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Abstract

trait variation.

Background: The mutations changing the expression level of a gene, or expression quantitative trait loci (eQTL),
can be identified by testing the association between genetic variants and gene expression in multiple individuals
(eQTL mapping), or by comparing the expression of the alleles in a heterozygous individual (allele specific expression
or ASE analysis). The aims of the study were to find and compare ASE and local eQTL in 4 bovine RNA-sequencing
(RNA-Seq) datasets, validate them in an independent ASE study and investigate if they are associated with complex

Results: We present a novel method for distinguishing between ASE driven by polymorphisms in cis and parent of
origin effects. We found that single nucleotide polymorphisms (SNPs) driving ASE are also often local eQTL and

therefore presumably cis eQTL. These SNPs often, but not always, affect gene expression in multiple tissues and, when
they do, the allele increasing expression is usually the same. However, there were systematic differences between ASE
and local eQTL and between tissues and breeds. We also found that SNPs significantly associated with gene expression
(p < 0.001) were likely to influence some complex traits (p < 0.001), which means that some mutations influence
variation in complex traits by changing the expression level of genes.

Conclusion: We conclude that ASE detects phenomenon that overlap with local eQTL, but there are also systematic
differences between the SNPs discovered by the two methods. Some mutations influencing complex traits are actually
eQTL and can be discovered using RNA-Seq including eQTL in the genes CAST, CAPNT, LCORL and LEPROTLI.

Keywords: RNA-sequencing, Allele specific expression, ASE analysis, eQTL mapping, Genome-wide association studly,

Genetic variation of complex traits

Background

Gene expression varies between tissues and individuals
and can be measured by counting the number of mRNA
copies of the gene [1, 2]. The variation in gene expres-
sion between individuals can influence their phenotype
[3]. Some of this variation in gene expression is genetic,
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so understanding gene expression may improve our
knowledge of the genetic architecture of complex traits.

In traditional gene expression studies with microar-
rays, it is not possible to discriminate between eQTL
responsible for changing the expression of a gene on the
same chromosome (cis eQTL) from mutations influen-
cing the expression of a gene on both chromosomes
(trans eQTL) [4]. However, it has become common to
regard polymorphisms that are close to the gene whose
expression they affect as cis eQTL, although a better
name would be local eQTL [5].
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High-throughput RNA sequencing with next gener-
ation sequencing technology (RNA-Seq), can be used to
measure gene expression and to detect heterozygous
sites in the transcript [6]. If there is a polymorphic site
in the transcript, then RNA-Seq can also be used to de-
tect allele specific expression (ASE) or allelic bias in
which one allele is expressed more highly than the other.
To detect ASE, we require a SNP to be in the transcript
(tSNP), but the polymorphism causing the difference in
expression between the alleles (the driver SNP or dSNP)
is likely to be in non-coding, regulatory DNA (Fig. 1a).
An individual that is heterozygous for a cis eQTL should
show ASE. Therefore, RNA-Seq data can be used for
eQTL mapping of global RNA expression and also for
ASE analysis, and hence it is possible to distinguish cis
eQTL from trans eQTL even among local eQTL [7].

In ASE analysis, the difference in expression of the al-
leles is a within individual comparison (Fig. 1b and c),
while in local eQTL mapping, the association between
gene expression level and genotypes at polymorphic loci
relies on comparisons between individuals (Fig. 1d).
Therefore, the two methods use independent data and
combining them should increase power. For the detec-
tion of cis eQTL, ASE has an advantage over local eQTL
because it relies on comparisons within an individual, so
sources of error between individuals, such as environ-
mental or trans eQTL effects, are eliminated [8]. How-
ever, this advantage in power is offset by the fact that
only RNA reads that include a heterozygous site are use-
ful for ASE, whereas all reads from a gene are useful for
local eQTL mapping.

Higher expression of one allele compared with the
other can be due to cis eQTL, but it can also be due to
parent of origin of allelic expression (PO-ASE, Fig. 1b)
or imprinting, where maternal or paternal inheritance of
the allele determines the allelic imbalance ratio [9].
Thus, before using ASE to distinguish between cis and
trans local eQTL, we need to know whether ASE is
largely due to cis eQTL (Fig. 1c), or largely due to other
phenomenon such as parent of origin effects. However,
to date the reported concordance rates between local
eQTL mapping and ASE studies have not been very high
due to biological and technical factors [10]. Hasin-
Brumshtein et al. (2014) reported only 15-20% of the
local eQTL were found as cis eQTL by ASE analysis in
mouse adipose tissue [5]. Failure of ASE and local eQTL
analyses to agree could be due to insufficient statistical
power in one or both analyses, to parent of origin effects
or to local trans eQTL. In this paper we examine the ex-
tent of systematic differences between local eQTL and
ASE.

Distinguishing between ASE due to cis eQTL and par-
ent of origin effects is more complex but more inform-
ative in outbred individuals than in crosses of inbred
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strains. Here we introduce a novel statistical analysis to
distinguish between these two causes of allele specific
expression. Our novel method can be used to explain
some of the discrepancy between the results from ASE
analyses and local eQTL mapping.

Finding the biological background of how mutations
cause variation in a trait is very useful to confirm the
causality of the statistically significant association be-
tween mutations and phenotypic records. However,
many of the polymorphisms associated with complex
traits (quantitative trait loci or QTL), found by genome
wide association (GWA) studies, are non-coding variants
[8]. Therefore, it seems reasonable to assume that at
least some of the causal variants that affect complex
traits, do so by regulating the expression of genes. If this
is true, we expect that some QTL are actually eQTL.
However, only a few QTL have been shown to be eQTL
(e.g. in humans the SNP which is located in an enhancer
of Nitric Oxide Synthase 1 Adaptor Protein gene affects
cardiac function by increasing the expression of
NOS1AP) [3]. Here we examine the overlap between
QTL for dairy and beef traits and eQTL.

The gene expression profile and imbalance can be dif-
ferent across tissues and breeds. Therefore, in our study,
RNA-Seq of 4 datasets (45 Angus bull muscle samples,
37 Angus bull liver samples and 20 Holstein cow white
blood cell (WBC) and liver samples) and corresponding
phased genotypes were used to find local eQTL and
measure ASE and PO-ASE within 50 kb of the genes
expressed in each tissue. We compared the local eQTL,
ASE and PO-ASE measurement in different datasets to
find if the SNP associated with allelic imbalance in ASE
studies and gene expression in eQTL mapping are the
same and if so, whether the same allele is associated
with higher expression in both cases. We compared the
cases of ASE and eQTL found in these 4 datasets to the
ASE found in 18 tissues from a single Holstein cow [11],
to broaden the range of tissues examined. The SNP as-
sociated with gene expression in each RNA-Seq dataset
(p <0.001) and SNP associated with 21 complex traits
and a multi-trait test (p <0.001), detected by GWAS,
were compared to test if QTL are also likely to be
eQTL.

The aims of the study were to find and compare ASE
and local eQTL, validate them in an independent ASE
study and investigate if they are associated with complex
trait variation.

Results

RNA-Seq quality control

About 80% of the RNA-Seq data passed the quality
check (QC) filters. The summary of raw reads, reads
passing QC, aligned paired reads and concordant pair
alignment rate (%) of the animals in each RNA-Seq
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Fig. 1 Allele specific expression (ASE), parent-of-origin allele specific expression (PO-ASE) and local expression quantitative trait loci (eQTL)
diagram. a The gene in the figure has two SNPs in the exons (tSNP; and tSNP,), and their expression can be measured using RNA-Seq and a SNP
within 50 kb of the gene which is driving expression of the gene (dSNP). b In the case of PO-ASE, the allele inherited from the dam (in this
example) increases the expression of the tSNP allele which is on the maternal chromosome (9). € When the dSNP has an ASE effect, allele A of
the dSNP (in this example) triggers the expression of tSNP allele on the same chromosome. d In local eQTL mapping, the expression of dSNP
allele is correlated with total exon expression, where the heterozygote individual for dSNP shows medium expression (A/T, individual 2) and the
homozygotes show either high (A/A, individual 1) or low (T/T, individual 3) expression
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dataset, is shown in Table 1. The detailed QC and align-
ment results are available in Additional file 1: Table S1.
On average, approximately 90% of the reads that passed
QC were mapped to the reference genomes and the con-
cordant pair rates was about 85%. Concordant read pairs
percentage is a good indicator of appropriate alignment
of reads to the reference map which shows both pairs
mapped to the same strand and in correct orientation
and acceptable distance according to the library size.

