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Abstract

Background: Pyropia yezoensis is an important marine crop which, due to its high protein content, is widely used
as a seafood in China. Unfortunately, red rot disease, caused by Pythium porphyrae, seriously damages P. yezoensis
farms every year in China, Japan, and Korea. Proteomic methods are often used to study the interactions between
hosts and pathogens. Therefore, an iTRAQ-based proteomic analysis was used to identify pathogen-responsive
proteins following the artificial infection of P. yezoensis with P. porphyrae spores.

Results: A total of 762 differentially expressed proteins were identified, of which 378 were up-regulated and 384
were down-regulated following infection. A large amount of these proteins were involved in disease stress,
carbohydrate metabolism, cell signaling, chaperone activity, photosynthesis, and energy metabolism, as annotated
in the KEGG database. Overall, the data showed that P. yezoensis resists infection by inhibiting photosynthesis, and
energy and carbohydrate metabolism pathways, as supported by changes in the expression levels of related
proteins. The expression data are available via ProteomeXchange with the identifier PXD009363.

Conclusions: The current data provide an overall summary of the red algae responses to pathogen infection. This
study improves our understanding of infection resistance in P. yezoensis, and may help in increasing the breeding
of P. porphyrae-infection tolerant macroalgae.
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Background

Pyropia yezoensis is a red alga that is extensively used as a
food, a medicine, a fertilizer, and as a source of chemicals.
In China, P. yezoensis is grown extensively, and is widely
consumed as a seafood in China, Japan, and South Korea
[1, 2]. Interestingly, it has been noticed that in Asian coun-
tries there is a smaller cancer incidence rate compared to
North American and European countries, and this is
thought to be due to the consumption of seaweeds [3].
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Amongst seaweeds, red algae are a rich source of proteins,
minerals, and carbohydrates [4].

Seaweeds can be exposed to several biotic stresses, in-
cluding infection by Pythium porphyrae, which causes red
rot disease and has a direct effect on commercial seaweed
production. Few studies have addressed disease progres-
sion P. yezoensis, and very few eukaryotic algal pathogens
have been isolated for culture in the laboratory [5]. Red
rot disease was first described in 1947 by Arasaki et al.
After this, it took a long time to isolate and identify the
causative factor i.e., the oomycete P. porphyrae [6, 7]. Even
though the physiological and ecological characteristics of
P. porphyrae have been studied and examined intensively,
there are very few studies that address the cellular and
molecular mechanisms of infection [8—15].
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The disease initiation process in microalgae is very
similar to that of plants infected with oomycetes, involv-
ing the production of zoospores. The presence and dis-
tribution of algal species in aquatic regions results in an
interaction between biotic and abiotic factors [16—20].
There is a chance for micro- and macro-algae to adopt
under normal occurring abiotic factors, which might
contribute to the over-production of reactive oxygen
species (ROS) [21-29].

Proteomics is a highly useful method that can be used
to explore the molecular changes that occur following in-
fection, but before the obvious expansion of the disease
[30], so this method is useful in the assessment of toxicity.
Proteomics may be more sensitive at detecting harmful ef-
fects at an early phase, since organisms can be exposed to
low doses of an infectious agent, thereby improving risk
assessment [31]. Proteomics methods have previously
been used to investigate the host reaction to viral infec-
tions, such as dengue virus [32] and Marek’s disease virus
[33]. Prior to the introduction of modern proteomics
methods, 2-D gel electrophoresis and the shotgun tech-
nique were widely used in proteomics research [34, 35].

Proteomic methods have been used to study the inter-
actions between hosts and pathogens [36-39]. Com-
pared to a transcriptomic analysis, proteomics is better
able to uncover the action of effector molecules that ac-
count for a particular phenotype [40]. Proteomic studies
can provide a detailed insight into alterations in proteins
that occur following different type of stresses, and is able
to identify potential biomarkers [41, 42]. Quantitative pro-
teomics offers a proactive technique that is able to detect
and quantify an organism’s proteome. 2-D gel electrophor-
esis is normally used for protein quantitation before mass
spectrometry [43]. Isobaric tags for relative and absolute
quantitation (iTRAQ) is an extensively used method for
the relative quantification of peptides, allowing for up to
eight samples at the same time [44, 45]. This approach is
therefore suitable for examining changes in protein ex-
pression levels, and is also able to assess the influence of
exposure time on an affected organism, since it can also
provide relative quantitation [41, 42, 46].

