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Abstract

Background: New single-cell isolation technologies are facilitating studies on the transcriptomics of individual cells.
Bio-Rad ddSEQ is a droplet-based microfluidic system that, when coupled with downstream Illumina library
preparation and sequencing, enables the monitoring of thousands of genes per cell. Sequenced reads show unique
features that do not permit the use of freely available tools to perform single cell demultiplexing.

Results: We present ddSeeker, a tool to perform initial processing and quality metrics of reads generated through
Bio-Rad ddSEQ/Illumina experiments. Its application to the Illumina test dataset demonstrates that ddSeeker performs
better than Illumina BaseSpace software, enabling a higher recovery of valid reads. We also show its utility in the
analysis of an in-house dataset including two read sets characterized by low and high sequencing quality. ddSeeker
and its source code are available at https://github.com/cgplab/ddSeeker.

Conclusions: ddSeeker is a freely available tool to perform initial processing and quality metrics of reads generated
through Bio-Rad ddSEQ/Illumina single cell transcriptomic experiments.
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Background
Recent advances in single-cell transcriptome profiling
(single cell RNA-seq, scRNA-seq), are improving our
understanding of different biological processes, with
impact in many areas of research, including the immune
system, brain and mammal development and cancer
[1, 2]. scRNA-seq techniques are contributing to refine
our knowledge of cell types and states [3, 4] and have been
successfully used to characterize intratumoral hetero-
geneity in different tumor types, including glioblastoma
[5], melanoma [6] and breast cancer [7]. Clinical applica-
tion of scRNA-seq has been also investigated by various
groups. Most of these studies have focused on dissect-
ing the interplay between tumor cell biology and cancer
treatment, with the ultimate goal of identifying new treat-
ment hypotheses [6, 8, 9]. A recent example includes
the application of scRNA-seq to triple negative breast
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cancer patients in order to understand clonal evolution in
response to chemotherapy [10].
A variety of computational tools have been designed
to address the specific challenges of scRNA-seq data.
These involve new normalization methods for dealing
with the small number of reads per gene and cell [11, 12],
imputation strategies to model the sparsity of the data
[13, 14], statistical methods to perform differential expres-
sion analysis [15, 16] and clustering techniques to capture
cell population heterogeneity [17] and cell population
dynamics [18].
Several platforms enabling single-cell transcriptome pro-
filing are based on droplet-microfluidic technology,
wherein cells are encapsulated into nanoliter droplets then
lysed and mRNA is barcoded [19]. Available commercial
systems include 10x Genomics Chromium [20] and Bio-
Rad ddSEQ Single Cell Isolator [21]. In particular, ddSEQ
is a new platform capable of isolating and barcoding about
300 cells per well. Libraries are then prepared by a spe-
cific Illumina kit (SureCell WTA 3’ [22]) and sequenced.
Though in its infancy, the Bio-Rad ddSEQ platform has
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been successfully used to characterize the molecular het-
erogeneity of cystic precursor lesions (IPMNs) and its role
towards progressive dysplastic changes [23]. ddSEQ data
have been also exploited for validating new computational
methods [16, 24].
Popular tools for the processing of scRNA-seq data
include Drop-seq tools [25], dropSeqPipe [26], dropEst
[27], scPipe [28] and zUMI [29]. The first essential step
in scRNA-seq is the identification of cell-specific bar-
codes. In Bio-Rad ddSEQ/Illumina cell barcoding, cells
are identified by the combination of three barcodes of 6
nucleotides in length. However, compared to the other
available platforms, the position of barcodes within Read
1 is not fixed due to the presence of phase blocks (Fig. 1).
This unique feature renders the use of currently freely
available tools for these data impossible; to date, the only
available and feasible tool is a commercial software inte-
grated in the suite of Illumina BaseSpace tools [30].
Here, we present ddSeeker, a new tool for the initial pro-
cessing of data generated through Bio-Rad ddSEQ experi-
ments that shows enhanced performance compared to the
available commercial software. Our tool can be integrated
in different scRNA-seq pipelines, allowing the users to
take advantage of popular pipelines for the processing of
scRNA-seq data. Additionally, ddSeeker provides a set of
metrics which can assist the user to evaluate the quality
of their own data.