ASE and PO-ASE

ASE, in which the ratio of the two alleles in the RNA
transcript differs from 1:1, can only be detected if an
animal is heterozygous for a SNP in the RNA transcript
(i.e. a tSNP). Our statistical analysis distinguishes be-
tween two possible explanations. If the paternal allele
was always over-expressed (or under-expressed), we in-
terpret this as a parent of origin effect (PO-ASE). Alter-
natively, if the overexpressed tSNP allele is consistently
on the same chromosome as an allele of a nearby SNP
(a dSNP), we interpret this as a possible cis eQTL and
refer to this phenomenon simply as ASE in the rest of
the paper. These two alternatives cannot be distin-
guished if all heterozygous animals receive the same
tSNP allele from their sire. Therefore, we only analyse
cases in which at least one animal received the reference
allele from its sire and one animal received the reference
allele from its dam. An analysis was performed for each
combination of a SNP in the transcript (tSNP) and an-
other SNP (dSNP) within 50 kb which could be driving
the expression of the gene containing the tSNP. There-
fore, a dSNP may be tested for association with ASE
more than once if it was within 50 kb of more than one
tSNP in the same or different genes. Additional file 2:
Table S2 shows the number of tSNP, the number used in
analyses of ASE, the number of tests performed and the
number of unique dSNP tested. For instance, in the
Angus muscle dataset, there were 12,021 tSNP of which
9644 met the requirement to have at least two heterozy-
gous animals who inherited opposite alleles from their
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sire. In this dataset there were 1,104,748 dSNP tested in
3,749,255 combinations of dSNP and tSNP.

We used a statistical model which fits the parent of
origin effect and the cis effect simultaneously and tests
the significance of each. The number of dSNP-tSNP
pairs tested and significant (p <0.0001) are shown in
Table 2. For example, in the Angus muscle dataset, of
the 3,749,255 tests performed, 11,717 were significant
(p <0.0001) for ASE (compared with 375 expected by
chance, giving a FDR of 3%) and 6748 were signifi-
cant for PO-ASE (FDR =6%). When all 4 datasets are
considered, allelic imbalance at the tSNP is more
often associated with the alleles at the dSNP (ASE)
than with the parent of origin of the tSNP (PO-ASE)
(Table 2).

To test the validity of the PO-ASE effects, we found
15 genes containing SNPs with significant PO-ASE ef-
fects which were previously reported as imprinted genes
in human, mouse or cattle according to the Genelmprint
database (http://www.geneimprint.com/site/home) and
genes reported by Chamberlain et al. (2015) as showing
ASE (Table 3) [11]. In 10 out of 15 cases the allele that
was over-expressed was the same as previously reported
in human, mouse or bovine studies but in some genes
the imprinted allele in cattle was different to that in
mice or human (RBI, MKRN3 and Dhcr7).

Local eQTL discovery

Genes expressed (i.e. RNA-Seq reads that aligned to
them) in more than 25% of animals in each dataset were
used for eQTL mapping. The expression of each of these
genes was tested for association with all SNPs within
50 kb of the gene. The number of genes expressed, num-
ber of genes used in eQTL mapping, the number of
SNPs and the number of gene-SNP combinations tested
for association is shown in Additional file 2: Table S3.
The number of significant associations (p <0.0001) be-
tween a SNP and gene expression are shown in Table 2.
The number of eQTL found by local eQTL mapping
was greater than the number found by ASE. Possible
reasons for this include more association tests, use of

Table 1 Average (and standard deviation) of raw reads, reads passing QC, reads aligned and concordant pair alignment rate in each

RNA-Seq dataset

Raw reads QC passed reads (paired) Aligned reads (paired) (Co)ncordant pair alignment rate
%

RNA-Seq Number of Average  Standard Average  Standard deviation Average  Standard deviation Average  Standard deviation
data samples deviation

Angus muscle 45 17,816,260 4,293,439 6,337,427 1,840,633 5769907 1,677,758 90.0% 1.4%

Angus liver 37 13,616,027 7,751,116 5437947 3,065,337 4,478,339  2,720511 79.7% 84%

Holstein liver 20 35,145,555 7,060,354 14,869,140 3,328,298 13,794,312 2,960,745 91.8% 1.0%

Holstein WBC 20 40,462,263 6419677 16,355951 2,808,778 14,786,745 2,465,978 89.4% 1.1%

The average (and standard deviation) of raw reads, QC passed and aligned paired reads and concordant pair alignment rate (%) of the animals in each

RNA-Seq dataset
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Table 2 Number of SNPs (and genes) tested and number of significant associations (p < 0.0001) in ASE, PO-ASE and eQTL analyses

Analysis Definition Angus Holstein Meta-analysis
Muscle Liver Liver WBC

ASE No. tests 3,749,255 (3022) 3,766,137 (2903) 8,639,073 (5803) 11,419,065 (6873) 20,248,509 (9155)
No. Sig 11,717 (261) 8250 (79) 5926 (149) 11,299 (194) 1,528,756 (7357)
FDR 3% 5% 15% 10% 0.1%

PO-ASE No. Sig. 6748 (67) 594 (18) 1048 (56) 1739 (69) 1,199,496 (6255)
FDR 6% 63% 82% 66% 0.2%

eQTL No. tests 8,364,720 (12,278) 7326437 (12,233) 9,866,261 (14,373) 9,641,386 (14,175) 13,373,638 (16,038)
No. Sig. 45310 (1796) 32,230 (850) 27,107 (579) 22,974 (620) 151,636 (4051)
FDR 2% 2% 4% 4% 1%

Meta-analysis No. tests 10,855,138 (12,283) 9,955,525 (12,240) 15,886,606 (14,379) 17,836,290 (14,179) 28,807,218 (16,043)
No. Sig. 78,539 (1997) 75,667 (950) 84,135 (776) 63,589 (855) 1,377,335 (8317)
FDR 1% 1% 2% 3% 0.2%

The number of dSNP-tSNP pairs tested and significant (p < 0.0001) in ASE and PO-ASE analyses and the number of gene-SNP combinations tested and significant
(p <0.0001) in local eQTL mapping are shown in the table. The number SNPs tested or significant in the analyses are associated with fewer numbers of genes
which are shown in parenthesis. Generally, combining the results in meta-analyses within and across RNA-Seq datasets reduce the FDRs

gene counts instead of allele counts, use of all animals tissues. For instance, there were 4,152,056 dSNP-tSNP
instead of heterozygotes, and the possibility that some tests which were performed in both Holstein WBC and

local eQTL are trans not cis eQTL. Holstein liver. Of these 18,943 were significant in WBC,

10,989 were significant in liver and 1375 were significant
ASE and local eQTL mapping comparison within and in both datasets (p <0.001) which is 27.4 times more
across RNA-Seq datasets than expected if the overlap between the datasets was

A SNP that affects the expression of a nearby gene merely due to chance (the fold enrichment). Of these
might have an effect in only one tissue or multiple 1375 associations, the same allele of the dSNP was

Table 3 Imprinted genes found in PO-ASE analyses (p < 0.01) that have previously been reported in humans, mice and cattle