This study was undertaken in an attempt to under-
stand the mechanism of resistance to infection in order
to improve the breeding of P. yezoensis that are tolerant
to macroalgae. Accordingly, we focused on the inter-
action between P. yezoensis and P. porphyrae. The
iTRAQ method was used to detect variations in protein
expression in P. yezoensis infected with oomycetes zoo-
spores. To our knowledge, this is the first report provid-
ing a catalog of the proteins expressed in response to
disease stress in P. yezoemsis. This study showed that
artificial infection resulted in significant changes in the
levels of expression of proteins that may have a role in
the algal disease defense mechanism. The significantly
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altered proteins (pathogen responsive proteins) obtained
using the iTRAQ-based analysis were involved in photo-
synthesis and energy metabolism, disease stress related,
cellular processes such as carbohydrate metabolism,
chaperone activity, and cell signaling.

Results

Overview of proteomic data

We extracted total proteins from three healthy and three
infected algal thalli for proteomic analysis. A total of
380,141 mass spectrograms were collected by iTRAQ
analysis from both the healthy and infected samples.
Some 23,937 unique peptides among the 24,448 total
peptides were identified (Table 1), and successfully
aligned onto 4011 proteins in the P. yezoensis UniGene
database [47].

Differentially expressed proteins (DEPs) identified by iTRAQ
Based on a p value of less than 0.05 and a fold change of
>1.2 or<0.8 [48, 49], 762 differentially expressed pro-
teins were identified, of which 378 were more highly
expressed following infection, and 384 were expressed at
lower levels following infection (further details are pro-
vided in Additional file 1: Table S1 and Fig. 1).

Among the highly DEPs, 151 could be annotated and
were found to be enriched in 33 different gene ontology
(GO) terms using Blast2GO (Version 3.3.5), as shown in
Fig. 2a. These proteins could be characterized into 13 cat-
egories according to the GO for biological processes. The
main three categories for biological processes that con-
tained a significant number of DEPs were cellular process
(88), metabolic process (80), and single organismal process
(41). The three main categories for cell components were
cell (93), cell part (93), and organelle (65) out of 12 cat-
egories; however, the key categories for molecular function
were catalytic activity (70), binding (65), and structural
molecular activity (11) out of eight categories.

Among the down-regulated DEPs, 103 proteins were
annotated by gene ontology, and were found to be
enriched in 29 different GO terms (Fig. 2b) using the
Blast2GO (Version 3.3.5) bioinformatics software tool.
The proteins for biological processes could be placed
into 11 categories based on GO terms. The main func-
tional categories containing a large number of DEPs
were cellular process (49), metabolic process (46), and
single organismal process (28). The three predominant
categories for cell components were cell (38), cell part
(37), and organelle (24) out of 12 categories, whereas,
the three main categories for molecular function were

Table 1 Statistics for the proteins identified by iTRAQ
Total spectra  Spectra (PS)
380,141 57,994

Peptides  Unique peptides Protein groups
24,448 23937 4011
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Fig. 1 Volcano plot of the identified proteins showing fold changes of > 1.2 or < 0.8 and statistical significant change to a p-value of < 0.05 are

catalytic activity (57), binding (27) and antioxidant activ-
ity (2), out of eight categories. These functional categor-
ies were important in metabolic and cellular processes,
signaling, detoxification, transcription factor activity,
protein binding, antioxidant activity, catalytic activity,
multi-organism processes, and response to stimulus and
developmental and growth processes in P. yezoensis.

A KEGG functional analysis indicated that 178 DEPs
were involved in 159 pathways that included six major
pathways (Fig. 3). The KEGG functional analysis of
up-regulated proteins showed that 102 DEPs contributed
to 108 different pathways whereas 76 downregulated
DEPs were involved in 121 pathways. All the functional
categories in these pathways were important, especially
infection stress, energy metabolism and photosynthesis,
carbohydrate metabolism, and the role of signal trans-
duction pathways in resisting infection.

