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Abstract

Background: Copy Number Alternations (CNAs) is defined as somatic gain or loss of DNA regions. The profiles of
CNAs may provide a fingerprint specific to a tumor type or tumor grade. Low-coverage sequencing for reporting CNAs
has recently gained interest since successfully translated into clinical applications. Ovarian serous carcinomas can be
classified into two largely mutually exclusive grades, low grade and high grade, based on their histologic features. The
grade classification based on the genomics may provide valuable clue on how to best manage these patients in clinic.
Based on the study of ovarian serous carcinomas, we explore the methodology of combining CNAs reporting from
low-coverage sequencing with machine learning techniques to stratify tumor biospecimens of different grades.

Results: We have developed a data-driven methodology for tumor classification using the profiles of CNAs reported
by low-coverage sequencing. The proposed method called Bag-of-Segments is used to summarize fixed-length CNA
features predictive of tumor grades. These features are further processed by machine learning techniques to obtain
classification models.
High accuracy is obtained for classifying ovarian serous carcinoma into high and low grades based on leave-one-out
cross-validation experiments. The models that are weakly influenced by the sequence coverage and the purity of the
sample can also be built, which would be of higher relevance for clinical applications. The patterns captured by Bag-
of-Segments features correlate with current clinical knowledge: low grade ovarian tumors being related to aneuploidy
events associated to mitotic errors while high grade ovarian tumors are induced by DNA repair gene malfunction.

Conclusions: The proposed data-driven method obtains high accuracy with various parametrizations for the ovarian
serous carcinoma study, indicating that it has good generalization potential towards other CNA classification
problems. This method could be applied to the more difficult task of classifying ovarian serous carcinomas with
ambiguous histology or in those with low grade tumor co-existing with high grade tumor. The closer genomic
relationship of these tumor samples to low or high grade may provide important clinical value.
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Background
Defined as somatic gain or loss of DNA regions, Copy
Number Alterations (CNAs) are reflective of genomic
instability, frequently affecting functionally important
genes, such as tumor suppressors and oncogenes. CNAs
are also associated with the early onset of tumor. They
include both deletions and amplifications of large or small
genomic regions. Large scale CNA events involving whole
chromosome or chromosome arms alterations are also
referred as aneuploidy. Small deletion events may target
local regions of the genome harboring tumor suppressor
genes locations, while amplifications preferentially target
oncogenes locations [1]. As the consequence of tumor
progression and evolutions, CNAs are not randomly dis-
tributed across the genome. The profiles of CNAs may
provide a fingerprint specific to a tumor type or tumor
class [2]. The recurrent CNAs across tumor types have
been studied in an attempt to gain a deeper understanding
of the pan-cancer mechanisms driving tumorigenesis.
Ovarian serous carcinomas, previously felt to be a dis-

ease continuum with a spectrum of differentiation from
well to poorly differentiated, are now classified into two
distinct categories, low grade and high grade serous car-
cinomas, based on their histologic features. These two
groups are thought to be largely mutually exclusive based
on their molecular characteristics. The majority (96%) of
high grade serous carcinomas have TP53 mutations and
show high levels of chromosomal copy number changes
through the entire genome, whereas low grade serous car-
cinomas do not have TP53 mutations, show KRAS and
BRAF mutations and in most cases are near diploid [3].
Additionally, low grade serous carcinomas have a more
indolent prognosis and respond less well to standard
platinum-based chemotherapy than high grade serous
carcinomas [4].
The availability of Next Generation Sequencing (NGS)

technology platforms has enabled the study of CNAs at a
genome wide scale and at an unprecedented level of res-
olution. Not only the precision of the CNAs detection is
enhanced but also the number of copy changes can be
more accurately defined. Numerous methods are avail-
able to report CNAs from high-coverage whole genome
sequencing and for low-coverage sequencing (LC-WGS).
LC-WGS has recently gained interest since successfully
translated into clinical applications. The Non-Invasive
Prenatal Test (NIPT) is one example where cell free DNA
of pregnant woman is sequenced at low coverage (<1×) to
report the presence of fetal DNA aneuploidy. The exper-
tise acquired in our group in the processing of LC-WGS
has led us to explore how CNAs reporting from LC-WGS
combined with machine learning techniques may be used
to stratify tumor biospecimens of different grades.
Although for most cases the techniques such as evaluat-