Implementation
Our method is implemented following the Illumina rec-
ommendations for the analysis of Read 1 (R1) structure.
As reported in Fig. 1, we expect R1 to contain the molec-
ular tags to identify both single cells (cell barcodes) and

single transcript molecules (UniqueMolecular Identifiers,
UMI), while Read 2 (R2) contains the mRNA sequence.
To identify reads with correct molecular tags (valid reads),
our method implements the following steps:

1. the exact positions of the two linkers (L1 and L2)
within the sequence of R1 are retrieved;

2. the distance between the starting positions of the two
linkers is verified to be exactly 21 nt;

3. L1 is verified to start at least 7 nucleotides from the
start of the sequence;

4. the sequences of the two trinucleotides flanking the
UMI are verified to be ACG and GAC;

5. the sequences of the three barcode blocks (BC1, BC2,
BC3) and the UMI are extracted based on their
position relative to the linkers;

6. the sequences of the barcode blocks are compared
with a predefined list of known barcode blocks, and
retrieved only if a match is found.

In order to optimize the accuracy of our pipeline, we
also considered insertions and deletions in the analysis
of the sequences of linkers and barcodes (step 1 and 6)
and at most one mismatch. Indeed, based on the analy-
sis reported in Additional file 1: Figure S1 and Table S1,
we observed that events with more than one mismatch,
insertion or deletion in linkers represent a small fraction
of total events (1.4% for L1 and 1.2% for L2). In step 4
only one mismatch and no indels are permitted due to the
short length of sequences to be tested. For each valid read,
the cell barcode is defined as the union of the three bar-
codes (BC1 + BC2 + BC3). Cell identifier and UMI are
then associated to the corresponding R2. ddSeeker takes

Fig. 1 Schematic of Bio-Rad ddSEQ/Illumina reads’ structure (Top) In BioRad ddSEQ, barcoded beads capture mRNA molecules through
hybridization with mRNA poly-A tails. Each single DNA strand is characterized by the following structure: a phase block (PB), three barcode blocks
(BC1, BC2, BC3) interlinked by two different linkers (L1 and L2), and one UMI flanked by two trinucleotides (ACG and GAC). (Middle) Read 1 (R1)
contains molecular tags while Read 2 (R2) contains the information of the mRNA sequence (R1 and R2 are not in scale). (Bottom) Separation of cDNA
from the beads can occur at different nucleotides within the PB, thus making the position of the two linkers variable
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R1 and R2 fastq files as input and outputs an unmapped
BAM file containing R2 and corresponding cell barcode
and UMI molecular tags. ddSeeker uses as default a Drop-
seq tools -like tag scheme (XC for cell barcode and XM
for UMI), but different tag schemes can be chosen by the
user. For non-valid reads, ddSeeker reports the error iden-
tifier in a custom defined tag XE (see Additional file 1
for the description of possible errors). Our tool is writ-
ten in Python3 using Biopython [31] and pysam modules
[32]. ddSeeker can be integrated with existing scRNA-seq
pipelines, including Drop-seq tools, dropEst and scPipe.
A detailed description of the algorithm is reported in
Additional file 1. Analyses weremade using R custom scripts
[33] and plots generated by the ‘Tidyverse’ packages [34].

Results
Analysis of Illumina test dataset
To assess the performance of ddSeeker, we considered a
test dataset provided by Illumina obtained from human
embryonic kidney 293 (HEK 293) cells and NIH 3T3
mouse embryonic fibroblasts mixed at a 1:1 ratio (N=1400
cells in total). In this study, we considered one of the
four replicates (sample A, N=350 cells), that includes 68.2
paired-end million reads. Figure 2 reports the results of
the comparative analysis between ddSeeker and BaseS-
pace. Overall, ddSeeker and BaseSpace identified 62.6
(91.8%) and 59.4 (87.0%)million reads with valid barcodes,
respectively (Fig. 2a). The distribution of ddSeeker’s
error tags is reported in Additional file 1: Table S2 and