Gene Bovine Ensemble ID Expressed allele Expressed allele Expressed allele Expressed Allele PO-ASE More RNA-Seq No. No.
Name (Human)® (Mouse)? (Bovine)? (Bovine)® expressed allele dataset tSNP dSNP
NAA60  ENSBTAG00000004875 Maternal Not reported Not reported Not reported Maternal Holstein blood 1 1
RBI1 ENSBTAG00000006640 Maternal Not imprinted ~ Not reported Paternal Paternal Holstein blood 1 14
AlM1 ENSBTAGO0000017527 Paternal Not reported Not reported Not reported Paternal Holstein blood 1 9
PLAGLT ENSBTAG00000026523 Paternal Paternal Paternal Not reported Paternal Holstein blood 1 3
DGCR6L  ENSBTAG00000047299 Random Not reported Not reported Not reported Paternal Angus muscle 1 3
MKRN3  ENSBTAG00000008306 Paternal Paternal Not reported Not reported Maternal Angus liver 1 7
Gatm  ENSBTAG00000005586 Not reported Maternal Not reported Not reported Maternal Holstein liver 1 13
Gnai3  ENSBTAG00000013016 Not reported Predicted Not reported Not reported Maternal Holstein blood 1 65
maternal
Dhcr7  ENSBTAG00000016465 Not reported Maternal Not reported Not reported Paternal Holstein blood 1 4
Tssc4 ENSBTAG00000047793  Not reported Maternal Maternal Not reported Maternal Holstein blood 1 110
Nap1l4  ENSBTAG00000022160 Not reported ~ Maternal Not reported Not reported Maternal Holstein blood 2 4
Dcn ENSBTAGO0000003505 Not reported Maternal Not reported Not reported Maternal Angus muscle 2 240
Igf2 ENSBTAG0O0000013066 Not reported Paternal Paternal Paternal Paternal Angus muscle 2 5
lgf2r ENSBTAG00000002402 Not reported Maternal Maternal Maternal Maternal Holstein liver 3 31
Impact  ENSBTAG00000003035 Not reported Paternal Not reported Paternal Maternal Holstein blood 1 3

“Based on Genelmprint database (http://www.geneimprint.com/site/home)

bBased on Chamberlain et al, 2015 [11]

The imprinted genes discovered with PO-ASE effects at p < 0.01 and their effects as reported in human, mouse and/or cattle. Most of the imprinted genes with
PO-ASE were discovered in Holstein blood RNA-Seq dataset. In PLAGL1 and Igf2 the paternal and in Igf2rthe maternal alleles were expressed according to human,
mouse and cattle studies
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associated with increasing expression in 100% of cases
(Additional file 2: Table S4). Table 4 gives the fold en-
richment and the percentage of cases where the effect of
an allele is in the same direction in both analyses, for
comparisons among the 8 analyses (ASE and local eQTL
for 4 datasets). Additional file 2: Table S4, S5, S6 and S7
give more details of ASE, PO-ASE, eQTL and ASE-
eQTL comparisons, respectively. The comparisons for
PO-ASE in different datasets (Additional file 2: Table
S5) shows there are very limited number of significant
SNPs shared between datasets and with less agreement
in direction of the expression than for ASE.

The power to detect ASE in different datasets was not
the same because of differences in RNA-Seq read depth
and number of samples. So, even if all SNPs that affect
expression in WBC also affect expression in liver, we do
not expect all tests to be significant in both datasets due
to lack of power. However, the lack of power affects all
comparisons in Table 4 and so by comparing the fold
enrichment in different comparisons we can determine
which factors have a systematic effect on the overlap be-
tween SNP associated with expression in each analysis.
This shows that 3 factors — type of analysis (local eQTL
vs ASE), dataset and tissue — have systematic effects on
the fold enrichment. For instance, when the overlap be-
tween Angus muscle and Angus liver is assessed from
ASE, the fold enrichment is 34.8 and from local eQTL it
is 12.3, but when one tissue is analysed with ASE and
one with local eQTL, the fold enrichment is 4.0 and 1.7
(Table 4). The average for all comparisons across data-
sets but within method of ASE and eQTL analyses are
14.33 and 12.87, respectively and between methods of
analysis is 5.72. This shows that while ASE and local
eQTL both detect the same effects in some cases, they
detect systematically different effects as well. It appears
that only approximately half the cases of ASE and local
eQTL are in common. However, in the cases where both
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ASE and local eQTL are significant, it is usually the
same allele of the dSNP that drives over-expression sup-
porting the conclusion that both methods are detecting
cis eQTL.

A similar comparison can be done for the difference
between datasets. The average fold enrichment when
ASE and local eQTL are compared in the same dataset
is 10.52 whereas when they are compared in different
datasets it is 4.12 (Table 4). Different RNA extraction
protocols were used for different tissues, so the differ-
ences between datasets could be as a result of this, in
addition to differences in breed and physiological status
of the animals and tissue. However, gene expression in
liver was measured for both Holsteins and Angus. The
fold enrichment in ASE, eQTL and ASE-eQTL analyses
when 2 liver analyses are compared are 11.79, 20.35 and
6.57 respectively, compared with 3.99, 8.06 and 6.68
when two analyses of different tissues from Angus and
Holstein are compared, showing that some eQTL and
ASE is specific to a tissue.

The percentage of SNPs where the effect is in the
same direction in both analyses (Table 4) shows a similar
pattern to the fold enrichment. That is, it is very high
when ASE is used for both analyses or when both ana-
lyses are for local eQTL but lower when an ASE analysis
is compared with a local eQTL analysis. This reinforces
the conclusion that ASE and local eQTL find different
phenomena in some cases.

Comparisons of ASE in different datasets in Additional
file 2: Table S4 use the same dSNP-tSNP pair in both
datasets. In parentheses in Table 4 are the fold enrich-
ments and percentage same direction when the same
dSNP but not necessarily the same tSNP within each
gene is used. In this case the agreement between ana-
lyses is reduced. Different tSNPs within a gene are likely
to be in different exons, so this reduction in agreement
could be due to the effect of the SNP on ASE being exon

Table 4 Fold enrichment and the percentage of cases where the effect of an allele is in the same direction across different analyses

and tissues
Analysis  Tissue ASE eQTL
Angus muscle  Angus liver  Holstein liver  Holstein WBC ~ Angus muscle  Angus liver  Holstein liver  Holstein WBC

ASE Angus muscle 34.82 878 3.09 5.89 4.02 9.75 2.00
Angus liver 100% 11.79 0.09 1.70 1194 534 1.79
Holstein liver 100% 100% 2743 1.89 7.80 12.02 087
Holstein WBC ~ 100% 100% 100% 3.72 2.10 849 1223

eQTL Angus muscle  98% 92% 62% 82% 12.28 7.35 10.84
Angus liver 100% 98% 99% 61% 94% 20.35 6.00
Holstein liver ~ 100% 95% 97% 64% 97% 99% 20.36
Holstein WBC = 91% 100% 62% 87% 96% 99% 100%

The fold enrichment (upper triangle) and the percentage of cases where the effect of an allele is in the same direction (lower triangle) in paired comparisons
among ASE and eQTL analyses show that the overlap between significant SNPs (p < 0.001) is more than expected by chance and in majority of cases the same

allele is associated with higher tSNP count or gene expression
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or transcript specific. The analyses of local eQTL use
the transcript count for the whole gene so one reason
that ASE and local eQTL analyses differ is that ASE ana-
lyses are exon specific and local eQTL analyses are not.

Combining ASE and eQTL results

The results of meta analyses are shown in Table 2. Gen-
erally, combining results in meta-analyses decreased the
EDR compared to individual ASE or eQTL analyses. For
instance, the FDR for ASE and local eQTL in Angus
muscle was 3% and 2% respectively (p <0.0001) which
decreased to 1% when combined.