With respect to carbohydrate metabolism (Fig. 4a),
enzymes such as alpha-amylase, citrate synthase,
glucose-6-phosphate isomerase, triosephosphate isomer-
ase, UDP-glucose 6-dehydrogenase, galactose kinase, and
NAD(P)-linked oxidoreductase were all up-regulated.
However, the proteins SAL1 phosphatase-like, phosphati-
dylinositol-bisphosphatase, phosphoserine phosphatase,
phosphoglycerate mutase, 2-isopropylmalate synthase, and
fructose-bisphosphate aldolase were down-regulated by
infection stress. Fourteen identified DEPs were function-
ally categorized as being involved in the defense response,
including molecular chaperone, redox homeostasis, and

other stress related proteins. Heat shock proteins (HSP20)
and FK506-binding protein 1 (protein folding chaperons)
were found to be significantly up regulated between con-
trol and infected P. yezoemsis samples. Antioxidant en-
zymes such as catalase, quinone oxidoreductase, aldehyde
dehydrogenase, and polyadenylate-binding protein were
also found to be similarly up-regulated (Fig. 4b).
Numerous proteins related to signal transduction were
up-regulated such as calcium-binding protein, MAPK,
and endoplasmin-like proteins (Additional file 1: Figure
$3). In addition, 19 DEPs related to energy metabolism
and photosynthesis were identified. Among these, the
phycocyanin alpha-subunit, phycocyanobilin lyase, and
the R-phycoerythrin gamma subunit were down regu-
lated as a result of infection stress. Other down-regu-
lated proteins included 2-isopropylmalate synthase,
sulfite oxidase, the MFS transporter, ferredoxin nitrite
reductase, bisphosphate nucleotidase, phosphoserine
phosphatase, ribose-5-phosphate isomerase, and phos-
phoglycerate mutase (Additional file 1: Figure S4).

Transcript profiling of selected genes via RT-qPCR

The transcript levels of genes coding for five of the
up-regulated proteins were assessed by RT-qPCR (details
are provided in Table 2 and Fig. 5). These genes were
chosen because they were predicted to have a role in the
resistance to pathogens [50-53]. Our results showed
that the PCR amplification efficiency of all the genes
ranged from 91 to 100.6, and the R* values ranged
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Fig. 2 Functional classification of the identified proteins. Proteins were annotated by biological process, cellular component, and molecular function
categories. a protein categories of the up-regulated differentially annotated proteins (DEPs) b protein categories of the down-regulated DEPs

between 0.98 and 0.999 for all genes. The minimum
value for the slopes of the standard curves was - 3.30 for
the nitrogen fixation protein (Nifu) gene and the max-
imum recorded slope value was — 3.56 for the heat shock
gene. The UBC and elf genes were used as internal con-
trols. The 27*4“T method and a paired t-test were per-
formed on the relative expression levels of all the
up-regulated genes to determine if the changes were sig-
nificant. The data showed that the heat shock gene was
significantly highly expressed (P < 0.05), with a fold change
of 24.96. The other four genes were also significantly
up-regulated (catalase with a fold change of 5.79, multi-
drug resistant with a fold change of 1.42, MAPK with a
fold change of 4.99, and the NifU-like protein with a fold
change of 4.32).

Discussion

This study was based on a real host—pathogen interaction
namely between P. yezoensis (the host) and P. porphyrae
(the pathogen). The study provided us with a composite,
combined image of the response to an infection that com-
prised stress markers in P. yezoensis including oxidative
stresses and metabolic processes. Using the iTRAQ tech-
nology, 762 DEPs were identified using a differential ex-
pression analysis between non-infected and infected P.
yezoensis. The identity and function of these proteins pro-
vide a new understanding of the mechanisms of how P.
yezoensis responds to infection stress.

Carbohydrate metabolism

Infection stress has previously been shown to cause
changes in carbohydrate metabolism and an increased cel-
lular uptake of glucose [54, 55]. In plants, it has been
shown that changes in carbohydrate metabolism are often
initiated in response to stress conditions [56]. In this
study, we investigated changes in the expression of pro-
teins related to carbohydrate metabolism in the macroal-
gae P. yezoensis following infection stress. Glycolysis is a
metabolic pathway that oxidizes glucose to generate ATP,
and accordingly the protein levels of glycolysis-related
enzymes were found to be increased, including
glucose-6-phosphate isomerase, triosephosphate isomer-
ase, and UDP-glucose 6-dehydrogenase. The enzyme
fructose-bisphosphate aldolase is found in plants and plays
an important role in the Calvin cycle. It has also been pre-
viously shown to be down-regulated in response to desic-
cation stress in Pyropia haitanensis [57]. Its
down-regulation in this study suggests that the blades of
P. yezoensis repress carbon fixation, since they either need
more energy to fight against the disease stress, or require
defense mechanisms to overcome the stress.