ing the H&E and IHC for P53 expression status is helpful

in determining the grade of serous carcinomas, patholo-
gists found that thesemethods failed to provide conclusive
results in cases with ambiguous morphology [5]. That can
lead to ambiguity and difficulty in patient management.
Here, we have introduced a data science methodology for
tumor classification. The method can be used to assist
the grade classification for the ovarian serous carcinomas,
especially for the cases with ambiguous morphology.
The developed method called Bag-of-Segments (refer-

ring to CNA segments) is derived from the Bag-of-
Features method. Bag-of-Features has been extensively
used in the classification of image objects [6] and time
series data [7]. Although currently surpassed by other
methods such as deep learning, Bag-of-Features remains
an ideal approach when dealing with small sample sizes
like in the case for our study.
The Bag-of-Segments was used to obtain a fixed-length

data representation of CNA segments that vary in num-
bers between samples. This fixed representation is needed
for further processing of these features with machine
learning techniques. The Bag-of-Segment approach was
used to generate features needed for the development of
a classification model for grading of ovarian serous carci-
noma and was trained on CNA segments of 14 high-grade
and 20 low-grade carcinoma samples. The CNA segments
were derived from the LC-WGS data of these samples.
The analysis of the Bag-of-Segment features contributes
to the differentiation highlighted in two different under-
lying biological processes, one that involves large scale
deletions or amplifications suggesting abnormal mitotic
events, while the other involves local amplification and
deletions commonly associated to DNA repair malfunc-
tions.

Method
The methodological approach includes several steps: 1)
the processing of the low coverage sequencing data and
reporting CNAs using an in-house developed tool, 2) the
application of the Bag-of-Segment method to extract pre-
dictive CNA patterns and 3) the training of a classification
model to predict the histologic type (low or high grade) of
a sample.

Patient samples
In this study, we collected and processed 34 sequenc-
ing coverage profiles from patients with ovarian serous
carcinoma. Among these patients, 14 cases were diag-
nosed with high-grade and the remaining 20 with low-
grade ovarian serous carcinoma based on the histologic
review of the surgical material from tumor debulking
surgery. The photomicrograph of low grade and high
grade serous carcinoma examples is shown in Fig. 1. All
cases were reviewed by a gynecologic pathologist. The
MD Anderson two-tier classification system was used to
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Fig. 1 Photomicrographof low grade and high grade serous carcinoma cases. a Low grade serous carcinoma, 20X. bHigh grade serous carcinoma, 20X

classify ovarian serous tumors into low grade and high
grade groups. We also used P53 immunohistochemistry
in all cases for diagnosis confirmation. In each case, area
of tumor was macrodissected from the Formalin-Fixed-
Paraffin-Embedded (FFPE) tissue blocks with a minimum
of 20% tumor cellularity, and DNA was extracted using
Qiagen extraction kit. Sequencing reads were produced
by Hiseq 4000, with multiplexing 8 samples per lane. The
per-sample base-pair coverages range from ∼1× to ∼3×.

LC-WGS preprocessing and CNA reporting
Samples were pre-processed with an in-house developed
tool called Wandy [8]. Wandy accumulates the sparse
sequence reads into 10,000 base long bins and performs
several noise reduction procedures to more accurately
characterize changes in coverage characteristic of Copy
Number Variations (CNVs). As a result, each point in the
input sequencing data is the coverage of WGS in 10kb
genomic window. Wandy uses a top-down regression tree
(CART algorithm [9]) to segment and identify the step-
wise changes in the sequencing data.More specifically, the
1D regression tree model is fitted to the sequence cover-
age of each chromosome. To obtain a step-wise signal of a
proper level of complexity, the CART algorithm is tuned
by modifying the cost-complexity parameter (Cp). This
parameter is control by the user and can be adjusted as a
function of the need of the project. The selection of the
optimal Cp value is described in a following section.

Bag-of-Segments
The Bag-of-Segments approach used for this project
is derived from the bag-of-features methodology [6, 7]
and implemented as follow: first, each CNA segment is

described by its height and width. The height is measured
as the log2 ratio to the median coverage of the sample,
and the width is measured in the proportion of the chro-
mosome length. In our preliminary study, we observed
that both the proportion of chromosome length and the
actual length resulted in good classification accuracy. The
normalization by the proportion of chromosome length is
used to make CNV events more comparable across chro-
mosomes. Then, CNA segments from all the samples are
aggregated to produce a single 2D distribution of segment
height and segment width, as illustrated in Fig. 2. The
Bag-of-Segments is used to summarize the CNA profile
of a sample in a limited set of features comparable across
samples.
Let hα and h1−α denote the α and 1 - α percentiles

of the segment heights, and let wα and w1−α denote the
α and 1 - α percentiles of the segment widths. The red
lines in Fig. 2 indicate these quantiles. Using the quan-
tiles of both the width and the height, 9 CNA segment
classes were defined as shown in Table 1. For each indi-
vidual sample, the empirical frequency distribution of
its segments over these 9 classes generates the Bag-of-
Segments representation.

