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Abstract

Background: Comparative genomics approaches have facilitated the discovery of many novel non-coding and
structured RNAs (ncRNAs). The increasing availability of related genomes now makes it possible to systematically
search for compensatory base changes – and thus for conserved secondary structures – even in genomic regions that
are poorly alignable in the primary sequence. The wealth of available transcriptome data can add valuable insight into
expression and possible function for new ncRNA candidates. Earlier work identifying ncRNAs in Drosophila
melanogaster made use of sequence-based alignments and employed a sliding window approach, inevitably biasing
identification toward RNAs encoded in the more conserved parts of the genome.

Results: To search for conserved RNA structures (CRSs) that may not be highly conserved in sequence and to assess
the expression of CRSs, we conducted a genome-wide structural alignment screen of 27 insect genomes including
D.melanogaster and integrated this with an extensive set of tiling array data. The structural alignment screen revealed
∼30,000 novel candidate CRSs at an estimated false discovery rate of less than 10%. With more than one quarter of all
individual CRS motifs showing sequence identities below 60%, the predicted CRSs largely complement the findings of
sliding window approaches applied previously. While a sixth of the CRSs were ubiquitously expressed, we found that
most were expressed in specific developmental stages or cell lines. Notably, most statistically significant enrichment
of CRSs were observed in pupae, mainly in exons of untranslated regions, promotors, enhancers, and long ncRNAs.
Interestingly, cell lines were found to express a different set of CRSs than were found in vivo. Only a small fraction of
intergenic CRSs were co-expressed with the adjacent protein coding genes, which suggests that most intergenic CRSs
are independent genetic units.

Conclusions: This study provides a more comprehensive view of the ncRNA transcriptome in fly as well as evidence
for differential expression of CRSs during development and in cell lines.

Keywords: Non-coding RNA, RNA secondary structure prediction, Drosophila melanogaster, CMfinder, Gene
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Background
Over the last decade our understanding of the functioning
of eukaryotic genomes has changed profoundly. The vast
majority of the DNA sequence is transcribed into RNA,
and protein-coding sequences comprise only a fraction of
the informational content encoded by RNA [1, 2]. This is
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true for mammals as well as for simple model organisms
such as yeast [3].
The functions of the vast majority of these transcripts

are unknown. The fact that much of the transcriptional
output is poorly conserved at the sequence level initially
led to doubts that this pervasive transcription was more
than just irrelevant “Junk RNA” [4]. A growing body of
evidence, however, showed that many non-coding tran-
scripts are under selection acting at the RNA level. One
line of evidence is based on the conservation of gene struc-
tures [5]. Another traces the evolution of RNA secondary
structure elements [6].
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Many ncRNAs compiled in the Rfam database exhibit
well-conserved RNA secondary structures. Independent
ncRNAs such as transfer RNAs (tRNAs), small nuclear
RNAs (snRNAs), ribosomal RNAs (rRNAs), small
nucleolar RNA (snoRNAs), and microRNAs (miRNAs)
constitute only a minute fraction of the genome.
However, structured RNA motifs are much more
widespread. Regulatory features of mRNAs, such as
internal ribosome entry site (IRES) and selenocys-
teine insertion sequence (SECIS) elements, aptamer
domains of riboswitches, or the autoregulatory domains
of many messenger RNAs (mRNAs) that encode
ribosomal proteins also have recognizable secondary
structures [7].
The presence of a stable secondary structure is not in

itself a sufficient indication that the RNA has a func-
tion: Random RNA sequences typically fold into highly
complex secondary structures that are not statistically dif-
ferent from known functional elements [8–11]. Therefore,
it is necessary to assess the evolutionary conservation of
secondary structures.
A variety of computational methods have been devel-

oped to identify negative selection acting on RNA struc-
ture.Methods starting frommultiple sequence alignments
include qrna [12], AlifoldZ [13], EvoFold [14], RNAz
[15], and SISSIz [16]. Their main limitation is the need
for reliable sequence-basedmultiple sequence alignments.
This can be partially overcome by methods that align
or re-align (presumably) homologous sequences using
sequence and structure simultaneously. Awidely used tool
of this type is CMfinder [17, 18]. A pipeline centered
around FoldAlign [19] uses the same basic logic. We
refer to [20] for a review. REAPR is an improved method
that shares the idea of structure-based re-alignment of
regions with the approach pursued here. It achieved a
doubling of sensitivity and confirmed a substantial num-
ber of its predictions as transcripts [21].
Studies on ncRNA gene families of fruit flies have a

long history. Well understood and well conserved ncRNA
families, such as miRNAs [22], have frequently been used
as model systems to study ncRNA evolution [23, 24].
Several previous experimental as well as computational
surveys have suggested that the fruit fly and related insect
species still harbor large numbers of unexplored ncRNAs.
For example, thousands of long ncRNAs (lncRNAs) were
found using deep sequencing [25–27]. A study focusing on
3’-untranslated regions (UTRs) found 184 ncRNA clus-
ters [28]. A quarter of the genomic regions that currently
lack annotated genes, i.e., that are currently considered
“intergenic”, show transcriptional activity (according to
the intersection of the current annotation [29] and a
genome-wide tiling array study [30]). Most likely, these
regions harbor still undescribed transcripts. We consider
this value of one quarter as a lower bound since it is

unlikely that any individual study captures the complete
transcriptome.
A computational screen for structured RNAs using

RNAz identified about 16,000 candidate RNA elements
with an estimated false discovery rate (FDR) of about
40% [31]. However, RNAz evaluates only the most con-
served parts of genomic sequence alignments and is opti-
mized for specificity. Subsequent computational analyses
of mammalian genomes indicate that the number of func-
tional RNAs is most likely considerably higher: Up to
a fifth of the genome may be under selection for RNA
structure, but only a tenth of these loci show evidence
of selection for conservation of nucleic acid sequence
[6, 18, 32].
Several computational surveys of structured RNAs [15]

have confirmed the presence of large numbers of con-
served structured RNA elements in fruit flies, notably a
more detailed RNAz-based screen [31] and a compari-
son of several grammar-based methods [33]. RNAz likely
underestimates the number of conserved RNA structures
in flies similar to the situation in mammals. A subsequent
study concentrating on coding regions, furthermore, sug-
gests that these also harbor many superimposed RNA
structures [34]. CMfinder takes this approach a step fur-
ther by joint folding and structure-based re-alignment of
genome sequences [35]. To date, the newest generation of
computational ncRNA screening methods have not been
applied to fly genomes.We close this gap here and provide
a map of conserved RNA structures (CRSs) in the fruit
fly Drosophila melanogaster. Furthermore, we associate
CRSs with expression across all developmental stages in
fly as well as expression in cell lines, which has not been
done before.