Chaperone proteins and reactive oxygen species scavenging
Heat shock proteins have been shown to be highly dif-
ferentially expressed in earlier proteomic research stud-
ies conducted on macroalgae, including Ec. siliculosus
[58], and the kelp species Laminaria digitata [59]. They
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function mainly as molecular chaperones to ensure that
correct protein folding occurs following exposure to a
variety of metabolic stresses, including oxidative stress.
Both acute and chronic oxidative stresses induce HSP
responses [60—62]. The high levels of expression of heat
shock proteins in infected P. yezoensis blades likely pre-
vents the denaturing of other proteins affected by infec-
tion stress, and consequently is evidence of a
mechanism of resistance against infection.

Infection stress can also disrupt cellular redox homeosta-
sis and encourage the over-production of ROS. To over-
come these oxidative stresses, cells have a well-developed
antioxidant system [50, 63—65] that produces scavenging
enzymes, such as catalase and quinone oxidoreductase.
Transgenic tobacco plants with repressed catalase levels
produce higher ROS levels in response to biotic and abiotic
stresses [52]. The high levels of expression in infected P.

yezoensis blades suggests that they play an important role
in the defense mechanism of cells under infection stress.

Following biotic and abiotic stresses, aldehydes are
known to accumulate in plants and cause damage to cell
membranes through a peroxidation chain reaction. Alde-
hydes might also directly destroy proteins and nucleic
acids, inhibiting their normal function, leading to cell
death. Aldehyde dehydrogenase proteins (ALDHs) are
responsible for converting aldehydes into carboxylic
acids, thus reducing the peroxidation of lipid in the cell
membranes. The up-regulation of both aldehyde de-
hydrogenase and polyadenylate-binding protein suggest
their essential roles in maintaining aldehyde homeostasis
and protecting cells against biotic stresses.

Derlin-1, actin, and the U6 snRNA-associated Sm-like
protein were identified and shown to be down-regulated
in response to infection. Actin is vital for many cellular
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processes since it facilitates connections with cellular
membranes [66]. The U6 snRNA-associated Sm-like
protein also acts as a chaperone and is involved in RNA
processing, promoting the association of RNA process-
ing factors with their substrates. The defense response
of P. yezoensis to infection stress is complex, however,
molecular chaperones, antioxidants, and stress-related
proteins work collectively to protect P. yezoensis against
infection and maintain cellular and redox homeostasis.

Defense response and signal transduction
Plant cells sense signals upon stress and transfer these
signals to the cell machinery in order to trigger an

adaptive response [67]. Like the initial infection, the stress
signals stimulate the transcription/translation control sys-
tem and activate stress responsive mechanisms to restore
damaged proteins and reinstate homeostasis. In the
present study, calcium-binding protein, the WD
repeat-containing protein, inositol 1,4,5-trisphosphate,
endoplasmin-like protein, ubiquitin, and catalase were all
found to be up regulated following infection stress. Inosi-
tol is the main constituent of the phosphoinositide path-
way, and is necessary for plants in varying environments
[68, 69]. The high levels of expression of this gene play a
significant role in the signal transduction processes that
occur in P. yezoensis following infection stress.

Table 2 Genes and primers used in this study for RT-qPCR expression analysis

Gene Id Annotation Primers, forward/reverse (5'-3" Product (bp)

py08174.t1 Catalase CTTCTCCACCGTCATCCACTCC 118
GCCGACTAGGTCCCATACACCG

py11399.t1 Multi-drug resistant protein CTTCCAGCAGATGCTCACAACC 111
TAGTAGCCAAAGCCAATCGGGA

py04674.t1 Heat shock protein GCTCGCCTACGGCTCCTTCTCT 129

HSP-20 TCCACCTTGACCTTGGGCACAG

py09687.t1 Mitogen activated protein kinase (MAPK 15-1) GTACGTGGCTATCAAGGGCATT 120
TCAAGATACATCAGGTCGGGGT

py11267.t1 nifU-like protein GAGGGAGTGCTCAACGAGGTGC 116
GAGCCCTCCATCTTGAGTCGCA

FJ407185.1 Elongation factor-alpha TTTCCAAGGTGCTCCTCTCCATC 116
CGTCTCTTCATAGCGACTGCGGTT

Fj232910.1 Ubiquitin conjugating enzyme GCTTTCTGTCTGGACGAGG 181

TCTTCACAAGGATGCGGAT
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MAP kinase 15-1 was also found to be significantly and  sensitivity of photosynthesis to infection stress.

