region models ordered by their minimal AIC score (out of Poisson and NB AIC scores)
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Discussion
Despite the extensive research in the field, there is limited
understanding of the factors affecting substitution rates in
various DNA modalities, and specifically in mtDNA. In
our view, the reason for that is relatively small amounts of
data, compared with the possibly large number of degrees
of freedom stemming from the various possible factors af-
fecting the substitution rate: site location, haplogroup as-
sociation, non-stationarity, codon properties, context, and
latent biochemical information. In this paper, we utilized
the large, reliable mtDNA phylogeny in Phylotree to tackle
this problem using proper statistical tools.
Unlike continuous time Markov chain models which

specify the transition rate between every two instantiations
of the basic model units (nucleotides, codons or
amino-acids), we model directly the distribution of the
substitutions count in a time interval, and its dependence
on possible sets of observed factors. This formulation al-
lows for simple Poisson/NB regressions to simultaneously
consider combinations of variables participating as either
partitions or as explanatory variables. We can thus choose
the most suitable model by comparing the AIC scores of
all models considered.
For the protein-coding genes, the model with the low-

est AIC score includes partitions according to the input
codon and the position inside the codon. Neither the
amino acid, nor the input nucleotide, were enough to
hold all information required to model the substitution
process. In particular, the neighboring sites have a signifi-
cant effect in setting the substitution process rate coeffi-
cients. We note that the observed context’s significance
refers to neighboring sites adjacent to the codon (and not
inside the codon). This significance remains even when
the CpG trait is considered as an explanatory variable, so
the CpG trait alone is insufficient to explain the context
effect. Subsequently, in future work an expanded context
should be considered as well. The origin of the detected
effect described herein of neighboring sites cannot be ex-
plained by protein level constraints and we speculate it is
related in a different manner to the nature of mutagenesis
in mtDNA, perhaps through the replication mechanism.
For example, an imperfect replication process by mtDNA
polymerase γ (POLG) that relates to the neighboring sites
was suggested to be responsible for the majority of
mtDNA point mutations [50]. Nonetheless, the specific
biological or chemical mechanism causing this effect is yet
to be identified.
As far as we are aware, the direction of replication,

was never considered explicitly as an explanatory vari-
able in previous work. This could be since genes are
commonly considered as explanatory variables and thus
implicitly include the direction of replication. Our re-
sults show its effect can be captured sufficiently in an
additive fashion, simplifying the model.

Interestingly, the genes themselves were not significant
enough, which somewhat discourages the notion of puri-
fying selection. Were the substitution rate affected by
the functionality of the gene itself, then probably the
more crucial genes would have shown a reduced substi-
tution rate.
For non protein-coding genes (i.e., the control region

and the tRNA and rRNA genes), we have also obtained
some interesting results. The input nucleotide consist-
ently appears in leading models as a partitioning factor,
which means every nucleotide is entitled to a different
sub-model; this is also true for the direction of replica-
tion in the tRNA genes. Another intriguing result can be
seen in the leading rRNA models, where the right neigh-
bor is a significant factor in determining the substitution
rate, but the left neighbor is not included in any of the
leading models.
The statistical approach we present here can be

further applied to autosomal DNA, with appropriate
adjustments considering its different properties; the re-
combination process in autosomal DNA challenges the
possibility of finding a clear phylogeny allowing to track
substitutions over time. However, its substitution rate is
much slower compared to the mtDNA and is almost
unique-event polymorphism (UEP). Approximating the
substitution rate to be UEP, it should be possible to use
logistic regression to model the probability that a substi-
tution occurred over time, allowing to examine which
factors are significant in the autosomal substitution
process.