Results
Summary of the CMfinder screen
We predicted CRSs on the genomic sequences of 23
drosophilid and four additional insect species extracted
from the UCSC Genome Browser (see “Methods” section
for details). Multiple alignment blocks shorter than 50 bp
or containing fewer than three sequences were removed.
Within each alignment block, the sequence-based align-
ment was ignored and the unaligned sequences were fed
to CMfinder. A total of 345,285 CMfinder predictions
passed our filter criteria including a minimum pscore [35]
p > 50 and a minimum element size of 30 nt (see
“Methods” section for details). Salient features of these
candidates are summarized in Additional file 1: Figure S1:
The majority of the predictions had folding energies in
the range of about −10 kcal/mol and were shorter than
100 nt.
This fits well with the properties of most of the small

structured ncRNA genes and most of the well-known
functional RNA elements in mRNAs. Their GC content
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lay mainly between 30 and 60% with a tail more pro-
nounced towards 20%, commensurate with the compar-
atively low overall GC content in drosophilid genomes
[36]. A sequence identity of 40 to 80% reflects the lower
sequence conservation in structurally conserved RNAs.
Most predictions were found in 17 to 23 of the 27
genomes examined. All CRSs are available at https://rth.
dk/resources/rnannotator/crs/insect/.
Out of the 345,285 initial predictions, 12,421 overlapped

an annotated repeat by at least 50% of their length. These
were removed from further processing because the input
alignments are unreliable in repetitive regions (see e.g.
[37, 38]). While the initial predictions were obtained with
a uniform cut-off for CMfinder’s pscore, previous appli-
cations of CMfinder to vertebrate genomes have shown
that the false discovery rate (FDR) strongly depends in
particular on the GC content and the average sequence
identity of the input alignments. This is also the case for
the fruit fly data (Additional file 1: Figure S2). To evalu-
ate the influence of these two parameters we partitioned
the set of repeat-filtered predictions into bins with nar-
row ranges of both GC content and sequence identity.
We independently estimated the FDR for each subset (see
“Methods” section for details). Requiring in addition a
pscore > 80, we observed that the resulting FDR estimates
remained below 0.1 in most of the bins (Additional file 1:
Figure S3), and predictions with a wide range of sequence
identities were included in the remaining set (Additional
file 1: Figure S2).
We observed a moderate increase of the FDR with GC

content. Given the overall low GC content in drosophilid
genomes, this fortunately does not constitute a substan-
tial problem. It is also worth noting that CMfinder
loses its power at sequence similarities below 40%: In
this range, the FDR increased up to 0.5. Computing the
FDR for bins depending on GC content, sequence iden-
tity, and pscore and using an FDR cutoff of 0.1, we
retained 46,024 sequences for further analysis. 28% of
these showed sequence identities below 60%, constituting
promising CRSs candidates. Additional file 1: Figure S2
summarizes the number of CRS predictions as a function
of FDR.
To see whether the sequence characteristics of the Rfam

elements create a different error profile than seen glob-
ally, we re-analyzed a subset of the screen-wide FDR
data, namely, the CMfinder results from the simulated
MAF blocks containing the 527 Rfam elements sum-
marized in Table 2. They yielded only 9 predictions
(pscore > 80); none corresponded to any of our 93
“positive” Rfam predictions. There were 76 predictions
in the native alignments of those regions, yielding an
estimated FDR < 12%, in line with our global esti-
mate. For details on FDR estimation we refer to the
“Methods” section.

These initial CRS candidates were obtained from
independent predictions on both strands. Owing to the
near symmetry of RNA secondary structures, it is dif-
ficult to distinguish the reading direction of conserved
RNA elements [39]. Furthermore, there is no reliable way
to identify whether a single predicted element reflects a
product from only one strand or if structured functional
elements are produced by both strands. The latter has
been described for the mir-iab-4 locus [40, 41]. Here, we
made a conservative estimate bymerging overlapping pre-
dictions on opposite strands, so that each genomic locus
is assumed to produce one product. Since CMfinder
searches for local structures and the available genome-
wide alignments consist of many often very small blocks,
we also merged adjacent elements that are separated by
less than 30 nucleotides. This threshold is larger than
the usual size of “holes” between consecutive alignment
blocks but much smaller than the minimum distance
between adjacent known ncRNAs, such as miRNAs in
polycistronic clusters (Additional file 1: Figure S5). As
a result, we estimated that 30,710 genomic loci encode
conserved RNA structures.

Annotation
Half of the predicted motifs were located in introns.
This amounts to a slight enrichment compared to a
uniform genomic distribution of CRS loci (Table 1).
Introns often harbor ncRNAs that are processed from
the host transcript [42]. In particular, several verte-
brate snoRNAs are encoded in introns of ribosomal
genes, allowing the snoRNA and the functionally closely
related host gene to be co-expressed efficiently [43]. In
addition, choice of splice sites and regulation of alternative
splicing frequently involves secondary structures [44–47].
Hence, intronic CRSs constitute interesting candidates
for structural elements of novel functional ncRNAs. Both
UTRs of coding transcripts and the exonic parts of non-
coding transcripts showed significant enrichments: 3.5%
of the predictions fell into 5’-UTRs and roughly twice as
many predictions in 3’-UTRs, representing a 1.5 and 1.6-
fold enrichment, respectively, and the 661 loci (2.2%) in
ncRNA exons constituted a 1.5-fold enrichment. In con-
trast, predictedmotifs were under-represented in protein-
coding exons (7.5%, 0.38-fold enrichment). This likely
reflects the fact that coding exons are more conserved in
the primary sequence than in their RNA secondary struc-
ture. About a quarter of the CRSs were found in intergenic
regions and may belong to yet unknown transcripts.
The CMfinder predictions overlapped with 93 of the

527 ncRNAs annotated in Rfam and contained in the
input alignments after repeat filtering (Table 2). This
yields an estimated sensitivity of about 18% and an
FDR of about 10%. We observed strong enrichments
for miRNAs, H/ACA-box snoRNAs, composite snoRNAs

https://rth.dk/resources/rnannotator/crs/insect/
https://rth.dk/resources/rnannotator/crs/insect/
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Table 1 Overlap of CRSs with the Drosophila melanogaster genomic FlyBase annotation (dmel_r6.15, FB2017_02)

Feature Number of CRSs
overlapped

Percentage of
CRSs overlapped

Fold
enrichment

P-value Total feature
number

Number of features
overlapped

Percentage of
features overlapped

Exon coding 2294 7.5% 0.38 1.0 57906 2375 4.1%

Exon 5’-UTR 1082 3.5% 1.53 4 · 10−12 16930 1242 7.3%

Exon 3’-UTR 2409 7.8% 1.63 6 · 10−113 11288 1766 15.6%

Exon both UTRs 13 0% 1.13 0.72 415 16 3.9%

Exon ncRNA 661 2.2% 1.50 4 · 10−15 4120 588 14.3%

Intron 15565 50.7% 1.24 3 · 10−221 52410 6507 12.4%

Intergenic 8639 28.1% 1.12 5 · 10−26 12348 2924 23.7%

Unmapped
alignment blocks

47 0.2% − − 1152 − −

Annotation tracks were unified to avoid overlapping annotation elements and thereby ambiguous assignment of annotation categories to CRSs. In this context, annotation
positions with overlapping 5’- and 3’-UTR exons have been collected in the “Exon both UTRs” category (see “Methods” for details). Predictions overlap the unified annotation
feature by at least 1 nt, not considering strands. Prediction counts are given as rounded fractions according to the number of unified annotation features they overlap with.
Percentages give the fraction of overlapping from total predictions. Fold enrichments and significance were calculated based on the annotation features contained in the
CMfinder input alignments

(scaRNAs), snRNAs, as well as cis-regulatory elements.
tRNAs showed moderate enrichment. Especially retroele-
ments and stable intronic sequence RNAs (sisRNAs)
as well as some tRNAs and H/ACA-box snoRNAs are
located in short alignment blocks that had been removed
prior to the CMfinder run and hence have been excluded
as not contained in the input. rRNAs in addition often
overlap repeats and also have been filtered out based
on this criterion. The enrichment within the remaining

lncRNA, C/D-box snoRNA and the histone 3’-UTR stem-
loop annotations was not as strong as for other ncRNA
classes, fitting the notion of these RNAs being less struc-
tured. Of the two ribozymes annotated in Drosophila, we
recovered the nuclear Ribonuclease P (RNase P). Some
of the predicted motifs may be associated with ncRNAs
that are not completely contained in input alignment
blocks and thus are not included in the list of known
RNAs. The overlap thus is likely a bit higher than reported