highly up regulated in our study. MAPK cascades play an
important role in cellular responses to extracellular signals
including stress signaling. MAPKs are central to in the
protein kinase cascade, allowing these signaling pathways
to spread, amplify, and integrate signals from several kinds
of stimuli thereby provoking proper physiological re-
sponses, including inflammatory responses, cellular prolif-
eration, and apoptosis [51]. Stress signaling by these genes
under stress conditions confirms their role in P. yezoensis
signal transduction and the activation of the stress respon-
sive mechanisms to defend cells, restore damaged pro-
teins, and reinstate homeostasis.

Photosynthesis-related proteins and energy metabolism

Light absorption is the primary step in photosynthesis.
The light harvesting system in P. yezoensis consists of phy-
cobilisomes (PBSs), made up of linker polypetides and
phycobiliproteins (PBPs) [70]. These PBPs are found in
red algae, cyanobacteria, and cryptomonads [71] and are
comprised mainly of three major proteins, phycoerythrin,
phycocyanin, and allophycocyanin. Energy from sunlight
is transferred initially to phycocyanin after its absorbance
by phycoerythrin, before finally being transferred to
chlorophyll through allophycocyanin [72]. The down
-regulation of both phycocyanin alpha-subunit phycocya-
nobilin lyase and the R-phycoerythrin gamma subunit sug-
gests that their ability to transfer light is inhibited. The
down-regulation of most of the photosynthesis related
proteins following infection stress in our study reveals the

Fructose-1,6-bisphosphatase and fructose-bisphosphate al-
dolase, which play key roles in the Calvin cycle and gly-
colysis [57] were also down regulated in infected algal
cells, which further indicates that infection stress inhibits
photosynthesis in P. yezoensis. Therefore, based on the ex-
pression of genes related to photosynthesis, it is concluded
that P. yezoensis decreases its photosynthetic rate upon in-
fection stress to restrict the damage to a curable stage.

Conclusion

This study on the Pyropia-Pythium host pathogen interac-
tions gives a novel understanding into the host defense re-
sponse, connecting our results with earlier studies on
biotic stresses [60, 73]. This investigation of the mechan-
ism of P. yezoensis resistance to P. porphyrae infection will
shed more light on defense mechanism in macroalgae.
This is the first time iTRAQ has been used to investigate
proteomic expression changes in P. yezoensis following in-
fection with the oomycetes pathogen P. porphyrae.

A number of stress-responsive proteins highlighted in
this study were identified from a comparative proteomic
analysis of P. yezoensis using the iTRAQ-based prote-
omic technique. A large number of the DEPs and genes
detected were involved in disease stress, carbohydrate
metabolism, photosynthetic activity, redox homeostasis,
cell signaling, and energy metabolism as annotated by
KEGG pathways and the GO database. The data showed
that P. yezoensis resists infection by inhibiting photosyn-
thesis, and energy and carbohydrate metabolism, as
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supported by the change in levels of expression of proteins
involved in these processes. Thus, the current study could
assist in a better understanding of the mechanisms behind
infection resistance in P. yezoensis and improve the breed-
ing of P. porphyrae -infection tolerant macroalgae.

Material and methods

Cultivation of P. yezoensis, P. porphyrae, and the
production of Pythium spores

P. yezoensis was cultured at 10°C using a 12L:12D
photocycle under florescent light with an intensity of
80 umols™'m™2 P. porphyrae (NBRC23353) was ob-
tained from the Biological Resource Center of Japan and
maintained on cornmeal seawater agar (CMSA) [74].
Agar discs were transferred to the liquid culture medium
under axenic conditions for 7 days at 24°C to expand
the mycelia; 10 mM CaCl, was added to the seawater to
release the zoospores, as described previously [8].

Infection of healthy P. yezoensis blades with oomycete
zoospores

P. yezoensis blades were infected with zoospores by mix-
ing the spore solution and healthy Pyropia blades; cul-
ture bottles were kept in the shaking incubator at 15°C
with a 12 L:12D photocycle under florescent light with
an intensity of 80 pmols™'m™2 Samples were moni-
tored under the microscope every hour for the appear-
ance of an infection, which could be readily identified on
the third day of infection.