Parameter adjustments
The Cp and α are two parameters that respectively con-
trol the complexity of the CNA segment landscape and
CNA segment classes defined by the bag-of-segment
approach. These two parameters are set by the user
and are adjustable as function of the sequencing cov-
erage, complexity of the genomics alterations, quality
of the sequencing results that is largely depending on
the quality of the starting material (sample degradation,
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Fig. 2 Bag-of-Segments representation workflow

contamination and DNA amount). For instance, if Cp is
set to a too small value, the segments could be adjusted to
fit the noise in the sequencing results. On the opposite, a
too large ofCpmay not properly capture the biological sig-
nal. A proper choice ofCp is a trade-off between capturing
the real signal and avoiding noise overfitting.
For this project and due to the small sample size, we

used leave-one-out cross-validation (LOOCV) approach
to adjust these 2 parameters. Sensitivity analysis was per-
formed with different Cp values set to 0.001, 0.005, 0.01,
0.05, 0.1 and 0.2, and different α values set to 0.1, 0.15,
0.2, 0.25, 0.3, 0.35, 0.4 and 0.45. For each combination, the
average accuracy of the Random Forest (RF) model (dis-
cussed in the next section) was obtained by repeated 10
times of the LOOCV.

Classification model
Amodel was developed to classify samples into low-grade
and high-grade serous carcinomas. We use a Random
Forest (RF) [10], an ensemble model trained on the 9-
feature Bag-of-Segments representation. Ensemble meth-
ods combine the predictions from many weak learners to
present a stronger model. The condition for an ensemble
model to outperform their individual members is the indi-
vidual members are accurate (better than random guess-
ing) and diverse (less correlated). RF is an ensemble of
decision tree models each trained on a bootstrap sample
of the original training data. A random subset of features

is considered at each node split of each decision tree to
make the weak learners even more diverse. As a result, RF
usually presents a strong classification performance with
less overfitting.
In addition to the strong performance, RF provides

two benefits: first, it provides a continuous probability
score for each sample indicating how likely the sample is
high-grade by counting the vote proportion from the tree
models. Second, the Gini importance score typically used
in RF model enables the identification of the important
features. More specifically, at each split of a node in fit-
ting each tree model, the Gini impurity [11] is calculated
from the two child nodes should be smaller than that of
the parent node. For each variable, an importance score
can be calculated by adding up the Gini deceases when it
is selected over all the trees [10].
For the implementation, we used the R package

“RandomForest” [12] for training the RF model with the
default setting. By default, a RF model consists of 500
unpruned decision trees, and 3 features (square root of
the total number of features) are randomly selected for the
evaluation at each node split.

Results
Sample processing
Cp = 0.05 and α = 0.25 were identified as one of the good
performing settings and were selected to generate the data
used by the classification model. For example, Fig. 3 gives

Table 1 Categorization of CNA segment using the adjusted quantiles of segment width and segment height

w < wα wα ≤ w < w1−α w ≥ w1−α

h ≥ h1−α Narrow Amplified (NA) Medium Amplified (MA) Wide Amplified (WA)

hα ≤ h < h1−α Narrow Normal (NN) Medium Normal (MN) Narrow Normal (NN)

h < hα Narrow Deleted (ND) Medium Deleted (MD) Narrow Deleted (ND)
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Fig. 3 a Segmentation example for a CNA profile sample (23 chromosomes). b 2D distribution of the segment width and height for the
segmentation in a

the segmentation results from one sample withCp = 0.05.
The corresponding 2D distribution of the segment width
and height is shown in Fig. 3.

