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Abstract

Background: The application of genomic data and bioinformatics for the identification of restricted or
illegally-sourced natural products is urgently needed. The taxonomic identity and geographic provenance of
raw and processed materials have implications in sustainable-use commercial practices, and relevance to the
enforcement of laws that regulate or restrict illegally harvested materials, such as timber. Improvements in
genomics make it possible to capture and sequence partial-to-complete genomes from challenging tissues,
such as wood and wood products.

Results: In this paper, we report the success of an alignment-free genome comparison method, d�2; that
differentiates different geographic sources of white oak (Quercus) species with a high level of accuracy with
very small amount of genomic data. The method is robust to sequencing errors, different sequencing laboratories and
sequencing platforms.

Conclusions: This method offers an approach based on genome-scale data, rather than panels of pre-selected markers
for specific taxa. The method provides a generalizable platform for the identification and sourcing of materials using a
unified next generation sequencing and analysis framework.

Background
The annual trade in natural resources represents $3.35 T
of global imports and $3.25 T of global exports [1], and it
supports the world’s supply of food, building materials,
and fiber. Disturbingly, Global Financial Integrity estimates
the annual, transnational illegal trade in natural resources
to be valued at $90B-$276B [2]. Illegal trade in forest prod-
ucts is the single largest component of illegal trade, ac-
counting for ~ 50% of estimated annual losses. Illegal
logging contributes significantly to deforestation and forest
degradation, and these have cascading impacts on natural
resource conservation, global biodiversity, climate change
mitigation, and the economic health of billions of people
[3]. To mitigate trafficking of illegally-sourced wood, the

United States (2008), European Union (2010) and
Australia (2012) adopted regulations that prohibit the
import, export, transport, purchase or sale of illegally
harvested timber and plant products. These regulations
can impose civil and criminal penalties on buyers and
suppliers of wood products who fail to adopt “due care”
controls. A key component of due care is that wood or
wood products entering or exiting the U.S. must de-
clare the scientific name and geographic source of the
wood. Despite this requirement, mislabeling and docu-
ment falsification are widespread because few methods
are available to validate these declarations [4].
Historically, verification of wood has been accomplished

using features such as density, scent, cellular composition,
and vessel distribution [5]. This approach is rapid, but
generally incapable of identifying trees to species or pre-
dicting their geographic origin [6, 7]. Chemical [8, 9] and
genetic [10, 11] approaches are increasingly used to pro-
vide more accurate species identifications [4], but deter-
mining geographic origin continues to be a daunting task
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[12–15]. Here, we demonstrate an efficient use of next
generation sequencing (NGS) data to predict the geo-
graphic source of white oak species (Quercus subg. Quer-
cus). Unlike traditional genetic analysis, our approach uses
whole genome DNA sequence data without a priori selec-
tion of marker loci. This work extends studies showing
that background-adjusted alignment-free sequence com-
parison measures (CVTree [16]; d�

2 and ds
2 [17–20]) offer

improvements over other comparison measures (Euclid-
ean, Manhattan, d2 distances [21–23]) for the comparison
of molecular sequences. We chose white oaks for this ana-
lysis for three reasons: white oaks include hardwood spe-
cies with the highest export volume from the U.S. [24];
they cannot be readily discriminated using wood anatomy,
and at least one species (Q. mongolica from Russia) is pro-
tected by the Convention on International Trade in En-
dangered Species of Wild Fauna and Flora, and was the
focus of a U.S. Lacey Act conviction [25].
Using NGS data from 92 white oaks from North Amer-

ica (NA), Europe (EU), and Asia (AS), we show that for
each sample the two most similar white oak trees accord-
ing to the d�

2 dissimilarity measure are from the same geo-
graphic provenance based on small sequencing quantities
(e.g., 50 Mbp). Finally, we show that K-nearest neighbors
(KNN) classification yields close to 100% classification ac-
curacy of geographic provenance, even with data generated
from different sequencing platforms and genome reduc-
tion methods. Our study demonstrates that continental
origin of trees can be accurately predicted using KNN
coupled with d�

2 dissimilarity, and that the method offers a
simple and unified approach for geographic and taxonomic
identification that can be applied to any biological sample.