Collection of samples

Samples were collected after the degree of infection was
maximal at day eight, as assessed under the microscope,
where approximately 80% of the algal cells were infected
(Additional file 1: Figure S1). Following this, 0.5g of
each sample was dried on filter paper, weighed and kept
at — 80 °C before further analysis. Both infected and un-
infected P. yezoensis samples were collected in triplicate.

Protein extraction

Protein samples were prepared as previously described
[75]. Briefly, the blade samples were frozen using liquid
nitrogen and then ground with a precooled pestle and
mortar. A mixture of TCA/acetone (1:9) was then added
five times to the powder and blended well by vortexing.
The blended mix was then kept at —20°C for 4h and
centrifuged at 4°C for 40 min at 6000xg. The super-
natant was then removed and the pellet was rinsed three
times using the addition of pre-cooled acetone. The pre-
cipitate was then air-dried; SDT buffer (approximately
30 (v/v)) was then mixed with 20-30mg of powder,
blended, and the mixture boiled for 5 min. To ensure ef-
ficient extraction, following sonication, the lysate was
boiled again for 15 min, and then centrifuged at 14000xg
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for 40 min at 4°C. The supernatant was collected, and
filtered with a 0.22 pum size filter and the protein content
quantified with the BCA Protein Assay Kit (Bio-Rad,
USA). Finally, the sample was stored at — 80 °C before
further analysis.

SDS-PAGE separation

Proteins were isolated and visualized following electro-
phoresis on SDS-PAGE gels. Prior to electrophoresis,
samples (20 pg of protein) were mixed with 5 x loading
buffer solution, mixed well, and boiled for 5 min. Elec-
trophoresis was carried out using a 12.5% SDS-PAGE
gel. Protein bands were visualized using Coomassie Blue
R-250 staining (Additional file 1: Figure S2).

Filter-aided sample preparation (FASP digestion) and
iTRAQ labeling

Samples were prepared for digestion, as previously de-
scribed [76]. Protein (200 pug) present in each sample
was added to 30 puL of SDT buffer (4% SDS, 100 mM
DTT, 150 mM Tris-HCl pH 8.0). Low-molecular-weight
components such as detergents, DTT, as well as others,
were removed using UA buffer (8 M Urea, 150 mM
Tris-HCl, pH8.0) using the repeated ultrafiltration
method (Microcon units, 10 kD). Following this 100 pL
of iodoacetamide (100 mM IAA in UA buffer) was added
to the samples and they were incubated for 30 min in
the dark to avoid inhibition by the ultraviolet rays
present in light. The filters were then washed three
times with 100 uL of UA buffer, followed by two times
with 100 uL. of dissolution buffer (DS buffer). Finally,
4 g of trypsin in 40 pL of DS buffer was used to digest
the protein suspension overnight at 37°C, and the
resulting peptides were obtained as a filtrate. After tryp-
sin digestion, the filtrate samples were analyzed using
MALDI-TOF/TOF to confirm complete digestion.

Using the iTRAQ reagent 8plex Multiplex Kit, 100 pg
of the peptide mixture from each sample was
iTRAQ-labeled according to the manufacturer’s instruc-
tions (Applied Biosystems). The AKTA Purifier system
(GE Healthcare) was used to fractionate the labeled pep-
tides by SCX chromatography. Acidification of the dried
peptide mixture was performed using buffer A (10 mM
KH,PO, in 25% of ACN, pH 3.0) and loaded onto a Poly
Sulfoethyl 4.6 x 100 mm column (5 um, 200 A, PolyLC
Inc., Maryland, USA). The peptides were eluted at a flow
rate of 1 mL/min with buffer B (500 mM KCI, 10 mM
KH,PO, in 25% of ACN, pH 3.0) for 22 min, 8-52% buf-
fer B from 22 to 47 min, 52-100% buffer B from 47 to
50 min, 100% buffer B from 50 to 58 min, after which
buffer B was returned to 0% after 58 min. The elution
absorbance was observed at 214 nm, and fractions were
collected every 1 min. Salt was removed from the pep-
tides fractions using C18 Cartridges (Empore™ SPE
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Cartridges C18 (standard density)) and concentrated by
vacuum centrifugation. Protein digestion and iTRAQ la-
beling was carried using three replicates.