Table 2 Overlap of CRSs with the Drosophila melanogaster Rfam annotation (v.12.2)

Feature Total feature
number

Filtered feature
number

Number of
features
overlapped

Percentage of
filtered features
overlapped

Fold
enrichment

P-value Number of CRSs
overlapped

tRNA 294 247 32 12.9% 4.53 7 · 10−30 32

miRNA 92 85 18 21.1% 7.57 7 · 10−28 17

rRNA 156 6 1 16.6% 0 0.11 1

C/D-box snoRNA 45 41 2 4.8% 1.76 0.16 2

H/ACA-box snoRNA 27 14 4 28.5% 7.73 1 · 10−5 4

scaRNA 6 6 3 50.0% 18.04 6 · 10−8 3

snRNA 33 29 20 68.9% 21.15 2 · 10−55 20

lncRNA 15 15 2 13.3% 4.81 0.01 2

Cis-regulatory
element

20 15 6 40.0% 12.03 8 · 10−14 7

Signal recognition
particle RNA

4 4 0 0% − − 0

Histone 3’-UTR
stem-loop

71 62 4 6.4% 2.33 0.03 4

Ribozyme 2 2 1 50.0% 18.04 0.04 1

Retroelements 121 1 0 0% − − 0

All 886 527 93 17.6% 5.89 2 · 10−102 93

Annotations with a base pair content of less than 30% were excluded. Predictions overlap the annotation feature by at least 50% of the prediction or the annotation feature
size. Filtered features were filtered for features lying at least 50% of their size within the CMfinder input alignment blocks and overlapping a repeat by less than 50% of their
size. The CMfinder input alignments did not contain sisRNAs, hence these are not listed here
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here. In any case, the overlap with Rfam is highly statis-
tically significant overall, and in all but the smallest Rfam
sub-categories (Table 2).

Overlap with other ncRNA screens
We compared the results of the CMfinder screen with
previous surveys for drosophilid ncRNAs using EvoFold
[48], REAPR [21], and RNAz [31, 49] in Table 3. The Sand-
mann RNAz data were filtered more stringently in order
to identify specifically miRNAs and are therefore much
more sparse than the predictions from the other screens.
Considering only the less restricted screens using RNAz,
EvoFold and CMfinder, the proportion of the overlaps
is similar to what was observed using these tools in human
[18, 50].
The overlaps between surveys conducted with differ-

ent methods are surprisingly small. However, assuming
that the amount of sequence covered by predictions is
small compared to the size of the genome, the expected
overlap of two independent surveys of the same genome
is the product of their sensitivities: 0.18 × 0.65 = 0.12
for our CMfinder screen and the Rose RNAz survey.
However, both screens were performed using different
genome releases, annotation versions and criteria with
different FDRs. Therefore, the expected and the actual
overlap between the screens are not directly comparable.
A large overlap is observed only between the Rose RNAz
screen and the REAPR predictions, which, however, are
not independent of each other.
Figure 1 shows that the CMfinder predictions are

more similar to the RNAz predictions than to EvoFold
data in terms of GC content and sequence conserva-
tion. The predictions of both methods cover a broad
range of sequence conservation, while the phylogeny-
based EvoFold method shows a strong preference for
highly conserved predictions. However, alignment blocks
with low sequence conservation are much less preva-
lent among the CMfinder predictions than among the
RNAz predictions. An explanation for this difference
can be inferred from a comparison of the situation in

Table 3 Pairwise overlaps between predictions of the
CMfinder and four additional screens for ncRNAs in
drosophilids [21, 31, 48, 49]

CMfinder EvoFold REAPR RNAz(R) RNAz(S)

CMfinder 30710 1618 3355 3967 410

EvoFold 1655 22682 2893 3583 331

REAPR 3340 2807 30478 19119 687

RNAz(R) 3993 3499 19358 42479 905

RNAz(S) 408 325 686 896 2469

RNAz(R) and RNAz(S) refer to the RNAz-based screens by Rose et al. [31] and
Sandmann et al. [49], respectively. Given are the numbers of predictions in screen A
(rows) that overlap predictions of screen B (columns) by at least 1 bp. Boldface
values in the diagonal state the number of predictions in each dataset

drosophilids to the one in vertebrates. In a genome-wide
CMfinder screen in vertebrates [6], most of the pre-
dictions had a sequence identity between 60 and 70%,
comparable with the drosophilid CMfinder predictions
reported here (Additional file 1: Figure S1). However, the
input alignments used in the vertebrate and drosophilid
CMfinder screens differ greatly. In the vertebrate screen,
only 10% of the input aligments overlapped annotated
phastCons highly conserved elements [51]. Still, this
small fraction of the input gave rise to 50% of all pre-
dicted CRSs [6]. In contrast, in fruitflies about 65% of the
input alignments overlapped phastCons conserved ele-
ments. Hence it is not surprising that the vast majority
of the Drosophila CRS predictions are located in highly
conserved regions. The larger sequence variation in RNAz
predictions might be explained by the higher false discov-
ery rate of the tool. Specifically, the predictions with low
phastCons scores may contain more false positives.

Expression
To assess whether the predicted structures are likely to
represent transcripts with real functions, we used expres-
sion data as a filter. Tissue and developmental stage-
specific expression may be a good indication of biological
function. We employed the modENCODE genome-wide
tiling array dataset, which has a resolution of 38 bp, an
exon expression score threshold of 300 (median of probe
intensities for all probes found within that exon, nor-
malized for cell lines), and consists of samples from 30
developmental stages and several Drosophila cell lines
(both polyA+ and total RNA) [30, 52]. In the following, a
CRS or genomic feature is categorized as expressed if it
overlaps any tiling array transcript region by at least 50%
of its size.
Of all CRSs expressed in at least one experi-

ment (20,184), approximately a sixth showed expression
throughout most stages and cell lines (Fig. 2). In contrast,
the majority of CRSs are expressed in specific contexts.
Expression patterns formed two clusters, separating cell
line data from expression in flies. While developmental
stages were not perfectly clustered together, there were
some clear groupings: The six prepupal stages (yellow
color in the stage annotation line) fell into an almost sep-
arate group. Five of the adult stages (red color in the stage
annotation line) were grouped together, with similar CRS
patterns in the adult female sample five days after eclo-
sion and the mated ovary (see Additional file 1: Figure S6).
The embryonic stages fell into several distinct clusters but
were in general separate from other developmental stages
(blue color in the stage annotation line).
CRSs that overlap annotated ncRNAs did not fall into

obvious clusters with ncRNA classes. It is worth not-
ing that annotated ncRNAs that overlap CRSs prefer-
entially showed nearly ubiquitous expression. Indeed,
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Fig. 1 GC contents and sequence conservation measured in terms of phastCons scores [51] of the structured RNA predictions from CMfinder,
EvoFold, REAPR, and RNAz (Rose, Sandmann) screens [21, 31, 48, 49]

well-expressed transcripts are expected to be found and
annotated more easily than sparsely transcribed genes.
Since CRSs are by definition expected to function at

the level of RNA, we expect that CRSs are preferentially
associated with expressed genomic regions. To test this
hypothesis, we used the modENCODE tiling array data
to assess the association of CRSs and expression in 100-bp
windows sampled from the D. melanogaster genome. To
avoid a bias due to the more abundant expression of
protein coding loci, we removed all loci overlapping cod-
ing as well as UTR exons from the analysis. We did not
exclude intronic loci, however, because intronic regions
are often expressed as independent transcriptional units

[53–56]. We observed a systematic enrichment of expres-
sion among CRS predictions (p < 0.05, Fisher’s exact test).
This result was independent of whether “expressed” was
defined as a tiling array signal in a single experiment or
whether a minimum number of positive tiling array data
were required (Fig. 3).