Validating ASE and eQTL mapping in an independent
dataset

To increase the range of tissues considered, we com-
pared our ASE and eQTL analysis with ASE measure-
ments in 18 tissues from a Holstein cow [11]. Detailed
results are presented in Additional file 2: Table S8 and
S9. In a single cow we do not expect to find all cis eQTL
because the cow has to be heterozygous for a tSNP and
for the causal variant. Also, we cannot distinguish be-
tween possible dSNP because all heterozygous SNPs
would give the same results. Therefore, we considered
the tSNP as if it was also the dSNP. Despite these limita-
tions we found significant overlap between the ASE and
local eQTL found in this study and those found by
Chamberlain et al. (2015). On average there were about
twice as many SNPs than expected by chance that
showed ASE in one of our 4 datasets and one of the 18
tissues of the Holstein cow and, of these, 83% had the
same allele at the tSNP overexpressed. For local eQTL
the overlap was less than 1.7 times the expected number
significant in both experiments and 68% in the same dir-
ection. The results for WBC, liver and muscle from the
Holstein cow had the highest agreement with our results
from the same tissue. Our results from Holstein liver
samples had better agreement than our Angus liver sam-
ples with the Holstein cow liver results. Hence the re-
sults from this single cow confirm the effects of method
of analysis, tissue and breed that we found within our
own results. Note that breed here is confounded with
sex and physiological state. However, there was some
overlap between our results and all tissues from the Hol-
stein cow showing that some eQTL at least affect more
than one tissue.

GWAS

GWAS using 800KSNP chip genotypes were performed
for 20 traits listed in Additional file 2: Table S10. A mul-
tiple trait test, combining these 20 traits was also per-
formed. For residual feed intake, the GWA study was
performed on imputed genome sequence data. The
number of SNP significantly (p <0.001) associated with
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these traits is shown in Additional file 2: Table S11
(more detailed results are available in Additional file 3:
Table S12 and Additional file 4: Table S13).

Comparing QTL and eQTL

We used 3 different statistical tests to assess the overlap
between QTL found in 21 GWAS (20 complex traits and
1 multi-trait with 800 K SNP chip) and eQTL found in 4
RNA-Seq datasets. Firstly, we calculated a chi-square
statistic based on the overlap across the whole genome
between QTL for a trait and eQTL and used a permuta-
tion test to judge statistical significance. A summary of the
results is in Table 5 and more detailed results in Add-
itional file 5: Table S14. The overlap between trait QTL
and eQTL is more than expected by chance. The tender-
ness of the meat (MQLDPF) and the multi-trait test show
the most consistent overlap with the eQTL results.

Secondly, the test for overlap between eQTL and ASE
with trait QTL was also carried out for each gene indi-
vidually. Summed across all traits and RNA-Seq datasets
9962 tests contained at least one QTL (p <0.001) and
one eQTL (p <0.001). The chi-squared tests showed that
in 3581 of these tests there was a significant association
(p <0.05) such that the SNPs that were associated with
the trait were also associated with gene expression (The
list of genes and chi-squared tests details are provided in
Additional file 6: Table S15).

In a third method, the within gene tests described
above were combined into a single test for each trait
using a linear model. This showed significant associa-
tions between GWAS and gene expression results (p <
0.05) for some traits (summarised in Table 5 and de-
tailed results are shown in Additional file 5: Table S14).

Example of QTL that may be eQTL

Significant GWAS associations for tenderness (MQLDPF)
and significant gene expression results, using meta-ana-
lysis of RNA-Seq datasets, were found near the calpastatin
gene (Fig. 2) which has previously been reported in several
papers as a candidate gene for meat quality (e.g. Bolormaa
et al, 2013) [12]. The majority of QTL significantly associ-
ated with MQLDPF and located within 50 kb of calpasta-
tin are also associated with the expression of the gene.
Fig 3 shows 3 other genes (CAPN1, LEPROTLI1, LCORL)
where there are SNPs that are significantly associated with
a trait and with expression of a nearby gene.

Discussion

A sequence variant that affects the expression of a gene
on the same chromosome (a cis eQTL) should be detect-
able both as a local eQTL and by ASE. However, both
local eQTL and ASE could be due to other causes be-
sides a cis eQTL, for example local eQTL could be trans
eQTL [5]. ASE could be due to parent of origin effects
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Table 5 Traits with a significant overlap between eQTL and QTL (within and across RNA-Seq datasets analyses)

Test Holstein WBC Holstein Liver Angus liver Angus muscle All Tissues All Tissues
(meta-analysis) (pooled analysis)

ASE MQLDPF’, Multi-  FI_NFI, MOLDPF,  E_IGF, MQLDPF’, Multi-  PW_IGF, X_LWT, FI_NFI, MQLDPF,

Trait” Multi-Trait MQLDPF’, Trait Multi-Trait” PW_HIP, Multi-Trait”
PW_HIP

PO-ASE E_IGF’, FI_NFT', FI_NFI PW_LWT PW_HIP, E_HIP FI_NFI', PW_LWT
PW_LWT

eQTL CRBY', MQLDPF,  MQLDPF" FI_NFI, MQLDPF',  MQLDPF’ MQLDPF, Multi-Trait
Multi-Trait Multi-Trait

ASE +eQTL (meta- CRBY', MOLDPF,  FI_NFI, MQLDPF~  E_IGF, MQLDPF  FI_NFI, MOLDPF,  CMARB’, CRBY, MQLDPF’, Multi-Trait”

analysis) Multi-Trait” Multi-Trait M_SEMA, X_LWT

ASE +eQTL CRBY', MQLDPF',  MQLDPF, E_IGF’, MQLDPF"  FI_NFI, MQLDPF,

(pooled analysis) Multi-Trait PW_LWT Multi-Trait

The traits in which QTL are significantly more likely to be eQTL according to chi-squared tests when comparing GWAS and gene expression results within RNA-
Seq datasets analyses (p < 0.05). ‘The approximate correlation between QTL and eQTL for the traits annotated with stars were significant as well (p < 0.05)
CRBY Carcass retail beef yield; E_IGF Blood concentration of Insulin-like Growth Factor | (IGF-I) measured at feedlot entry; FI_NFI Net feed intake; MQLDPF
Tenderness; Multi-Trait Multi trait GWAS test; PW_HIP Hip height measured post weaning; PW_LWT Live weight measured post weaning

(i.e. imprinting) or nonsense mediated decay [5, 11]. Our
statistical analysis attempts to distinguish cis eQTL from
parent of origin as a cause of ASE by determining
whether the direction of ASE is consistent with the par-
ent of origin of the over-expressed allele or with the al-
lele on the same chromosome at a nearby SNP (a
dSNP). This analysis finds that PO-ASE is less common
and has higher FDR than ASE due to the cis effect of a
nearby SNP. The PO-ASE effects were also less often
confirmed in multiple datasets. However, our analysis
did find PO-ASE for several genes where imprinting has
been reported. To avoid being misled by errors in the
genome sequence of our cattle, we excluded complete
mono allelic expression, and therefore would not find
cases of complete imprinting where only one parental al-
lele is expressed. Therefore, our PO-ASE tests are de-
tecting “partial” imprinting. There are also some reports
that imprinting can be tissue specific [13], which could
explain why PO-ASE effects were not always confirmed
in multiple datasets. However, the agreement of PO-ASE
found in Holstein and Angus liver samples was also low
perhaps because we had limited power to detect partial
imprinting with only a small allelic imbalance.

Our analysis of ASE fits the effects of parent of origin
and of a SNP in cis with the over-expressed allele jointly
and therefore we can test for significance the cis effect of
SNPs on gene expression, called here simply ASE. There
are large numbers of SNPs associated with the expression
of a nearby gene (local eQTL), or with ASE at that gene
(Table 2). The SNPs associated with gene expression over-
lap significantly between ASE and local eQTL analyses
and between datasets on different animals and different
tissues and, among the SNPs that are significant in two
different analyses, the same allele is associated with in-
creasing gene expression most of the time (Table 4). These
results support the conclusion that many of the SNPs as-
sociated with local eQTL and with ASE are cis eQTL.