Bag-of-Segments
As shown in Fig. 4, the 2D joint distribution of the seg-
ment height and width as well as their marginal distri-
butions are obtained after the aggregation over the 34
samples. The segments from the high- and low- grade
samples are colored in red and blue respectively. From
Fig. 4, we can easily observe that segments from the low
grade- and high grade- samples follow different joint and
marginal distributions in terms of their height and width.
The results of the two-sample Kolmogorov-Smirnov tests
that are provided in Table 2 further confirm our obser-
vation. The width distribution is more different than the
height distribution based on the magnitude of the p-
values. This observation lays the foundation of our bag-of-
segment representation.We use the quantiles to discretize
the continuous height-width space, so that we can use a
fixed number of features to describe the joint distribution
which is discriminative for the classification.
In Fig. 4 the quantiles (α = 0.25) of the segment height

and the segment width are indicated by the black horizon-
tal and vertical lines, accounting 9 CNA segment classes.
The Bag-of-Segments representation is obtained based on
the frequency distribution over the segment classes as

shown in Table 3. This representation is used as the input
of the RF model.

Parameter selection and sensitivity analysis
The α and Cp values were adjusted using LOOCV.
Figure 5 gives the average LOOCV accuracies over 10
replicates of experiments for different selections of α and
Cp values. Most parameter combinations achieve over
80% LOOCV accuracy, showing that the overall perfor-
mance of our method is not very sensitive to the param-
eter settings. Moreover, over 98% LOOCV accuracy was
obtained in various parameter combinations. It is shown
that our method performs the best when Cp = 0.05. It
achieved 100% accuracy with multiple different α values.
When Cp is properly selected (= 0.1 or 0.05), our method
works well with a wide range of α values.

Discussion
Model accuracy
Our method shows high accuracy in the ovarian serous
carcinoma classification study. Based on the average
LOOCV accuracy over 10 replicates, the accuracy of our
method is close to 100% (99%) when setting Cp = 0.01
and α = 0.25 (the quarter quantiles are used for defin-
ing CNA segment classes for the simplicity). Although
of high accuracy, we do recognize that the limited num-
ber of samples does not allow for an intensive testing of
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Fig. 4 Aggregated joint distribution and marginal distributions of segment widths and heights

performance of the model. However, as discussed in the
next section we believe that it should perform well on
new samples.
The two most important CNA segment classes identi-

fied by the Gini importance score are the Narrow Ampli-
fied (NA) and Wide Normal (WN) as shown in Fig. 6,
although as displayed in Fig. 7, a high correlation exists
between the 9 features used to build the model. This sug-
gests that models with even lower dimensionality could
be built. We investigated the independent contribution of
the 2 dominant classes (NA, WN) by performing another
set of 10 fold LOOCV using the same RF model. The
model displays an average accuracy near to the previ-
ous one (99%) highlighting that these two features are
sufficient for capturing the determinative information
from the data.

Generalization of the model
We expected the risk to overfit the model to be low
since the Bag-of-Segments representation includes only 9

Table 2 Test results of the two-sample Kolmogorov-Smirnov
tests for the segment width and segment height

Variable D statistics P value

Segment height 0.154 7.75 × 10−7

Segment width 0.702 < 2.2 × 10−16

features, which is a very small compared to the dimen-
sionality of the original data (over 25 thousand). The RF
modeling, as an ensemble approach, also helps reduce
the risk of overfitting as it takes the average of multi-
ple models. Finally, the good performance of the model
can be obtained by multiple parameter settings and is
weakly affected by the small parameterization changes,
also an indicator of low risk of overfitting and good
generalization.

Model Interpretation and clinical relevance of the most
significant classes
The two most significant classes identified by the Gini
importance score actually represent two groups of CNA
classes. By reviewing the correlation plot in Fig. 6 we
observe that the NA class is positively correlated with

Table 3 Bag-of-Segments representation based on the
distribution over the CNA segment classes

MA MD MN NA ND NN WA WD WN Grade

1 0.18 0.32 0.18 0.18 0.02 0.04 0.04 0.02 0.02 High

2 0.04 0.04 0.07 0.04 0.07 0.00 0.04 0.04 0.67 Low

3 0.00 0.14 0.07 0.00 0.07 0.04 0.14 0.11 0.43 Low

4 0.00 0.00 0.04 0.00 0.04 0.00 0.13 0.00 0.79 Low

... ... ... ... ... ... ... ... ... ... ...
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Fig. 5 Sensitivity analysis with various α and Cp values

CNA segment classes ND, NN, MA, MD and MN. These
classes represent narrow- or median- length CNA seg-
ments (group 1). The second class, WN, is positively
correlated with WA and WD, a group of CNA classes
associated to wide-length CNA segments (group 2). From
the boxplot in Fig. 8, we can observe that CNA segments

classes in group 1 are more frequent in the high-grade
samples, than the low-grade samples which are more
dominated by segment classes in group 2. Interestingly,
these two groups of CNA classes represent two under-
lying biological mechanism of genomic instability. The
first group is related to local amplification and deletion

Fig. 6 RF importance score for Bag-of-Segments features
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Fig. 7 Correlation plot for Bag-of-Segments features

events often associated to DNA repair malfunctions. The
second group represents large scale deletion or amplifi-
cations, such as the chromosome or arm deletion that
are associated to errors taking place during the cellular
division.