a c

b d

Fig. 2 Application of ddSeeker to Illumina test dataset a Dot plot reporting the number of reads for which ddSeeker and BaseSpace identify the
same barcode and UMI (Matched BC and UMI), ddSeeker and BaseSpace do not identify valid barcode and/or UMI (unretrieved), only ddSeeker or
BaseSpace were able to identify barcode and UMI (ddSeeker- and BaseSpace- only) and the number of reads identified with different barcode
and/or UMI by the two tools (Mismatched BC and UMI). b Cumulative fraction of reads per cell in the 5,000 most read barcodes for matched BC
reads (solid black line) and ddSeeker-only reads (dashed grey line). Vertical line corresponds to the number of valid cells based on the knee analysis
from the Illumina BaseSpace report (n=355). c Scatter plot of the number of reads with matched BC versus the number of ddSeeker-only reads for
the 355 valid cells. R is the Pearson’s correlation coefficient. d Scatter plot of the averaged normalized expression across the 100 most read cells of
the 200 most expressed human genes following ddSeeker (y-axis) versus BaseSpace (x-axis) pipelines



Romagnoli et al. BMC Genomics          (2018) 19:960 Page 4 of 7

shows that the most relevant errors were alignment error
in linker 2 (L2, 1.94%), followed by error in barcodes
(B, 1.86%) and alignment error in both linkers (LX, 1.54%).
To evaluate the performance of ddSeeker in retrieving
valid barcodes, we performed a read-by-read compar-
ison of cell barcodes and UMI identified by ddSeeker
and BaseSpace. Considering BaseSpace results as a ref-
erence, we computed the percentage of reads identified
by ddSeeker with the same cell barcode and UMI than
BaseSpace. We found that ddSeeker was able to cor-
rectly retrieve 100% of barcodes and UMI with no mis-
identification. About 8% of reads were flagged as reads
with no valid barcode or UMI by both the algorithms.
Of note, we found that ddSeeker was able to retrieve 5%
more reads with valid barcodes than BaseSpace (Fig. 2a).
We verified that all of these reads showed insertions or
deletions in the sequence of the linkers or barcodes.

Quality assessment of ddSeeker’s additionally detected reads
To evaluate the quality of barcodes exclusively identi-
fied by our tool, we first studied the cumulative fraction
of reads per cell in the matched (i.e., barcodes identi-
fied by both BaseSpace and ddSeeker) and ddSeeker-only
barcodes. As reported in Fig. 1b, we found an exact over-
lap between the two curves, both showing the knee at
about 350 cells, as expected based on Illumina BaseS-
pace report. We also investigated whether considering
insertions and/or deletions in our pipeline could intro-
duce biases in the quantification of valid barcodes (i.e.,
the presence of certain barcodes showing more insertions
or deletions than expected). As reported in Fig. 1c, we
observed that the number of ddSeeker-only reads linearly
correlates with the number of valid barcode reads identi-
fied by both algorithms (R > 0.999).
We then studied how the ddSeeker pipeline impacts
on downstream analysis, including read alignment and
gene counting. First, we evaluated whether the addition-
ally detected reads mapped equally well to the refer-
ence genome. To achieve that, we compared mapping
quality values extracted from the Illumina bam file for
matched and ddSeeker-only valid barcode reads. We
found that 72% of ddSeeker-only valid reads has high
mapping quality and, in general, the mapping quality
distribution for matched and ddSeeker-only valid reads
were markedly similar (Additional file 1: Figure S2). Sec-
ondly, we investigated the number of doublets detected
using ddSeeker and BaseSpace and observed no difference
(n=13 for both pipelines, see Additional file 1: Figure S3),
demonstrating that additionally detected reads show high
species-specificity. Lastly, we compared gene expression
estimations following ddSeeker and BaseSpace pipelines.
To calculate gene counts, we used the DigitalExpression
tool included in Drop-seq tools. A library size normal-
ization (i.e., gene counts per cell) was applied to quantify

gene expression levels. Figure 2d reports the mean gene
expression level for the 200 most expressed human genes
across the 100 most read cells using ddSeeker and BaseS-
pace (results for mouse genes are reported in Additional
file 1: Figure S4). We obtained high correlation (R >

0.999) between ddSeeker and BaseSpace, demonstrating
that overall gene expression estimation is not biased by
additionally detected reads by ddSeeker.