Despite the significant overlap between local eQTL
and ASE, only a small proportion of SNPs that are sig-
nificant in one analysis are significant in the other. This
could be due to lack of power in one or both analyses or
systematic differences between ASE and local eQTL.
When ASE in two different datasets is compared, there
are on average 14.33 times more SNPs that are signifi-
cant in both datasets than expected by chance (Table 4).
Similarly, when local eQTL are compared in 2 datasets
there are 12.87 times more significant SNPs than ex-
pected by chance (Table 4). However, when ASE in one
dataset is compared to local eQTL in another, the fold
enrichment is only 5.72 (Table 4). This indicates that
ASE detects phenomenon that overlap with local eQTL,
but have some systematic differences. One reason for
these differences is that the local eQTL analysis uses all
RNA reads from the gene whereas the ASE analysis uses
only those containing the tSNP. When ASE in different
datasets is compared using any tSNP within the gene,
instead of the same tSNP in both datasets, the fold
enrichment falls to 4.81 (Additional file 2: Table S4).
Thus, some of the cis eQTL detected by ASE are tSNP
specific probably because they are exon and splice vari-
ant specific [14]. Other reasons for systematic differ-
ences between ASE and local eQTL may include local
eQTL being trans eQTL, nonsense mediated decay, and
feedback mechanisms limiting gene expression. If one al-
lele is more highly expressed than the other, feedback
might limit expression of both alleles so that the total
gene expression is much the same regardless of SNP
genotype [8]. This would leave a significant case of ASE
but no local eQTL.

Although there is some overlap between eQTL in dif-
ferent datasets, there are also systematic differences be-
tween datasets, breeds and tissues. The comparisons
between ASE and local eQTL mapping showed within
an RNA-Seq dataset (Additional file 2: Table S7), the
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Fig. 2 GWAS results for tenderness (MQLDPF) and gene expression results, using RNA-Seq meta-analyses of all datasets, within 50 kb of
calpastatin gene (CAST). The Manhattan plots show the GWAS results for MQLDPF in grey. The common GWAS suggestive line at p < 10”° and
the genome-wide threshold line at p < 5x 10™ % are shown in blue and red, respectively. The dark shaded box indicates the location of CAST and
light shaded boxes show 50 kb upstream and downstream of the gene. For ease of comparison, the common SNPs from both the GWAS and
the gene expression study are plotted in each graph. The SNPs within 50 kb of calpastatin gene significantly associated with MQLDPF (p < 0.001)
are in blue. The SNP significantly associated with expression of the gene (p < 0.001) as detected by ASE (top), local eQTL mapping (middle) and
meta-analysis of ASE and local eQTL (bottom) are in red. Where the same dSNP was tested for multiple tSNP, the lowest p-value for each dSNP is
shown in the graphs. Although ASE and local eQTL mapping are different measurements they show similar results

SNPs found by ASE were more likely to be found in
local eQTL mapping than expected by chance. The aver-
age fold enrichment for ASE and local eQTL in the same
dataset was more than when comparing ASE in one
dataset with local eQTL in another dataset, indicating
that although some eQTL operate in both datasets, there
are some dataset specific (tissue specific) eQTL. These
results could be interpreted to mean that approximately
half the cis eQTL in one tissue also operate in a second
tissue which is the same conclusion as the GTex paper
reached by different means [1]. Our results also show

that when a cis eQTL operates in multiple tissues, it is
nearly always the same allele that increases expression.
The systematic differences between datasets are due
partly to differences in the tissue used, as shown by the
similarities in local eQTL mapping and ASE between
Holstein and Angus liver samples (Table 4). The ASE and
local eQTL results were also more similar when compar-
ing two Holstein or two Angus datasets than when
comparing one Angus and one Holstein dataset (Table 4).
The effect of breed might be due to differences between
breeds in linkage disequilibrium, but could also be due to
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Fig. 3 The overlap between QTL and gene expression within 50 kb of calpain (CAPNT), leptin receptor transcript-like 1 gene (LEPROTLT) and ligand
dependent nuclear receptor corepressor-like (LCORL) genes. The Manhattan plots show the GWAS results for MOQLDPF (top), PW_HIP (middle) and the
multi-trait test (bottom) in grey. The common GWAS suggestive line at 10> and the genome-wide threshold line at 5x 10™> are shown in blue and
red, respectively. The dark shaded boxes and light shaded boxes indicate the location and 50 kb upstream and downstream of the genes. For ease of
comparison, the common SNPs from both the GWAS and the gene expression study are plotted in each graph. The SNPs within 50 kb of CAPNT,
LEPROTLT and LCORL genes, tested in gene expression analyses and significant GWAS (p < 0.001) are in blue. The SNPs significantly influenced
expression of CAPNT and LEPROTLT in ASE measurement, and LCORL in combined ASE and eQTL meta-analysis of all RNA-Seq datasets (p < 0.001) are
shown in red

differences in gender, environment or physiological state
between the Holsteins and Angus cattle we sampled.
These conclusions of the effect of tissue and breed are
supported by comparing our results with ASE in 18 tis-
sues of a Holstein cow. In these results, the percentage
of SNPs showing the same direction of effect is higher
when the tissues are the same and when the breed is
Holstein in both cases. So, it seems that ASE and local
eQTL are partially tissue specific which agrees with the

findings of Chamberlain et al. (2015) [11]. However,
there was overlap between all of our 4 datasets and
many of the 18 tissues suggesting that some cis eQTL
affect expression in many tissues. This is consistent with
the GTex paper [1] that found the most cis eQTL either
affected all 9 tissues or only one tissue.

There were significant (p <0.05) overlaps between
QTL influencing some complex traits and ASE or local
eQTL (Table 5). Tenderness of the meat (MQLDPF) was
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associated with many SNPs that were also significantly
associated with gene expression in multiple analyses and
datasets. Fig 2 gives an example of a gene containing
SNPs that significantly affect tenderness and expression
of the gene calpastatin (CAST). The physiological role
of CAST and the association between SNPs near CAST
and tenderness are well known [15—17] but these results
suggest that the known QTL is in fact an eQTL for
calpastatin expression. Further examples include the
calpain 1 gene (CAPNI), leptin receptor overlapping
transcript-like 1 gene (LEPROTLI) and ligand dependent
nuclear receptor corepressor-like (LCORL) (Fig. 3).
CAPNI influences meat tenderness [16]. LEPROTLI is
reported to influence body growth by negatively regulat-
ing leptin receptor (LEPR) cell surface expression, de-
creasing response to leptin and decreasing hepatic
growth hormone action in mice [18]. LCORL has been
reported to have an effect on feed intake, gain, meat and
carcass traits [19] and its expression in muscle tissue has
been associated with average daily feed intake in beef
cattle [20]. In humans, there is a QTL for height near
NCAPG and LCORL and it has not been possible to
identify the causal gene. The result here suggests that
LCORL, at least, is likely to affect growth.

There are many QTL for which we did not find a
matching eQTL. This could be because the QTL acts
through a different mechanism (e.g. a protein coding
mutation) or due to the lack of power to find the rele-
vant eQTL in our experiment. In our study gene expres-
sion was measured in just 3 tissues (muscle, liver and
WBC) and only once. The eQTL in other tissues and
their activity in other physiological or developmental
states might underlie other QTL. The number of ani-
mals and the average transcript read depth in our study
were also limiting factors in the power to detect eQTL.
Therefore, if we want to find QTL influencing complex
traits by controlling the expression of genes, it is import-
ant to sample the correct tissue at the appropriate time
and to have sufficient sample size and transcript read
depth for gene expression analyses.

Conclusions

Our statistical analysis distinguishes allelic bias due to
parent of origin effects from that driven by a cis acting
regulatory allele. The parent of origin effects detected in
our study include well known imprinted genes (e.g. igf2r)
but also partial imprinting that is restricted to one data-
set, perhaps because it is tissue, or animal, or time
dependent.