LC-MS/MS analysis

Each fraction (10 pL) was analyzed using nano LC-MS/
MS. The peptides were loaded onto a reverse phase trap
column connected to a C18-reverse phase analytical col-
umn (Thermo Scientific Easy Column, 10cm long,
75 pum inner diameter, 3 pm resin) in buffer A (0.1% for-
mic acid), and separated using a linear gradient of buffer
B (84% acetonitrile, 0.1% formic acid) at a flow rate of
300 nL/min, monitored using IntelliFlow technology.
The fractions were then analyzed using a Q-Exactive
mass spectrometer (Thermo Scientific) attached to an
Easy nLC (Proxeon Biosystems, now Thermo Fisher Sci-
entific) for 60/120/240 min. MS data was obtained using
a data-dependent topl0 method dynamically choosing
the top abundant precursor ions with a m/z (300—1800
m/z) for HCD fragmentation. Resolution of the HCD
spectra was set to 17,500 at m/z 200, with an isolation
width of 2m/z. The peptide recognition mode was en-
abled when the instrument was run.

Data analysis

For iTRAQ protein identification, the MS/MS spectra
were assessed using the MASCOT engine (Matrix Science,
London, UK; version 2.2) implanted in Proteome Discov-
erer 1.4 querying the Pyropia_UniGene database [47]. The
following parameters were used in the study: digestion en-
zyme trypsin; carbamidomethyl (C), iTRAQ4/8plex
(N-term), iTRAQ 4/8plex (K) fixed modifications; oxida-
tion (M), and iTRAQ 4/8plex (Y), variable modifications;
the peptide mass tolerance was +20 ppm; the fragment
mass tolerance level was 0.1 Da; maximum missed cleav-
ages was 2 and the peptide FDR was <0.01.

Bioinformatics analysis

Gene ontology and KEGG annotation

Functional annotation and enrichment analyses of the
DEPs in the GO database was performed by Blast2GO
[77] (Version 3.3.5). Annotation of metabolic pathways
was performed through blasting of the protein sequences
against the online KEGG (Kyoto Encyclopedia of Genes
and Genomes) database (http://geneontology.org/). The
KO IDs that were retrieved were subsequently mapped
to pathways in KEGG [78]. An enrichment analysis de-
fined the protein’s role in three domains: biological
process, cellular component, and molecular function. If
the P value was under 0.05, the GO term or pathway
was considered to have a significant enrichment of the
different proteins.
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Hierarchical clustering

The relative protein expression data was used to perform
a hierarchical clustering analysis. The omicshare online
software tool (http://www.omi cshare.com/tools/home/
soft/index?l=en-us), was used for this purpose. A heat
map is often presented as a visual aid in addition to the
dendrogram. The data are available via the ProteomeX-
change, the PRIDE [79] with the identifier PXD009363.

Quantification of transcript levels using reverse
transcriptase quantitative (RT-qPCR)

The five differentially expressed genes selected for
RT-qPCR analysis were first amplified, cloned, sequenced,
and the plasmids purified to generate a standard curve.
The reaction mixture (20pL) included SYBR Premix
(10 pL), forward and reverse primers (0.4 pL each), puri-
fied H>O (7.2 puL), and 2 pL of cDNA. Ubiquitin conjugat-
ing enzyme (UBC) and elongation factor-alpha (elf) genes
were used as internal controls. The comparative threshold
(2—-AACt) method was used to calculate the fold change
[80], and standard error (se) and mean Ct values were cal-
culated. A paired t- test was performed to analyze the dif-
ferential expression of the tested genes.

Additional file

Additional file 1: Figure S1. P. yezoensis healthy cells (A) and infected
(B) with P. porphyrae image under a light microscope using 100X lens;
the red arrow represents the pathogenic oomyceteous hyphae that
elongates from one cell to another. Figure S2. Whole cell proteins
electrophoresis of Pyropia yezoensis samples. The SDS-PAGE indicating
the different samples with different band size, i.e. C1-C3 representing the
control samples while T1-T3 showing the treated samples with
oomycetes spores. Figure S3. Hierarchical clustering of differentially
expressed proteins under infection stress; proteins related to defense
response and signal transduction. I-1 to |-3 and H-1 to H-3 the three
biological replicates for infected and healthy samples, respectively.
Figure S4. Hierarchical clustering of differentially expressed proteins
under infection stress; proteins related to energy metabolism and
photosynthesis. I-1 to I-3 and H-1 to H-3 the three biological replicates
for infected and healthy samples, respectively. Table S1. Total identified
762 differentially expressed proteins along with their relative intensities
in infected samples, ratios and p-values. (DOCX 1421 kb)
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