Co-expression of intergenic CRSs and adjacent genes
Of particular interest are predictions of motifs for which
there has been no functional evidence so far, i.e., in regions
annotated as intergenic, but for which expression sig-
nals are observed. If a motif shows co-expression with its
closest annotated gene, this might suggest a functional
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Fig. 2 Expression of CRSs according to publicly available modENCODE tiling array experiments with an exon expression score threshold of 300
(median of probe intensities for all probes found within that exon, normalized for cell lines) [30, 52]. Only CRSs showing at least 50% overlap with at
least one transcript region are considered. Non-coding annotations were obtained from Rfam (v.12.2). A subset of the samples is derived from cell
lines, which almost form an individual, although heterogenous, cluster (first annotation line). All other samples are derived from flies of one of two
different strains (second annotation line) and different developmental stages (third annotation line). Some of the fly samples are derived from
specific compartments (fourth annotation line). The fly samples form much more homogenous clusters according to their stages and
compartments. Cell lines: Blue: Embryo-derived. Red: Derived from prothoracic, mesothoracic, imaginal, antenna or eye-antenna disc. Yellow:
Derived from central nervous system. Strains: Blue: Yellow cinnabar brown speck. Red: Oregon-R-modENCODE. Stages: Blue: Embryos. Green: Larvae.
Yellow: Prepupae. Red: Adults. Compartments: Green: Gut. Red: Mated ovary. Yellow: Virgin Head
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a b

Fig. 3 Significant enrichment for expression among CRS predictions. Expression is defined by a minimum number of modENCODE tiling
experiments that show expression (x axis). As background we used 10 samples of randomly selected genomic loci of the same size and number as
CRS predictions. The analysis was performed unfiltered (a) and filtered to exclude CRSs and genomic samples overlapping protein-coding and UTR
exons (≥ 1 bp) to avoid mRNA exon bias (b). Significance of the enrichment of expressed CRSs is determined by the highest p-value from 10
samples calculated by Fisher’s exact test

relationship. One possibility is that the predicted motif
could be part of an incompletely annotated UTR.
Alternatively it might reflect a novel transcript. As a mea-
sure of co-expression based on the modENCODE tiling
array data we used a co-expression score that compares
the number of tiling experiments in which a CMfinder
prediction and its closest gene element (UTR or ncRNA
exon) are expressed together or individually. The score
Eco, see Eq. (1) (see “Methods” section), is the difference
between the following two ratios: The number of experi-
ments in which both CRS and closest gene (independent
of the genomic distance) are expressed normalized by
the total number of experiments with CRS expression
(Ratio 1); and the number of experiments where the clos-
est gene but not the CRS is expressed normalized by
the total number of experiments without CRS expression
(Ratio 2). With the help of this score we can determine
whether co-expression suggested by the tiling array data
is positive or negative. For perfect positive co-expression,
Ratio 1 equals 1 (the CRS is exclusively expressed together
with its closest gene element), and Ratio 2 equals 0 (the
gene element is never expressed without the respective
CRS). As a consequence, the difference of both ratios is 1.
For negative co-expression the situation is the converse,
resulting in a co-expression score of −1. To raise the relia-
bility of the scores, only CRSs that are expressed in at least
3 tiling experiments were considered here.
The majority of CRSs showed a co-expression score

of exactly 0, indicating that their expression was not
related to that of their closest gene elements (Fig. 4).
Distinguishing co-expression signals from noise is a
challenge especially for co-expression scores close to

0. In theory, we would assume functional positive co-
expression only at a perfect co-expression score of 1 since
the adjacent gene can only be expressed if the activating
CRS is present as well. However, due to known biases of
tiling arrays against sequences with low GC contents and
very stable secondary structures [18, 50] we cannot expect
complete detection of all expressed transcripts. Therefore,
we empirically chose score cutoffs of≥ 0.5 and≤ −0.5 for
positive and negative co-expression, respectively (also see
Additional file 1: Figure S7). While 55 out of 1540 CRSs
had scores ≥ 0.5, negative co-expression was observed
rarely: Only two CRSs had a co-expression score below
−0.5. All CRSs are available at https://rth.dk/resources/
rnannotator/crs/insect/.
Most CRSs with relevant co-expression scores are

expressed under few conditions. Of the 57 CRSs meeting
our co-expression criteria, only 15 are expressed under
more than five conditions. This is in agreement with
the fact that most of the CRSs are expressed in spe-
cific contexts. One CRS (see “Examples of novel struc-
tures” section) was expressed in 29 experiments and in
all of these together with its closest gene at a distance
of only 12 bp of the annotated 5’-UTR (in case CRS and
the closest gene element overlap 100% with tiling array
transcript regions, instead of 50% as applied during the
co-expression analysis). This strongly suggests that the
current UTR annotation is incomplete and the CRS is in
fact a structured UTR element.
As our assessment of co-expression is based on adja-

cency, it is conceivable that the physical order of co-
expressed CRS and closest gene is also preserved in
other species. We therefore compared the genes that

https://rth.dk/resources/rnannotator/crs/insect/
https://rth.dk/resources/rnannotator/crs/insect/
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Fig. 4 Co-expression of intergenic CRSs with their closest annotated
gene element according to modENCODE tiling array experiments
[30]. A co-expression score of 1 indicates perfect positive
co-expression, i.e. both CRS and closest gene are exclusively
expressed together, −1 indicates perfect negative co-expression, i.e.
both elements are only expressed individually, and a score of 0
indicates that the expression of CRS and closest gene were observed
to be independent of each other

are adjacent to CRSs in D. melanogaster and in other
species present in the CRS alignments. Of the 11 currently
annotated non-melanogaster drosophilid species (FlyBase
release FB2018_04), two thirds were required to fulfil the
respective synteny criteria in the following analyses. For
13 of the 57 CRSs co-expressed in D. melanogaster, the
closest genes in the other species were the orthologs of
the closest D. melanogaster gene. However, this number
is likely too conservative as we cannot expect all anno-
tations to be complete and all orthologous relationships
between genes of different species to be resolved entirely.
More importantly, especially in more distant relatives of
D. melanogaster, genes can be inserted between the CRS
and the ortholog of the D. melanogaster gene. Hence,
we also considered more relaxed criteria to define syn-
teny: Looking for the ortholog of the D. melanogaster
gene in each species, regardless of its distance from the
CRS, we found 32 CRS-gene pairs to be in the same ori-
entation in other species as in D. melanogaster, i.e. both
the D. melanogaster gene and its ortholog were located
either upstream or downstream of the CRS. When we
applied an empirical maximal distance of CRS and clos-
est D. melanogaster gene (or its ortholog) of 20,000 bp
(see Additional file 1: Figure S8), still 18 of these 32
CRS-gene pairs passed the synteny filter. Finally, assuming
that phylogenetic distance and quality of the annotation

vary between species, we compared the closest genes in
D. melanogaster and other species in a pairwise manner.
In the species most closely related to D. melanogaster,
D. simulans and D. sechellia, the genes neighboring 25
and 26 CRSs were orthologs of the gene closest to the
CRS in D. melanogaster, respectively. The syntenic rela-
tionships of a subset of co-expressed CRS-gene pairs in
D. melanogaster and their orthologous counterparts in
other drosophilids provide another level of evidence for
functionality of these CRSs.