Conclusions
A good understanding of the factors affecting the gen-
omic substitution rate is critically important to many
genomic and medical applications. These factors can in-
clude biological effects like selection, biochemical effects
related to sequence and others. In this paper, we propose
a statistical approach for multi-factor analysis of the sub-
stitution rate in phylogenetic trees. Our method provides
a ranking of numerous discriminative models which can
be used to simultaneously infer the importance of differ-
ent subsets of factors. We applied our method to the
Phylotree data-set of human mtDNA and investigated
the effect of different factors on substitution rates within
mtDNA. Our major conclusions include the critical role
of both codon identity and codon position, as well as an
independent effect of neighboring nucleotides on substi-
tution rate. After these effects are taken into account,
other factors like the identity and role of different genes
do not have a significant effect on rates. We note that
previous studies have suggested that gene identity affects
substitution rate, probably due to not accounting for fac-
tors like codon composition.
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Beyond the specific value of our conclusions, our
study is unique in considering a huge space of possible
models and combinations of affecting factors, and select-
ing between all of them in a principled, data-based man-
ner using formal statistical inference. This gives renewed
confidence in our conclusions, and supports future use
of our methodology on other types of genetic data.

Additional files
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minimal AIC score. (XLSX 64 kb)

Abbreviations
AIC: Akaike information criterion; ATP: ATP6, ATP8; ATP6, ATP8: ATP synthase
subunit 6 and 8 genes; CO1, CO2, CO3: Cytochrome c oxidase subunit 1, 2,
and 3 protein genes; CYB: Cytochrome b gene; GLR: Generalized Likelihood
Ratio; HVS: Hyper-Variable Segment; MtDNA: Mitochondrial DNA; NB: Negative
Binomial; ND1, ND2, ND3, ND4L, ND4, ND5, ND6: NADH dehydrogenase
subunit 1–6, 4 L genes; NDCO: ND1, ND2, ND3, ND4L, ND4, ND5, ND6, CO1,
CO2, CO3; PCA: Principal component analysis; POLG: Polymerase γ;
RSRS: Revised Sapiens Reference Sequence; UEP: Unique-event
polymorphism; Val: Valine amino acid

Funding
This work was supported in part by a fellowship from the Edmond J. Safra
Center for Bioinformatics at Tel-Aviv University.

Availability of data and materials
The datasets analyzed during the current study are available in the Phylotree
repository, http://www.phylotree.org, https://doi.org/10.1002/humu.20921.

Consent to publish
Not applicable.

Author’s contributions
KLH developed and coded all analyses and experiments and drafted the
manuscript. ST suggested factors that should be included in the analysis and
reviewed the manuscript. SR conceived and supervised the study, and assisted in
the writing of the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1Department of Statistics and Operations Research, School of Mathematical
Sciences, Tel-Aviv University, 6997801 Tel-Aviv, Israel. 2Braun School of Public
Health and Community Medicine, The Hebrew University of Jerusalem,
9112102 Jerusalem, Israel.

Received: 21 June 2018 Accepted: 27 September 2018

References
1. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J,

et al. Sequence and organization of the human mitochondrial genome.
Nature. Nat Publ Group. 1981;290:457–65.

2. Clayton DA. Transcription and replication of mitochondrial DNA. Hum
Reprod. 2000;15:11–7.

3. Johnson AA, Johnson KA. Exonuclease proofreading by human mitochondrial
DNA polymerase*. J Biol Chem. 2001;276:38097–107.

4. Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution.
Nature. 1987;325:31–6.

5. Felsenstein J. Evolutionary trees from DNA sequences: a maximum
likelihood approach. J Mol Evol. 1981;17:368–76.

6. Czelusniak J, Goodman M, Moncrief ND, Kehoe SM. Maximum Parsimony
Approach to Construction of Evolutionary Trees from Aligned Homologous
Sequences. Methods Enzymol: Academic Press. 1990;183:601–15.

7. Saitou N, Nei M. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

8. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and
likelihood phylogenetics when evolution is heterogeneous. Nature. 2004;431:
980–84.

9. Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference
under the criteria of maximum parsimony, minimum evolution, and
maximum likelihood when a large number of sequences are used. Mol Biol
Evol. 2000;17:1251–8.

10. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5:
molecular evolutionary genetics analysis using maximum likelihood,
evolutionary distance, and maximum parsimony methods. Mol Biol Evol.
2011;28:2731–9.

11. Yang Z. PAML: a program package for phylogenetic analysis by maximum
likelihood. Bioinformatics. 1997;13:555–6.

12. Kogelnik A, Lott MT, Brown MD, Navathe SB, Wallace DC. MITOMAP: a
human mitochondrial genome database. Nucleic Acids Res. 1996;24:177–9.

13. Ingman M, Gyllensten U. mtDB: human mitochondrial genome database, a
resource for population genetics and medical sciences. Nucleic Acids Res.
2006;34:D749–51.

14. van Oven M, Kayser M. Updated comprehensive phylogenetic tree of global
human mitochondrial DNA variation. Hum Mutat. 2009;30:E386–94.

15. Behar DM, Van Oven M, Rosset S, Metspalu M, Loogväli EL, Silva NM, et al. A
“copernican” reassessment of the human mitochondrial DNA tree from its
root. Am J Hum Genet. 2012;90:675–84.

16. Röck AW, Dür A, Van Oven M, Parson W. Concept for estimating
mitochondrial DNA haplogroups using a maximum likelihood approach
(EMMA). Forensic Sci Int Genet. 2013;7:601–9.

17. Rosset S, Wells RS, Soria-Hernanz DF, Tyler-Smith C, Royyuru AK, Behar DM.
Maximum-likelihood estimation of site-specific mutation rates in human
mitochondrial DNA from partial phylogenetic classification. Genetics. 2008;180:
1511–24.

18. Soares P, Ermini L, Thomson N, Mormina M, Rito T, Röhl A, et al. Correcting
for purifying selection: an improved human mitochondrial molecular clock.
Am J Hum Genet. 2009;84:740–59.

19. Akaike H. A new look at the statistical model identification. IEEE Trans
Automat Contr. 1974;19:716–23.

20. Jukes TH, Cantor CR. Evolution of protein molecules. Mamm. Protein Metab.
New York: Academic Press; 1969.

21. Hasegawa M, Kishino H, aki YT. Dating of the human-ape splitting by a
molecular clock of mitochondrial DNA. J Mol Evol. 1985;22:160–74.

22. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in
the control region of mitochondrial DNA in humans and chimpanzees. Mol
Biol Evol. 1993;10:512–26.

23. Galtier N, Enard D, Radondy Y, Bazin E, Belkhir K. Mutation hot spots in
mammalian mitochondrial DNA. Genome Res. 2006;16:215–22.

24. Lunter G, Hein J. A nucleotide substitution model with nearest-neighbour
interactions. Bioinformatics. 2004;20:216–23.

25. Aggarwala V, Voight BF. An expanded sequence context model broadly
explains variability in polymorphism levels across the human genome. Nat
Genet. 2016;48:349–55.

26. Siepel A, Haussler D. Phylogenetic estimation of context-dependent
substitution rates by maximum likelihood. Mol Biol Evol. 2004;21:468–88.

Levinstein Hallak et al. BMC Genomics          (2018) 19:759 Page 12 of 13

https://doi.org/10.1186/s12864-018-5123-x
https://doi.org/10.1186/s12864-018-5123-x
https://doi.org/10.1186/s12864-018-5123-x
https://doi.org/10.1186/s12864-018-5123-x
https://doi.org/10.1186/s12864-018-5123-x
http://www.phylotree.org
https://doi.org/10.1002/humu.20921


27. Fedorov A. Regularities of context-dependent codon bias in eukaryotic
genes. Nucleic Acids Res. 2002;30:1192–7.

28. Johnston IG, Williams BP. Evolutionary inference across eukaryotes identifies
specific pressures favoring mitochondrial gene retention. Cell Syst. 2016;2:101–11.

29. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral
substitution rates on mammalian phylogenies. Genome Res. 2010;20:110–21.