In our study, many genes show local eQTL and/or
ASE. When the same SNP drives both, it is most likely a
cis eQTL. Consequently, combining the two types of
analysis increases the power to detect cis eQTL. How-
ever, there are some systematic differences between local
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eQTL and ASE caused by exon specific ASE, local trans
eQTL, nonsense mediated decay and perhaps other phe-
nomena such as feedback mechanisms.

In the tissues we studied, approximately half cis eQTL
are shared between a pair of tissues such as liver and
muscle. When they are shared, usually the same allele is
over-expressed in both tissues. Moreover, some cis
eQTL are shared between Angus bulls and lactating
Holstein cows but some are not.

The QTL of complex traits in beef cattle are slightly
enriched for cis eQTL. More QTL would be identified as
eQTL if there were more animals, tissues, developmental
and physiological states and greater sequencing depth.
Despite the mentioned limitations in our study, we con-
clude the QTL affecting beef tenderness and growth are
most likely cis eQTL for calpain 1, calpastatin and
LCORL.

Methods
Animals
Samples from 82 Angus bulls (45 with muscle and 37
with liver samples) from lines of cattle divergently se-
lected for residual feed intake (RFI) were taken from the
Agricultural Research Centre, Trangie, NSW, Australia
[21] and 20 first lactating Holstein cows (each of them
with both WBC and liver samples) were taken from the
DEDTR Ellinbank Research Farm, VIC, Australia [22].
For the GWA studies, 20 complex traits were used
from 3296 Bos taurus cattle, which were a subset of
10,191 Bos taurus, Bos indicus and Bos taurusxBos indi-
cus crosses used in a multi-trait test [23]. The names
and abbreviations of the traits are shown in Additional
file 2: Table S10. The phenotypes and genetic parameters
estimated using these data are described in full by Bolor-
maa et al. (2014) [23]. In another GWA study for RFI,
5614 Bos taurus cattle described by Khansefid et al
(2014) were used [24].

Genotypes

The Angus bulls that had RNA-Seq data, also had Illu-
mina BovineSNP50 (liver samples) or Illumina Bovi-
neHD SNP genotypes (muscle samples). The low density
SNP were imputed to high density (HD) genotypes using
BEAGLE [25]. The Holsteins had BovineHD SNP geno-
types, described by Pryce et al. (2012) [26]. Additionally,
45 Angus bulls with muscle samples also had whole gen-
ome sequence (WGS) data with an average coverage of
6.7 fold [27].

The animals in GWA studies had 729,068 SNP geno-
types, genotyped using either HD chip or a lower density
SNP chip and then imputed to HD using BEAGLE [25]
as described by Bolormaa et al. (2014) [23].

The HD SNP genotypes of animals with RNA-Seq data
and 5614 animals used in GWA study for RFI were
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imputed and phased to WGS of 28,899,038 SNPs using
Flmpute [28]. The WGS genotypes of 45 Angus bulls
were also phased by Flmpute. The reference genomes
used for the imputation were WGS data in Run 4.0,
1000 bull genomes project [27], consisting of 27 breeds
and 1147 sequenced animals, including 138 Angus
(Black and Red) and 311 Holstein cattle (288 black and
white and 23 red and white).

RNA-Seq data

We included here the tissue sampling procedures and
RNA-Seq protocol as reported by Khansefid et al., 2017
[29] for completeness in this manuscript. All animals
were monitored for one week post procedure for com-
plications before being returned to the main herd at
their respective farms.

The beef cattle liver tissue sampling procedure was de-
scribed in detail by Chen et al., 2011 [30]. Briefly, each
animal was sedated with intramuscular 2% xylazine
(Xylazil-20, Ilium) and complete local anaesthesia was
obtained with Adrenaline by under skin infiltration. On
the right side, being about halfway down the curvature
of the ribs, the cannula was pushed to penetrate the liver
and then rotated and advanced to a depth of 3-5 cm to
cut out a biopsy. The procedure was carried out by a
professional veterinarian and cut sites were consistent
among animals. Liver biopsy samples were expelled into
2 ml tubes of RNAlater™ solution (Ambion, Applied Bio-
systems). The semitendinosus muscle samples were
taken from the growing bulls by a purpose built 12 V
powered motorised biopsy drill. The hairs were clipped
from a 10 cm x 10 cm area around the point of incision
(located 15 and 25 c¢cm below the anus, and over the
“poverty groove” of the hind leg) and then that area was
wiped with gauze soaked in 70% ethanol solution. Local
anaesthetic (5 ml Lignocaine®) is infiltrated under the
skin, and a single 1 cm incision is made through the skin
using a sterile scalpel. The biopsy needle (approx. 5 cm
long and 3 mm inside diameter), attached to the drill
was then passed into the muscle with a simultaneous
vacuum applied to hold the sample in the biopsy needle
and then transferred into 2 ml RNAlater™ solution
(Ambion, Applied Biosystems). Total RNA was extracted
from liver and muscle tissue by TRI Reagent® (Ambion)
and Qiagen RNeasy MinElute kit (Qiagen) using a modi-
fied protocol. Approximately 30 mg of liver tissue sam-
ples (100 mg of muscle tissue), were finely minced and
then mixed with 500 uL TRIzol® Reagent (Life Technolo-
gies). The mix were immediately homogenized for ap-
proximately 45-50 s and incubated at room temperature
for 5 min. The resulting lysate was mixed with 100 pL
BCP (1-Bromo-3-chloropropane) incubated at room
temperature for 10 min, followed by centrifugation at
10000 g at 4 °C for 15 min. The top aqueous layer was
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transferred to a new microfuge tube and mixed with an
equal volume of 75% ethanol. The resulting lysate was
then loaded onto the Qiagen RNeasy MinElute column
and RNA was purified per protocol with on column
DNA digestion. The extracted RNA quality was assessed
using an Agilent Bioanalyzer 2100 (Agilent Technolo-
gies) to have integrity number (RIN) of more than 7.0.
Ten pg of the extracted RNA from the sampled tissues
were enriched with Dynabeads® mRNA Purification Kit
(Invitrogen). The ¢cDNA molecules were prepared, bar-
coded with 24 unique adaptors, enriched by PCR with
Phusion® High-Fidelity DNA Polymeras (New England
Biolabs Ltd), purified with Agencourt AMPure XP (Beck-
man Coulter) and selected for target size of 200 bp. Li-
braries were individually barcoded, pooled and run on a
HiSeq™ 2000 (Ilumina Inc.) in a 101 bp paired-end run.

For the Holsteins, the blood sampling and liver tissue
biopsy, RNA extraction and sequencing were described
by Chamberlain et al., 2015 [11] and Khansefid et al,
2017 [29]. In brief, approximately 30 ml of whole blood
was collected by venipuncture of the coccygeal vein
using BD Vacutainer® Blood Collection Tubes and then
centrifuged at 2000 g for 15 min. The white blood cells
(about 1500 pl for each animal) were separated and
stored in 1.2 ml RNAlater” RNA Stabilisation Solution
(Ambion, Applied Biosystems). Liver biopsies were col-
lected by restraining cows in a crush and giving them
10 ml of lignocaine hydrochloride 2 % into the subcuta-
neous, inter-costal and peritoneal tissues at the site of
the insertion of the biopsy punch. A small incision was
made with a scalpel before a biopsy punch was inserted
into the liver to collect approximately 2-3 g of tissue.
Following removal of the biopsy punch, betadine cream
was placed in the incision site. Cows were given intra-
muscular antibiotics (Excenel RTU 2 ml/100 kg) and
anti-inflammatory drugs (Ketoprofen 2 ml/100 kg) be-
fore being released from the crush. Immediately follow-
ing collection samples were frozen in liquid nitrogen
and then stored at —80 °C. RNA was extracted from
WBC using the RiboPure™ Blood Kit (Ambion, Applied
Biosystems) and from liver samples using the RiboPure™
Kit (Ambion, Applied Biosystems) according to the man-
ufacturer’s instructions. All samples were assessed to
have RIN greater than 8.0. Sequencing libraries were
prepared using the TruSeq™ RNA Sample Preparation
Kit v2 Set A (Illumina, Inc.) and selected for size of
200 bp. All libraries were uniquely barcoded, pooled and
sequenced on a HiSeq™ 2000 (Illumina Inc.) in a 105 bp
paired-end run.