Developmental stage and cell line specific expression of
CRS-containing biotypes
D. melanogaster development is regulated by an orches-
tra of specific genes, see [57] and the references therein.
Here, we connect the expression patterns of CRSs across
developmental stages and cell types as a first step towards
elucidating their potential roles in fruitfly development.
For this as well as the following analysis, we associated
genomic locations with a “biotype”, i.e., a class of RNAs
defined by similar functional and/or structural character-
istics, such as miRNA, C/D box snoRNA, or 3’-UTR exon.
We asked if expression of CRSs belonging to a partic-
ular biotype was statistically over- or underrepresented
in a particular developmental stage or cell line (Fig. 5).
In order to achieve a fair comparison we normalized the
number of instances of a biotype expressed in a particu-
lar stage by the number of instances of the same biotype
expressed in any of the other stages. For each biotype
we then calculated the difference of these ratios for the
subsets with CRSs (RCRS) and without CRSs (R¬CRS), see
Eq. (2) (see “Methods”). If this difference is positive, there
are more instances with CRSs expressed in this stage com-
pared to other stages than is the case for instances without
CRSs. A significant difference between RCRS and R¬CRS
may indicate a general role of the CRS-containing bio-
type instances in differentiating this stage. See Methods
for more details of the analysis.
Not surprisingly, CRSs detected by our screen were par-

ticularly abundant for ncRNA classes, i.e., the biotypes
H/ACA box snoRNAs, scaRNAs, snRNAs, and for cis-
regulatory elements. CRSs were relatively rare in highly
abundant biotypes such as introns, intergenic and exonic
regions. Patterns of stage-specific over- and underrep-
resentation of CRS-containing biotypes were more sim-
ilar to each other between pupae and adult stages, and
more homogeneous than for the embryonic and larval
stages (also see Additional file 1: Figure S9). Cell lines
showed different patterns of enrichment and underrep-
resentation than developmental stages. The pupae stages
formed the group with the statistically most signifi-
cant enrichments of CRS-containing biotypes. Among
these were mainly CRSs in 5’- and 3’-UTR exons,
introns, promoters, enhancers, and lncRNAs. Adult stages
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Fig. 5 Over- and underrepresentation of biotype instances with CRSs compared to instances without CRSs (‘ratio difference’, color coded) in
Drosophila melanogaster developmental stages and cell lines. Only instances expressed in at least three tiling array experiments and contained in
the CMfinder input alignments by at least 50% of the feature size were considered here. Tests of significance (indicated by opacity) assess
whether biotype instances with CRSs are expressed more often in a particular stage compared to all other stages than expected by chance. p-values
have been adjusted for multiple hypothesis testing (Bonferroni). The statistical test has been performed for all stages and cell lines, but in the
interest of visibility, a representative subset of stages and cell lines of only total RNA samples has been chosen for this figure. For the full version of
the plot, see Additional file 1: Figure S9

shared some of these enrichments, but also exhibited
an underrepresentation of expressed CRSs in intergenic
regions. Larval and embryonic stages differed from the
other stages in that there were fewer stages enriched
for CRS-containing UTR exons and lncRNAs and an
even stronger underrepresentation of CRS-containing
instances of several biotypes, e.g., introns and miRNAs.
However, especially H/ACA box snoRNAs with CRSs
were enriched in a number of embryonic and larval
stages.
In cell lines we observed expression enrichment of

CRS-containing UTRs less frequently than in any group
of developmental stages. In contrast, ncRNA biotypes,
especially snoRNAs, tRNAs, and intergenic regions were
more often enriched with CRSs (also see Additional
file 1: Figure S9). In summary, CRSs appear to be

part of expression patterns that distinguish individual
developmental stages from others.

Differential expression of CRSs
In order to elucidate the functional potential of CRSs in
development in more detail, we aimed to identify pairs
of developmental stages for which CRSs exhibit differ-
ential expression correlated with other biotype instances.
We calculated a differential expression score Ediff(i, j) as
defined in Eq. (3) (see Methods) for each pairwise combi-
nation ofmodENCODE experiments i and j that compares
the differential expression of CRS-containing instances
and instances without CRSs (Fig. 6). The score can take on
values from 0 to 1. The maximal score of 1 means that all
structured instances are differentially expressed between
experiments i and j whereas none of the unstructured
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Fig. 6 Pairwise differential expression scores for introns contained in the CMfinder input alignments and expressed in at least three
developmental stages or cell lines. The score compares the differential expression of introns containing CRSs and introns without CRSs. The higher
the score on a scale of 0 to 1, the more structured introns and the less unstructured introns are differentially expressed

instances is. The product in the equation gives higher
impact to situations with high differential expression of
structured instances. See Methods for more details of the
analysis.
For most biotypes, Ediff was small, i.e., the overall

expression pattern did not differ much between individ-
ual stages. However, there were some structured intronic
regions that were differentially expressed between white
prepupae and most of the other stages and also cell

lines. This could also be explained by the differential
expression of the corresponding gene. Hence, in the next
step we specifically considered differentially expressed
introns in genes of which no exon is expressed in the
same experiment. In Fig. 6, one of the most prominent
red areas with high differential expression scores exists
between intronic loci of white prepupae (two days) and
the 12-14 h embryonic stage (both total RNA samples).
Of these differentially expressed introns with CRSs, 29
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were directly flanked by exons that were not expressed
under the same conditions, and 3 were contained in genes
of which not a single exon was expressed in the same
experiment. One of the overlapping CRSs is referred to in
more detail in the “Examples of novel structures” section.
This observation suggests that the CRSs could be tran-
scribed independently of the host genes. We note that the
differential expression scores in this analysis did not rise
above 0.15 for introns. Intronic loci with large differen-
tial expression thus are interesting candidates for novel
functional transcripts.

Examples of novel structures
Based on the co-expression and differential expression
analysis, a number of not previously annotated interesting
structured RNA candidates were identified in intergenic
or intronic regions. We present three examples repre-
senting different kinds of functional evidence: Positive or
negative co-expression with the closest annotated gene,
very small genomic distance to an annotated UTR, loca-
tion in an intron showing differing expression from the
adjacent exons, and a stable and complex secondary struc-
ture. Prediction DC0021109 (Fig. 7a) shows a perfect
positive co-expression score with its closest gene globin 1,
i.e., neither CRS nor globin 1 are expressed alone in any
of the 29 experiments in which expression was observed
in this case (in case DC0021109 and the closest exon of
globin 1 overlap 100% with tiling array transcript regions,
instead of 50% as applied during the co-expression anal-
ysis above). Since the genomic distance between them is
only 12 bp, the annotated UTR of globin 1 is most likely
incomplete and DC0021109 is a structured UTR element.
An example with a negative co-expression score of −0.57
is DC0018026 (Fig. 7b) with its closest gene CG12581,
encoding a mostly unknown protein with a phospho-
tyrosine binding domain, which may be involved in a wide
range of processes like neural development, tissue home-
ostasis or cell growth [58]. DC0018026 folds into a com-
pact, stable consensus structure (�G = −15.99 kcal/mol)
comprising a multi-branch loop with two hairpins and an
external stem. In contrast, DC0013572 (Fig. 7c) is located
in an intron of the zinc finger transcription factor gene
CTCF, which is involved in chromatin organization [59].
The secondary structure of the CRS features two hair-
pins with a longer conserved single-stranded stretch in
between.