30. Zoller S, Schneider A. Empirical analysis of the Most relevant parameters of
codon substitution models. J Mol Evol. 2010;70:605–12.

31. Zoller S, Schneider A. Improving phylogenetic inference with a
Semiempirical amino acid substitution model. Mol Biol Evol. 2013;30:469–79.

32. Zaheri M, Dib L, Salamin N. A generalized mechanistic codon model. Mol
Biol Evol. 2014;31:2528–41.

33. Yang Z, Nielsen R. Mutation-selection models of codon substitution and
their use to estimate selective strengths on codon usage. Mol Biol Evol.
2008;25:568–79.

34. Kosiol C, Goldman N. Markovian and non-Markovian protein sequence
evolution: aggregated Markov process models. J Mol Biol. 2011;411:910–23.

35. Seo TK, Kishino H. Statistical comparison of nucleotide, amino acid, and
codon substitution models for evolutionary analysis of protein-coding
sequences. Syst Biol. 2009;58:199–210.

36. Simmons MP. Relative benefits of amino-acid, codon, degeneracy, DNA, and
purine-pyrimidine character coding for phylogenetic analyses of exons.
J Syst Evol. 2017;55:85–109.

37. Whelan S, Allen JE, Blackburne BP, Talavera D. ModelOMatic: fast and
automated model selection between RY, nucleotide, amino acid, and
codon substitution models. Syst Biol. 2015;64:42–55.

38. Ho SYW, Lanfear R. Improved characterisation of among-lineage rate
variation in cetacean mitogenomes using codon-partitioned relaxed clocks.
Mitochondrial DNA. 2010;21:138–46.

39. Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey J, Buckley T.
Bayesian phylogenetic analysis of combined data. Syst Biol. 2004;53:47–67.

40. Shapiro B, Rambaut A, Drummond AJ. Choosing appropriate substitution
models for the phylogenetic analysis of protein-coding sequences. Mol Biol
Evol. 2006;23:7–9.

41. Zoller S, Boskova V, Anisimova M. Maximum-likelihood tree estimation using
codon substitution models with multiple partitions. Mol Biol Evol. 2015;32:
2208–16.

42. Li C, Lu G, Ortí G, Buckley T. Optimal data partitioning and a test case for
ray-finned fishes (Actinopterygii) based on ten nuclear loci. Syst Biol. 2008;
57:519–39.

43. Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: combined
selection of partitioning schemes and substitution models for phylogenetic
analyses. Mol Biol Evol. 2012;29:1695–701.

44. Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am
Stat Assoc. 1952;47:583–621.

45. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, et al. The Pfam
protein families database. Nucleic Acids Res. 2002;30:276–80.

46. Longford NT. A fast scoring algorithm for maximum likelihood
estimation in unbalanced mixed models with nested random effects.
Biometrika. 1987;74:817–27.

47. Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with
variable rates over sites: approximate methods. J Mol Evol. 1994;39:306–14.

48. Rosset S. Efficient inference on known phylogenetic trees using Poisson
regression. Bioinformatics. 2006;23:142–7.

49. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS.
ModelFinder: fast model selection for accurate phylogenetic estimates. Nat
Methods. 2017;14:587–9.

50. Szczepanowska K, Trifunovic A. Origins of mtDNA mutations in ageing.
Essays Biochem. 2017;61:325–37.

Levinstein Hallak et al. BMC Genomics          (2018) 19:759 Page 13 of 13


	Abstract
	Background
	Results
	Conclusions

	Background
	Our main contributions are as follows
	Previous works and points of interest

	Methods
	Data preprocessing
	Genes clustering
	Variables affecting the substitution rate
	Poisson and negative binomial regressions
	Adding exposure to the Poisson and negative binomial regressions
	Time estimation
	Exhaustive search algorithm

	Results
	Genes clustering
	Exhaustive search algorithm
	Protein Coding Genes
	Control region, rRNA and tRNA genes
	Poisson Vs. negative binomial regression

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Consent to publish
	Author’s contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	Author details
	References