Application of ddSeeker to in-house dataset
We tested ddSeeker further, in the analysis of an in-house
dataset that includes 6 scRNA-seq libraries of the MDA-
MB-361 breast cancer cell line. Details about cell culture,
library preparation and sequencing are reported in the
Additional file 1. Our dataset was generated by two Illu-
mina runs characterized by low (cluster saturation) and
high sequencing quality (Table 1). FastQC analysis [35] of
a subset of R1 (N = 10M reads for both low and high
quality read sets) is reported in Additional file 1: Figure S5.
Using a 40-core machine, ddSeeker takes approximately

7.0 h to complete the analysis on 310,594,139 million
reads from both runs, corresponding to about 1.1 million
reads/cpu processed per hour. About 63% and 91% of the
total reads were identified as valid in Run 1 (low qual-
ity) and Run 2 (high quality), respectively. Figure 3a and
Additional file 1: Table S3 report the classification of the
errors found by ddSeeker in the R1 of the two runs, and
show that error tag distribution in Run 2 was compara-
ble with that one obtained in the Illumina test dataset. We
also found that the error tag distributions were the same
across the different scRNA-seq libraries (Additional file 1:
Figure S6). ddSeeker can output a text file reporting the
number of valid reads per cell which can be useful to pre-
liminary estimate the number of sequenced cells before
computationally intensive steps such as read alignment,
processing and gene counting (Fig. 3b). The number of
reads obtained in the 5000 most read barcodes for the two
runs is reported in Fig. 3c. Despite the difference between

Table 1 Sequencing run summary of the in-house dataset

Run 1 Run 2

Quality Low High

# Libraries 6 6

Clusters PF (%) 33.05 93.9

Q30 (%) 70.9 82.6

Total Reads 112993193 197600946

Valid Reads 70826303 (63%) 180526539 (91%)

# Cells (expected) 1800 1800

# Cells (ddSeeker) ≈ 3000 ≈ 3000

Valid reads are reads with valid barcodes and UMI. Expected number of cells is
based on cell capture efficiency, as declared by Bio-Rad
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Fig. 3 Application of ddSeeker to in-house dataset a Dot plot of the percentage of valid reads (PASS) and reads with errors in barcode and/or UMI in
the low (Run 1) and high (Run 2) sequencing quality read sets. Details regarding error classification are reported in Additional file 1. b Number of
reads per cell barcodes across the 5000 most read barcodes in the two read sets. Vertical dashed line indicates the number of expected cells (1800)
in our libraries based on ddSEQ specifics. c Cumulative fraction of reads per cell in the 5000 most read barcodes in the two read sets. All these plots
can be generated with make_graphs.R, a dedicated R script included in the ddSeeker package

the two read sets in terms of sequence quality, the curves
showed a similar trend.

Conclusions
ddSeeker is, to our knowledge, the first freely-available
tool to perform initial processing and quality metrics of
reads generated through Bio-Rad ddSEQ/Illumina exper-
iments. We performed a comparative study of ddSeeker
and BaseSpace in the analysis of an Illumina test dataset.
We showed that ddSeeker was able to identify 5% more
reads with valid barcodes and UMI than the Illumina
BaseSpace tool. The enhanced ability of ddSeeker in iden-
tifying reads with valid barcodes derives from its exclusive
feature that implements the analysis of insertions or dele-
tions events in the sequences of linkers and barcodes.
Additionally, we demonstrated the reliability of ddSeeker’s
additionally detected reads. Our analyses show that down-
stream analysis is not biased in terms of mapping quality,
presence of doublets and gene expression quantification.
Finally, we showed the utility of ddSeeker in the analysis
of an in-house dataset that includes two different read sets
characterized by low and high sequencing quality. To con-
clude, our analyses suggest that ddSeeker is a valuable tool
to perform quality control of Bio-Rad ddSEQ data, and
to identify valid reads for downstream scRNA-seq data
analysis.

Availability and requirements
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