After mRNA sequencing, the raw reads were passed
through quality control (QC) filters. Reads were trimmed
of adaptor sequence and bases with gscore < 15, where 3
consecutive bases had a gscore of less than 15, the rest of
sequence was removed. Reads with minimum average
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gscore <20 or read length <50 after trimming were re-
moved and only the paired reads used in alignment [31].

Alignment of RNA reads

To improve the mapability of reads, 2 customized refer-
ence genomes (paternal and maternal) were made for each
animal using 28,899,038 phased SNP genotypes as de-
scribed by Chamberlain et al. (2015) [11]. This strategy re-
duced bias in the counts towards the alleles represented in
the reference genome [32, 33]. For each animal, the
RNA-Seq reads were aligned to its maternal and paternal
customised reference genomes using TopHat2 [34] with
default input parameters and annotation release 75 GFF
file (General Feature Format) of bovine genome assembly
UMD3.1.

Abundance of alleles and genes

Counting alleles with Samtools mpileup

The SNP genotypes in WGS data (real or imputed) were
used to find heterozygote SNPs in each animal and con-
firm that each heterozygote SNP observed in RNA-Seq
reads was not a sequencing error or the result of mis-
mapped reads. However, the maternal and paternal ref-
erence genomes contain errors as well, because the
DNA sequence depth for the animals with WGS was
relatively low and the remaining animals had imputed
WGS genotypes. To minimize errors in detecting ASE
because of sequencing and imputation errors, heterozy-
gote SNP in RNA-Seq data had to have at least 1 count
of each allele, thereby excluding cases of strict mono
allelic expression, and a coverage >10. We used Sam-
tools mpileup [35] command to measure the number of
alleles expressed in RNA-Seq data for heterozygote SNPs
found in WGS genotypes of each animal. As we mapped
the RNA-Seq reads to 2 reference genomes for each ani-
mal, we had two counts for each allele. If the counts of
alleles from maternal and paternal alignments were dif-
ferent due to mapping bias, the average of the two
counts was reported.

Counting genes with HTSeq

The total number of reads mapped to each gene in the
reference genome was counted using the HTSeq python
package [36]. We assumed some reads were not mapped
to the reference genome due to the number of mis-
matches. When the reads could map to either the mater-
nal or paternal reference genome slightly better, we used
the superior one as the reference genome to measure
the gene abundance.

Statistical analysis of ASE

To detect ASE, we require a SNP in the transcript
(tSNP), however the causative variant responsible for
differences in expression may be a SNP close to the
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gene, referred to here as a driver SNP (dSNP, Fig. 1a).
Allelic imbalance can be the result of PO-ASE (Fig. 1b)
or ASE (Fig. 1c) [8]. In order to distinguish ASE from
PO-ASE in animals heterozygous for the tSNP, we used
the log;y, of the ratio of maternal to paternal allele
counts and included the total abundance of alleles (T) as
the weight (the reciprocal of the error variance in eq. 1).
A separate analysis was performed for each combination
of a tSNP and a dSNP within 50 kb of the tSNP.

Ysnp = 1la+ X101 +e (1)

ysnp is an N x 1 vector, where ysnp ; = logjo(maternal
allele count / paternal allele count) for animal i at the
tSNP and N is the number of heterozygous animals at
the tSNP. 1 is an N x 1 vector of 1’s and a is a scalar
intercept that indicates a parent of origin effect. X is an
N x 1 vector coding the genotype of each animal at a
dSNP which may be driving the expression of the tSNP
such that homozygotes are coded 0, heterozygote with
the reference allele (UMD3.1) inherited from the sire is
coded -1 and a heterozygote with reference allele from
the dam is coded + 1. b; is a scalar measuring ASE due
to the allele carried at the dSNP. e is the vector of ran-
dom residual effects e~N(0, T~ 'I6%,).

We restricted the data analysed to tSNPs where there
were at least two heterozygous animals who had re-
ceived opposite alleles from their sire so that we could
distinguish PO-ASE from other cases of ASE. The vari-
ants within 50 kb of tSNP were used as dSNP to see if
these variants regulate the expression of the tSNP. So, if
the parent of origin of the allele controls the allelic im-
balance (Fig. la), individuals with — 1, 0 and + 1 geno-
types show the same allelic expression frequency and the
intercept (a) would be significantly different from 0. On
the other hand, if the actual allele of the dSNP regulates
the expression (Fig. 1c), homozygote individuals show
no allelic imbalance and individuals with — 1 and 1 geno-
types have reversed allelic imbalance which influences
the slope of the regression line (b;).

The number of significant effects of a and b; were
calculated (p <0.001). The FDR was calculated with eq.
2 [12].

where P is the p-value of the test, A is the number of
SNP that were associated with gene expression at P and
T is the total number of SNP tested.
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Local eQTL mapping

In local eQTL mapping, the effect of the dSNP on the
overall expression of a gene was measured (Fig. 1d). The
genes expressed in more than 25% of animals in each
group were used to find eQTL separately. The gene
counts were normalized with a weighted trimmed mean
(TMM) of the log expression ratios and the library size
for each animal was adjusted to have equivalent counts
per million (cpm) using edgeR [37]. Normalizing the
counts minimizes the compositional difference between
the libraries and calculating cpm removes the effect of
sequencing depth on the variation of gene counts in dif-
ferent samples. Finally, log;o of the counts were used to
calculate the association between the abundance of a
gene and the dSNPs with ASReml [38] for each group
independently using eq. 3.

Veene = WX+ Xoby +Zu + e (3)
Ygene 18 an N x 1 vector where ygene ; = log;o(normalized
gene count) for animal 7, 1 is an N x 1 vector of 1’s and
a is a scalar intercept. X, is an N x 1 vector containing
the coded genotypes at the dSNP such that x5;=0, 1 or
2 if animal i has 2, 1 or 0 copy of the reference genome
(UMD3.1), respectively and b, is a scalar measuring the
effect of the dSNP on gene expression. Z is an Nx M
matrix allocating records to animals where M = number
of animals in the pedigree and u is an M x 1 vector with
u; = the genetic effect of animal i on gene expression ~
N(0, Ac?,) while pedigree information was used to make
the relationship matrix (A). e is the vector of random re-
sidual effects e~N(0, Io%,). The number tests showing
significant association between SNP and gene expression
(p <0.001) and the corresponding FDR were calculated.

Comparing ASE, PO-ASE and local eQTL mapping within
and across RNA-Seq data

Within each RNA-Seq dataset, the ASE, PO-ASE and
local eQTL mapping results were compared to see if the
same SNPs were significantly associated with ASE and
gene expression in the same or different datasets. Firstly,
a 2 x 2 contingency table was constructed by classifying
a SNP as significant or not (p <0.0001) in two datasets.
Then a chi-squared test was used to test if SNPs were
significant in both datasets more often than expected by
chance according to the proportion of significant SNPs
in each dataset. The degree of overlap was calculated as
the observed number of SNPs significant in both data-
sets divided by the number expected if overlap was due
to chance and referred to as ‘fold enrichment’. Secondly,
for SNPs significant in both datasets, the proportion in
which the allele increasing expression was the same in
both datasets was calculated. The ASE, PO-ASE and
local eQTL results were compared and fold enrichment
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was calculated across the 4 RNA-Seq datasets to see if
mutations that were detected in one dataset can be
found in the other ones. For ASE and PO-ASE compari-
son for each gene, we compared results based on the
same tSNP and same dSNP. However, we also made
some comparisons for the same dSNP but any tSNP
within that gene. The comparisons involving local eQTL
are only matched on dSNP and gene since no tSNP is
used in eQTL analysis.