Discussion
We conducted a study of evolutionarily conserved RNA
structure (CRS) elements in the D. melanogaster genome
that was designed to assay genomic regions that are only
loosely constrained at the sequence level. Therefore, we
employed CMfinder to leverage structural alignments.
Although CMfinder can detect CRSs also in highly

sequence-conserved regions (unless the sequence identity
reaches 100%) we observed that its sensitivity was lim-
ited when conservation at sequence level was high. As a
consequence, the recall on well-studied RNA classes such
as tRNAs, miRNAs and snoRNAs, all of which are very
conserved at sequence level, was only moderate. These
classes were readily detected in an earlier RNAz screen
which operated on sequence-based alignments [31].
While RNAz performs best in the vicinity of 80% aver-

age pairwise sequence identity [31, 50], the majority of the
CMfinder predictions were observed to lie between 60
and 70% in the screen on vertebrate genomes, and more
than one third showed sequence identities below 60% [6].
However, a similar assessment for CMfinder on insect
genomic alignments has been missing so far. As with
RNAz, the number of CMfinder predictions decreased
with sequence similarity. However, the predictions from
the present screen have a much smaller FDR than previ-
ous RNAz results (less than 10% for CMfinder compared
to up to 50% for RNAz [50]). The increased accuracy is
ensured by using different cut-offs in different ranges of
GC content and sequence conservation, thus controlling
the FDR approximately independently of these parame-
ters (Additional file 1: Figure S3). Nevertheless, we find
a comparable number of CRSs. Although the overall sen-
sitivity of the CMfinder screen was only moderate, it
targets CRSs in a different range of conservation than
other tools, emphasizing the usefulness of the CMfinder
approach, in particular to screen in the low conservation
range. At present, no single tool is capable of uncovering
the entire wealth of RNA structure that is under selective
constraints. This calls for research into improvedmethods
for identifying selection pressures on RNA structure that
can capitalize on the increasing amount of genome data
that are becoming available for comparative genomics
approaches.
Comparing the CRSs with genome-wide expression data

from a broad range of developmental stages and cell lines,
we found that in addition to a large number of nearly
ubiquitously expressed loci, there were also sizable groups
expressed in specific developmental stages or cell lines.
The most statistically significant enrichment of expressed
CRSs was observed in pupae, mainly located in UTR
exons, promotors, enhancers, and lncRNAs. Interestingly,
cell lines express different sets of CRSs than native devel-
opmental stages. This is in accordance with the respective
modENCODE study of Drosophila cell lines [52]. Only
a small fraction of intergenic CRSs was found to be co-
expressed with the adjacent protein coding genes, indi-
cating that most intergenic CRSs are independent genetic
units.
An unexpected finding from our analysis was the dif-

ferential association of detected CRSs with development
type in biotypes such as snoRNAs and miRNAs, which
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a

b

c

Fig. 7 Examples of CMfinder predictions that are part of putative novel transcripts or possibly incomplete annotations. Example a with a
particularly high co-expression score and small distance to the closest annotated gene could be part of an incompletely annotated UTR. Example b
is located much further from the closest annotated gene and hence could be part of a putative novel independent transcript. Example c is located
in a differentially expressed intron of a gene of which no exons are expressed in the same developmental stage. For more details see description in
the main text. Alignment and secondary structure visualization were performed using RNAalifold [79, 80]

are known to be conserved in both sequence and struc-
ture. This implies that there are differences in the pat-
terns of sequence and/or structural evolution of these
ncRNAs that are strong enough to affect how well they

are detected by CMfinder. A characterization of these
differences will require a detailed investigation into pos-
sible subclasses of miRNAs and snoRNAs as well as
a comparative study of species outside the drosophilid
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clade – and hence goes well beyond the scope of the
present contribution.
One third of the predicted CRSs were not expressed,

according to tiling array expression data. Some of this can
be explained by the expected moderate fraction of false
positive predictions. However, tiling arrays have several
intrinsic biases that may prevent them from measuring
CRSs: First, there is a bias against CRS sequences with
low GC contents, since these interactions are less sta-
ble, and finding optimal stringency parameters to remove
randomly bound RNAs but retain all true positives
is challenging [18]. Furthermore, very stable secondary
structures may not be captured since intramolecular
folding will compete effectively with hybridization to
the array [50]. Finally, also biological factors are likely
to have an impact: Expression of transcripts that are
expressed at very specific time points in development
can easily be missed if there was no sample taken at
exactly this time point. Also, differing external conditions
might be necessary to induce expression of specific tran-
scripts which cannot all be covered by any large-scale
screen.
As it was observed in the mammalian CRS screen that

CRSs hold the potential to bind RNA binding proteins
(RBPs) [6], we assume that this is also the case for the fly
genomes. Although some studies suggest that some RBPs
appear to prefer single-stranded regions [60], other stud-
ies suggest that most RBPs prefer structured RNA, such
as Staufen [61], Roquin [62] or MLE [63]. Computational
surveys [64, 65] strongly suggest that structured binding
sites are by no means rare. The interpretation of many
CRSs as conserved RBP binding sites not only provides a
biologically plausible explanation for the large number of
detected loci in otherwise poorly conserved regions, but
also suggests that it will be worth while (a) to engage in
a large scale clustering of the predicted elements and (b)
to compare the detected CRSs also across large phyloge-
netic distances, in particular with the elements reported
in mammals [6, 32].
While the ultimate goal is to understand the role of

conserved RNA structures in development, the computa-
tional survey reported here has to be content with provid-
ing starting points for following research. Our data show
that there is a large set of CRSs with specific expression
patterns that suggest their involvement in development
and differentiation. Of course, such correlational data
cannot distinguish between causal regulators and down-
stream consequences, but they narrow the list of can-
didates for further studies, both regarding cis-regulatory
motifs and presumably independent ncRNA transcripts.
Although beyond the scope of this contribution, it will

be relevant to characterize the stability of structures fur-
ther within their respective biotypes. For example, 75% of
the CRSs are located in introns or intergenic regions and

can probably be further sub-categorized both by their sta-
bility and structural similarity using clustering techniques
[66, 67]. It would be interesting to know whether CRSs
found in other biotypes show patterns depending on the
type of RNA they are part of.

Conclusion
Currently there are approximately 700 structured ncRNAs
known in fruitflies [68], as well as thousands of unstruc-
tured ncRNAs (mostly lncRNAs [25–27]). While unstruc-
tured RNAs are generally easier to identify based on a
certain level of sequence conservation, functional RNA
structures are more hidden, and dealing with con-
servation on a structural level requires more elabo-
rate and computationally expensive approaches. Hence,
the true number of ncRNAs, especially of structured
ones, is expected to be larger than the set we cur-
rently know. Accordingly, we found a large number
of structurally conserved putative candidates in inter-
genic and intronic regions, many of which are likely
to be functional according to evidence from expression
analyses.
Due to the strong tendency of most RNAs, be they

functional or not, to take on secondary structures, com-
putational screens for CRSs need to deal with a certain
trade-off between sensitivity and specificity as well as
rather high false discovery rates, although we believe
the latter to be lowered considerably in CMfinder
screens. As a consequence, different tools for the pre-
diction of conserved RNA structures yield only moder-
ate overlaps when applied to the same genome. Screens
conducted with alternative methods on previously inves-
tigated genomes therefore are a useful endeavor that
contributes complementary data. In conclusion, our study
has substantially expanded the repertoire of conserved
RNA structures in fly genomes and in contrast to pre-
vious studies uncovered CRSs within the context of
expression throughout all developmental stages and many
cell lines.