Clinical applicability
The model in its current state has potential clinical
value since it is highly specific and sensitive. However,
the significant contribution of the height related group
of CNA segments to the model could be of concern
since the height related features are more affected by the
sequencing coverage. Although the coverage was normal-
ized across the genome, the height of amplified regions
is dependent on the ratio of normal/tumor cells in a
biological sample. This ratio may vary significantly as a
function of the type of tissue biopsied, possibly affecting
the performance of the model. In a attempt to reduce the
influence of sequence coverage on the mode, we reduced
the segment classes from 9 to 3, by only considering
width-dependent features: Wide (W), Median (M) and
Narrow (N) that are defined only by the quantiles of seg-
ment widths wα and w1−α . This representation may also
be considered as a linear combination of the original Bag-

of-Segments representation, for example featureW = WA +
WN + WD, and similar relationship is applied for fea-
ture M and feature N. We performed a 10 fold LOOCV
using these 3 classes with α set to 0.25 and Cp set to 0.05.
The average accuracy of the mode was 100%, suggesting
that width-based features only can be used to accurately
classify our ovarian dataset and therefore could be used
to support clinical decisions. However, more samples are
needed to validate this conclusion.

Future work
This work proposes a data-driven alternative method for
extracting patterns and classifying ovarian serous carci-
nomas. The features we extracted may be complementary
to some known biological features such as Loss of Het-
erozygosity (LOH). However, calling LOH from LC-WGS
is difficult since 1) the number of SNP positions that are
sequenced is low and 2) most frequently only one SNP
allele will be called from the sequencing data. Note that
we are pursuing investigations in this space, exploring the
use of imputation [13, 14] to help calling LOH.
Although our method has shown high accuracy on the

34 samples, we are actively working on collecting more
samples, especially the ones with ambiguous morphology.



Lin et al. BMC Genomics          (2018) 19:841 Page 9 of 10

Fig. 8 Box plots for the values of Bag-of-Segments features

In the future research, the analysis on more samples
will help provide better understanding of the utility of
this method in classification of ovarian serous carci-
noma, especially those with challenging morphology and
immune-profile.

Conclusions
In this manuscript, we describe a new data-driven
approach to classify ovarian serous carcinoma into high
grade and low grade types with high accuracy. The
proposed Bag-of-Segments method is used to summarize
the CNA features from sequencing coverage data. The
Bag-of-Segments was used to derive 9 features predic-
tive of tumor type. The model obtained high accuracy
with various parametrizations, indicating that it has good
generalization potential towards other CNA classification
problems. We recognize that more tumor samples are
needed to fully investigate the predictive power of this
model.
Due to the high correlation between several of 9 fea-

tures, models of lower dimensionality could be built. We
demonstrated that Narrow Amplified (NA) and Wide
Normal (WN) CNA features were sufficient to discrimi-
nate low grade from high grade ovarian tumor samples.
NA and WN features represents two groups of CNA
classes respectively. The patterns captured by these two
groups correlate with current clinical knowledge: low
grade ovarian tumors being related to aneuploidy events

associated to mitotic errors while high grade ovarian
tumors are induced by DNA repair gene malfunction.
We also have shown that models independent from

high coverage could also be successfully built. Beyond
methodological interest, this result indicates that mod-
els that are weakly influenced by the sequence cov-
erage and the purity of the sample defined by the
ratio tumor/normal cell in a sample can be built.
These models would be of higher relevance for clinical
applications.
Finally, we believe that this new method could be

applied to the more challenging task of classifying ovar-
ian serous carcinomas with ambiguous histology or in
those with low grade tumor co-existing with high grade
tumor. We are collecting these morphologically challeng-
ing ovarian serous carcinoma cases, and by modeling the
low grade and high grade serous carcinoma, we hope to be
able to characterize their molecular nature and have a bet-
ter understanding of their pathogenesis. Classification of
ovarian serous carcinomas to low or high grade based on
their genomics may provide valuable clue on how to best
manage these patients in clinic.
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