Validating ASE and local eQTL mapping in a dataset
consisting of 18 tissues

The ASE and eQTL mapping results in the 4 RNA-Seq
datasets analysed here were compared with ASE mea-
surements in another study of 18 tissues of a lactating
Holstein cow [11] to investigate whether the same SNPs
were associated with ASE and gene expression in other
tissues. To test the significance of the overlap a chi-
squared test, similar to that used to compare datasets,
was performed and the proportion of SNPs in which the
same allele was associated with increased expression was
calculated. This comparison was only carried out using
the same tSNP and treating it as the driver SNP as well.
Furthermore, the average similarity between ASE and
eQTL mapping results of Angus and Holstein cattle liver
samples in our study with the validation dataset was
tested using a paired t-test. We expected to see more
similarity between our Holstein RNA-Seq dataset and
the validation data because they were the same breed
and all were lactating cows.

Combining ASE and eQTL within and across RNA-Seq data
ASE and local eQTL analysis both detect cis eQTL, there-
fore combining the results from both analyses should im-
prove the power of detecting variants influencing the
expression of genes. So, the ASE and local eQTL mapping
results were combined in a meta-analysis within each
dataset. In addition, ASE, PO-ASE and eQTL mapping
results across all datasets were also combined. Additional
file 2: Figure S1 depicts all within and across RNA-Seq
datasets analyses.

In the meta-analyses for any of the within or across
RNA-Seq datasets, if we had multiple estimates (n) of
the effect (U;) of a SNP on expression of a gene, we cal-
culated a weighted average of these estimates as follows:
Each U; was converted to a signed t-value (=Uj/s; where
s; = standard error of Uj). Then the p-value of this t stat-
istic was calculated (p;) using the appropriate degrees of
freedom and the equivalent z value for this p was deter-
mined by z=® '(p) and @ is the cumulative standard
normal distribution. The z scores were given the same
sign as the original effect U; and finally z* was calculated
with eq. 4 where z  is approximately distributed N(0,1).
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In pooled analyses we merged the tests in the com-
bined datasets and kept the original effects of SNPs, so
some SNPs could have multiple solutions.

GWAS

For the GWAS of 20 traits for Bos taurus cattle with Bovi-
neHD SNP genotypes we used ASReml and the same
model as Bolormaa et al. (2014). In addition, the
multi-trait GWAS results were obtained from the study of
Bolormaa et al. (2014) [23]. The genotypes for 729,068
SNP passed the quality control filters as described by
Bolormaa et al. (2013) [12]. However, the number of SNP
with minor allele frequency (MAF) greater than 0.005
were not equal for all traits because not all cattle were
measured for all traits.

An additional GWA study for RFI in Bos taurus cattle
was performed on imputed genome sequence (24,041,262
SNPs with MAF >0.001) with ASReml using the model
and cattle described by Khansefid et al. (2014) [24].

Comparing QTL and eQTL

We compared GWAS with expression results to find
whether SNP associated with conventional phenotypes
(QTL) are also associated with gene expression in the
local eQTL or ASE analysis. The hypothesis, that SNP
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significantly associated with the traits (p <0.001) were
more likely to be associated with gene expression (p <
0.001) than expected by chance, was tested using a
chi-squared test (Hyp: QTL and eQTL are independent).
However, the assumption of the chi-squared test is that
the SNPs are independent. This is not warranted because
nearby SNPs are likely to be in linkage disequilibrium.
Consequently, significant SNPs for both traits and gene
expression tend to be clumped together on the genome.
To overcome the limitation of the chi-squared test 3 other
tests were performed:

1) To derive a valid distribution of the X%y . statistic
under the null hypothesis, that eQTL and QTL are inde-
pendent, a permutation test was used. The vector of
GWAS results was shifted by 10 to 90% of number of
SNPs, and the overlap between the QTLs in the new
vector and the eQTL was calculated as a chi-square stat-
istic. This was repeated 10,000 times to generate the dis-
tribution under the null hypothesis. Each replicate of the
permutation tests can show either more overlap between
QTL and eQTL than expected by chance (enrichment)
or less overlap than expected by chance (impoverish-
ment), so the replicates were divided into these two
groups and separate distributions calculated for the X>
statistics according to whether the replicate showed en-
richment or impoverishment. For example, the X* statis-
tics from the permutation test comparing the meta
analysis eQTL (combined ASE and eQTL mapping re-
sults in all tissues) with QTL found in a multi-trait
GWAS test, is shown in Fig. 4, where the permutations
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Fig. 4 The distribution of the X? statistic for the association between QTL and eQTL from a permutation test. This example is from the
comparison of eQTL from a meta-analysis of all tissues and the multi-trait GWAS. The enriched and impoverished overlapping QTL and eQTL are
shown in positive and negative values, respectively. The theoretical thresholds for a X24i— 1 test is 3.84 (enrichment) and — 3.84 (impoverishment)
for significance level p < 0.05 as are shown by red dotted lines. The empirical thresholds based on the highest and lowest 5% of values in 10,000
permutation tests, are shown with blue dotted lines. Therefore, in the eQTL meta analysis test, the X* for an enrichment test should be greater
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with impoverished overlapping were given negative
signs. To find the appropriate thresholds from the
10,000 permutations, the X* values for each replicate
was calculated and, after changing the sign of impover-
ished replicates to negative, the X* values were sorted
from smallest to the largest. The thresholds that separate
the top 5% and bottom 5% (i.e. X> with rank 500 and
9500, respectively) are marked on Fig. 4 as blue dotted
lines and were used to test the experimental X statistic
and declare them as significant or not at p <0.05 for a
one-tail test since only enrichment is of interest. In Fig.
4 these thresholds are X*=-13.38 and 6.64 for signifi-
cance level p <0.05 in the tests for impoverishment and
enrichment respectively. In the permutations experi-
ments, the replicates with less than expected overlapping
QTL and eQTL (impoverishment) were more frequent
than replicates with enrichment because the GWAS
results include a few clusters of QTL and shifting the
position of the eQTL is likely to place them between
clusters causing impoverishment. So, in the majority of
permutation experiments, the calculated threshold for a
significant impoverishment was a larger value than for
significant enrichment. For comparison, the theoretical
X(1)2 distribution is shown in red and the thresholds for
5% (- 3.84 and 3.84) for tests with impoverishment and
enriched overlapping are annotated in red vertical dotted
lines for significance level P < 0.05.

2) For each gene individually, SNPs were classified as
significant or not for both gene expression and the trait
leading to a 2 x 2 contingency table. The significance of
the overlap between SNPs significant as QTL and as
eQTL was tested by a X test.

3) To combine this within-gene information from (2)
across all genes, a linear model was used to test the as-
sociation between SNPs affecting the trait and SNPs af-
fecting gene expression across the whole genome but on
a within gene basis using model 5.

y= 1a +X3b3 + Xuby + e (5)

y is an N x 1 vector, where y ;=1 if the SNP was sig-
nificantly associated with gene expression (p<0.001)
and 0 otherwise, and N is the number of SNPs. 1 is an
N x 1 vector of 1’'s and a is a scalar intercept. X3 is an
N x M design matrix where M = number of genes, allo-
cating SNPs to their corresponding gene, and bz is an
M x 1 vector with b ; = the effect of gene i on gene ex-
pression. X4 is an N x 1 vector with Xy =1 if the SNP
had a significant effect (p <0.001) on the complex trait
and 0 otherwise and by is a scalar measuring the associ-
ation between GWAS and gene expression results. e is
the vector of random residual effects ~ N(0, Io%,).

A positive correlation between gene expression and
GWAS results (b, significantly positive) indicates that
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the QTL are more likely to be eQTL and its p-value
shows how reliable the association is.
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