Methods
Computational screen for CRSs
The 27-way MULTIZ [69] alignment consisting of 23
drosophilids and four additional insect species was down-
loaded from the UCSC Genome Browser (Drosophila
melanogaster genome dm6, Aug. 2014, BDGP Release 6
[70]). The MAF (multiple alignment format) files con-
tain sequences for chromosome arms 2L, 2R, 3L, 3R and
chromosomes 4, X, Y, as well as mitochondrial sequences
(M) and sequences in unassembled scaffolds. MAF blocks
containing fewer than three sequences or that are shorter
than 50 bp were removed. For all remaining MAF blocks,
the reverse complement was generated in addition to be
able to make predictions on both strands. Gaps were
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removed from the alignments and the sequences were fed
in their unaligned form into CMfinder.
We ran CMfinder (version 0.2.1) with default set-

tings separately on the forward and the reverse strand
of the native genome alignment. Default settings are as
follows: The maximum number of candidates predicted
in each sequence (i.e. MAF block) is 40. At most, 5 sin-
gle stem-loop motifs with a base pair span between 30
and 100 bp and 5 double stem-loop motifs with a base
pair span between 40 and 100 bp are returned. Motifs
on the same strand are merged by CMfinder if the pre-
dicted structure is consistent in both overlapping motifs.
The prior for the expected fraction of sequences con-
taining the motif is 0.8. The CMfinder-specific pscore
[35], (CMfinder version 0.2.2) was computed for all pre-
dicted motifs. It is fundamentally similar to a general
time reversible model of sequence evolution extended
to include both single-stranded and base-paired regions.
Some model parameters were trained using vertebrate
Rfam alignments, but we scored our candidate motifs with
respect to a phylogenetic tree having topology and branch
lengths as estimated for drosophilids (dm6.27way.nh from
ref. [70]; CMfinder’s -t option). As shown in Additional
file 1: Figure S2, a good pscore is well-correlated with lower
estimated FDR across the spectrum of sequence identity
and GC content. Sequence identity and GC content were
calculated for all CMfinder output alignments. As a ref-
erence sequence for all predictions we used our species of
interest,Drosophilamelanogaster, and therefore only con-
sidered predictions containing this species. All genome
coordinates used in the following were derived from the
reference genome.

Backgroundmodel
We estimated the false-discovery rate among the
CMfinder predictions by synthesizing “background”
alignments using SISSIz (version 2.0 [16]). Specifically,
for each input MAF block, one companion randomized
alignment was produced using SISSIz with the fol-
lowing options: --simulate --tstv --maf -n
1. This simulates sequence evolution from an ancestral
sequence derived from the givenMAF block using an evo-
lutionary model that preserves mono- and di-nucleotide
frequencies in expectation, while exactly preserving the
input’s gap- and local conservation patterns. Transition
and transversion rates are estimated from the input data
(--tstv), and one random alignment in MAF format is
generated per input (--maf -n 1). CMfinder was run
on both strands of the shuffled genome alignment in the
same way as on the native alignment.

False discovery rate
In order to find a threshold to filter out themost unreliable
predictions, pscore lower boundaries from 50 to 150 were

applied and the distributions for pscore, minimum free
energy, GC content, sequence identity, length and number
of species of the motif alignments as well as the number of
predictions remaining were visually inspected. Based on
this, we applied a pscore cutoff of p > 50 to reduce the
number of predictions to a manageable amount.
All predicted motifs with a pscore > 50 were filtered

for overlap with annotated repeats (as provided through
the UCSC genome browser [71]) using bedtools
intersect [72], removing all predictions that overlap a
repeat by at least 50%.
To estimate the false discovery rate (FDR), GC con-

tent and sequence identity were categorized so that each
bin comprises comparable numbers of predicted motifs
with these features. CMfinder input MAF blocks were
categorized into the same bins. Since their number is suf-
ficiently high in each bin (i.e. more than 100MAF blocks),
all bins were considered, even in case the numbers of pre-
dictions in a bin were low. The FDR was estimated for all
motifs in each bin with a particular pscore cutoff as

FDR estimate = False Positives
False Positives + True Positives

= # predictions on the shuffled alignment
# predictions on the native alignment

Based on the number of predictions left, the individ-
ual FDR heatmaps and relationship between mean FDR
and sequence identity depending on pscore cutoff, cut-
offs of both pscore > 80 and FDR ≤ 0.1 were taken to
filter out the most unreliable predictions. FDR estimates
were assigned to each motif according to the FDR of the
respective bin and pscore cutoff.

Annotation
For the overlap with the existing annotation, the most
recent Drosophila melanogaster annotation data for
the dm6 genome release were obtained from FlyBase
(dmel_r6.15, FlyBase release FB2017_02) for the genomic
annotation (exon type, intron or intergenic region)
[29] and from Rfam 12.2 for the non-coding RNA
annotation [68].
When converting the FlyBase annotation fasta files into

bed files, split entries were converted to a single bed
entry without considering splicing. In the rare cases of
genes derived from both strands such as trans-spliced
mod(mdg4) [73], separate entries were created for both
strands.
In order to annotate each prediction unambiguously,

the FlyBase genomic annotation tracks were unified such
that each nucleotide has only one annotation category
assigned. For this purpose, all annotated coding sequences
as well as genes were merged using bedtools merge.
Each annotated exonic region was categorized either as
coding exon if located within coding sequence boundaries
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or otherwise as non-coding exonic region. Drosophilid
Rfam annotations were added to the non-coding exonic
regions. To determine if a non-coding region belongs
to a ncRNA or to a UTR, each exon’s gene parent was
checked for the presence of a coding sequence. In case
ncRNA and UTR exons overlap (this was observed for
approximately 5% of all UTR exons), the ncRNA-exonic
character was prioritized and the region of overlap anno-
tated as ncRNA-exonic region. The regions in which 5’-
and 3’-UTR exons overlap are categorized as exons of
both UTRs because in this case no meaningful priori-
tization of one UTR type over the other can be made.
Then, each so generated annotation bed file was merged
using bedtools merge and all resulting exons were
subtracted from the list of all merged genes to obtain
all introns. All exons and introns were subtracted from
the complete genomic sequence to obtain all intergenic
regions.
For the annotation and all subsequent analyses (unless

explicitely mentioned otherwise), individual predictions
were merged strand-independently up to a distance of
30 nt using bedtools merge.
For the genomic annotation, we counted how many

annotation elements (individual exonic, intronic or inter-
genic regions) overlap a given prediction (≥ 1 bp)
without considering strands and then assigned the
respective fraction, i.e. 0.5 in case a prediction over-
laps two genomic classes. This approach was cho-
sen because the unified exons and introns can be
very short. Therefore, a CRS might overlap a num-
ber of different categories, and an overlap of at
least 50% of the CRS size is less meaningful in
these cases.
For the overlap with the non-coding annotation, only

ncRNAs lying by at least 50% of their size within
individual CMfinder input MAF blocks were consid-
ered since annotated structures that are not covered
by the alignment cannot be predicted. The minimum
overlap of 50% takes into account that many ncRNAs
consist of several shorter structured motifs, which still
can be predicted by CMfinder even if only a part
of the complete sequence is contained within a MAF
block. We only included Rfam annotations with a min-
imum base pair content of 30%, which means at least
30% of the positions of a sequence must be involved
in base pairing. In order to identify known ncRNA
elements covered by the predictions, CMfinder pre-
dictions and Rfam annotation were intersected using
bedtools intersect with a minimal overlap size
of at least 50% of the prediction or the annotation
element size.
For each intersection of CMfinder predictions and

genomic or ncRNA annotation, the fold enrichment FE
was calculated as

FE =
# merged overlapping queries

# queries
target size (nt)

background size (nt)

The background size is computed as the total number
of columns in the CMfinder input MAF blocks. The
target size is defined as the total size of all annotation
elements under consideration that overlap a MAF block
by at least 1 nt. The significance of each enrichment was
calculated using the pnorm function in R as previously
described [18]. Specifically, the number of observations
was the number of overlaps and the mean was calculated
as the product of the total number of CRS candidates and
the fraction of the input covered by the annotation.
The FDRs for the recovered and not recovered frac-

tions of the Rfam annotation were estimated in a similar
manner as the genome-wide FDR, but only including indi-
vidual predictions (pscore > 80, repeat-filtered) from
native and shuffled alignments that overlap (recovered
or not recovered) Rfam annotations, without considering
strand, GC content, or sequence identity.

Comparison with other ncRNA screens
We compare our predictions to four other genome-wide
screens for ncRNAs in drosophilids: 42,482 predictions
from an RNAz screen [31], 2469 predictions from a
more restrictive RNAz screen aimed at finding miRNAs
[49], 30,478 predictions from a REAPR screen [21], and
22,682 predictions from an EvoFold screen [48]. Site-
specific phastCons scores based on the MULTIZ 27-
way insect alignment were averaged for each predicted
motif or CRS, respectively. GC contents were calcu-
lated for each D. melanogaster sequence. For the predic-
tion overlaps, the coordinates of all three screens were
transformed from dm2 to dm6 genome release using
the UCSC LiftOver utility (https://genome.ucsc.edu/
cgi-bin/hgLiftOver). Predictions were intersected using
bedtools intersect with a minimal overlap of 1 bp.

Expression data set
Tiling array data were obtained from the modEN-
CODE database (v32 [74]), comprising 3,665,935 tran-
script regions. Each of the 80 experiments corresponds to
expression in one cell line or in one developmental stage of
one of two fly strains, either total, polyA, or nuclear RNA-
sequenced. In a minority of the experiments expression
was evaluated specifically in virgin heads, mated ovaries,
or the larval gut. Throughout this study, if not stated
otherwise, a CRS or any annotation instance is defined
as expressed if it overlaps a merged transcript region
by at least 50% of its size. For the expression heatmaps,
only CRSs showing expression in at least one experiment
were considered. The non-coding RNA annotation was
obtained from Rfam (v.12.2).

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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Expression enrichment
To obtain a random background for Fisher’s exact test,
the D. melanogaster genome was divided into 100-bp
windows (approximately the average size of a CRS), and
20,184 of the windows were sampled randomly. Samples
expressed in at least one to four modENCODE experi-
ments were intersected with the CRSs (overlap at least
50% of the CRS or genomic sample size). The result-
ing contingency table for each minimum number of
experiments consists of the numbers of genomic samples
expressed and not expressed and these overlapping CRSs
or not. Sampling and Fisher’s exact test were carried out
10 times for each minimum number of experiments. In
a second test, windows and CRSs overlapping coding or
UTR exons were removed in order to avoid a potential
mRNA exon bias. Sampling and Fisher’s exact test were
carried out as previously.

Co-expression with adjacent genes
To evaluate co-expression of a prediction with its closest
gene element we define the co-expression score Eco as

Eco = Ecg
Ec

− Eg¬c

E¬c
, (1)

where Ecg is the number of experiments in which both the
CRS and its closest gene element are expressed, Ec is the
number of experiments in which the CRS is expressed,
Eg¬c is the number of experiments in which the closest
gene element is expressed but not the respective CRS, and
E¬c is the number of experiments in which the CRS is not
expressed. Ecg

Ec is also referred to as Ratio 1 and Eg¬c
E¬c

as
Ratio 2.
For the analysis of synteny of co-expressed CRS-gene

pairs, orthologs of D. melanogaster genes in all 11 anno-
tated non-melanogaster species [75] were obtained from
FlyBase (FlyBase release FB2014_06, the most recent
release with all genome releases corresponding to the
genome releases used in the MULTIZ alignment), as well
as the corresponding gene annotations for each species.
Where necessary, FlyBase chromosome/scaffold identi-
fiers were transformed into UCSC identifiers with the help
of the respective assembly reports and GenBank accession
numbers [76]. In case of ties when determining neighbor-
ing genes of CRSs, i.e., multiple genes with the same dis-
tance to the CRS in D. melanogaster or any other species,
at least one ortholog had to fulfil the respective synteny
criterion (being the ortholog to a D. melanogaster closest
gene, being in the correct orientation with respect to the
CRS, or being within the maximum distance, 20,000 bp, of
the CRS).

Experiment-specific expression
We tested for expression enrichment of CRS-containing
biotypes in specific experiments, e.g., developmental

stages and cell lines. For the kth biotype Bk and the lth
modENCODE experiment El, we define the CRS-ratio
RCRS, anon-CRS ratio R¬CRS, and the ratio-difference Rd as

RCRS(Bk ,El) = N(Bk ,El,CRS)
N(Bk ,E,CRS)

,

R¬CRS(Bk ,El) = N(Bk ,El,¬CRS)
N(Bk ,E,¬CRS)

,

Rd(Bk ,El) = RCRS(Bk ,El) − R¬CRS(Bk ,El), (2)

where N(Bk ,El,CRS) is the number of biotype Bk
instances overlapping at least one CRS (minimum overlap
of 50% of instance or CRS size) expressed in the cur-
rently considered experiment El, and N(Bk ,E,CRS) is the
respective number expressed in any other experiment E.
Only instances expressed in at least three experiments
and contained in the CMfinder input alignments by at
least 50% of their size were considered. For each bio-
type and each modENCODE experiment, a one-sided
Student’s t-test (coding exons, 5’-UTR exons; normally
distributed non-CRS ratios) or Wilcoxon-Mann-Whitney
test (all other biotypes; non-CRS ratios not normally dis-
tributed) was performed to test the significance of devi-
ations of the CRS-ratio from the mean of all non-CRS
ratios for that biotype. Depending on the ratio difference
being larger or smaller than 0, the alternative hypothe-
sis for the R functions t.test() and wilcox.test() was set to
‘less’ or ‘greater’, respectively. All p-values were adjusted
for multiple hypothesis testing (Bonferroni). Exon and
intron biotypes in this analysis are from the FlyBase anno-
tation (dmel_r6.15, FlyBase release FB2017_02). Promoter
annotations were obtained from the EPDnew database
[77], enhancer annotations were obtained from the Fly
Enhancers database [78], and all non-coding annotations
were obtained from FlyBase and, where available, com-
bined with the Rfam annotation (Rfam 12.2). For calcu-
lating non-CRS ratios for intergenic regions (FlyBase) we
split them into 100 bp long windows and categorized them
into bins according to their GC content and sequence
identity (in the same way as the CMfinder predictions
for the FDR calculation). From each of these bins as many
intergenic windows were sampled as there are predictions
in that bin.

Differential expression
To analyze the correlation of RNA structures and differ-
ential expression between developmental stages, for each
biotype and each modENCODE experiment two expres-
sion vectors (with elements of 1 for expression in this
experiment, 0 for not being expressed) were generated:
one for all biotype instances containing CRSs, and one for
instances without CRS. Only instances that are expressed
in at least three experiments were considered. Then, for
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each possible combination of experiment i and experi-
ment j, the Hamming distance of the respective expression
vectors was calculated and normalized by vector length.
To describe the impact of RNA secondary structure on the
differential expression of developmental stages we define
the differential expression score as

Ediff(i, j) = DH(CRS)×|(DH(CRS)−DH(¬CRS)|, (3)

where DH(CRS) is the normalized Hamming distance of
the two vectors of biotype instances containing at least
one CRS and DH(¬CRS) is the respective value for bio-
type instances without CRSs.
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