Results
Genomic dissimilarity analyses based on d�

2 resolve oak
geographic origins
We used six alignment-free distance/dissimilarity measures
(Manhattan, Euclid, d2 [26], CVTree [16], d�

2 and ds
2 [17–

19]) based on the relative frequencies of k-mers to calculate
pairwise distances of white oak tree samples based on DNA
samples of 50, 100 and 300 Mbp. Figure 1 shows the circu-
lar plots [27] of the oak trees at sequencing quantity of 100
Mbp using the six dissimilarity measures (circular plots at
sequencing quantities of 50 Mbp and 300 Mbp are shown
as Additional File 1 (Figure S2). In each plot, the most simi-
lar sample to each of the reference specimens is linked. Of
the six dissimilarity measures, only d�

2 and ds
2 showed 100%

accuracy in linking a sample to its continent-of-origin.
Principal coordinate analysis of the pairwise d�

2 dissimi-
larities among 92 samples at sequencing quantities of 50,
100 and 300 Mbp showed that the first three principal co-
ordinates accounted for ~ 25% of variance in dissimilarities.
Samples could be separated into three distinct groups

corresponding to their continental origins (Fig. 2) using the
first three principal coordinates. The first principal coord-
inate separates all samples from different primary conti-
nents, i.e., North America and Europe/Asia, and the third
principal coordinate separates samples from Europe (EU)
versus Asia (AS). Although the second principal coordinate
of the AS tree samples is generally larger than that of the
EU tree samples, it does not completely separate the EU
tree samples from the AS tree samples. The latitudes of the
tree samples are not strongly associated with the first three
principal coordinates (Additional File 2, Figure S3).

Mean d�
2 is smaller within continents than among

continents
The distributions of d�

2 dissimilarity values were compared
for white oaks within- and among-continents across all
samples, and at three sequencing quantities (100 Mbp in
Fig. 3; 50 and 300 Mbp in Additional File 3, Figure S4).
Mean pairwise dissimilarities within a continent are sig-
nificantly smaller than dissimilarities among different con-
tinents (Wilcoxon-Mann-Whitney test; p < 0.001). Within
continents, white oak samples from EU show the highest
similarity, followed by white oaks from AS; white oaks
from NA showed the greatest average within-continent di-
vergence. Among-continent comparisons showed that EU
and AS have the highest similarity, and that white oaks
from NA are almost equally dissimilar to EU and AS white
oaks; these dissimilarities mirror the chloroplast genome-
based phylogenic estimates for these same taxa [28]. Our
observations suggest that the continental origin of white
oak samples can be predicted by KNN, in which the
continent-of-origin for a sample is predicted as the con-
tinent containing the closest neighbors based on d�

2 .
Figure 4 shows the relationship between d�

2 dissimilar-
ity and the great-circle distance of oak samples. The d�

2

dissimilarity and the great-circle distance are signifi-
cantly and positively associated, and correlation coeffi-
cients between these measures increase with increasing
quantity of DNA sequence. For example, at a sequencing
quantity of 50 Mbp, 22.1% of the d�

2 variation can be ex-
plained by the great-circle distance (Pearson R = 0.470).
By increasing the sequencing quantity to 300 Mbp,
47.4% of the d�

2 variation can be explained by the great-
circle distance (Pearson R = 0.688). Despite the statisti-
cally significant associations between great-circle dis-
tance and d�

2 , individual variation in pairwise d�
2 is

sufficiently high that predicted pairwise great-circle dis-
tances are of limited practical value.

KNN predictions are robust to multiple sources of errors
Based on the d�

2 dissimilarity measure, we used KNN to
build a predictive model for the continental origin of tree
samples. Table 1 shows the mean prediction accuracy using
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Fig. 1 (See legend on next page.)
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KNN over 100 training and test data sets for different se-
quencing quantities, values of K, and sizes of training data.
In all cases, K = 1 and K = 2 have similarly high prediction
accuracies. The prediction accuracy of KNN increases with
sequencing quantity and the size of training samples. For
example, when K = 1 and training size is at least 75

reference samples, KNN prediction accuracy can reach
100%, even when the quantity of sequence is as low as 50
Mbp. With only 15 reference samples, KNN prediction ac-
curacy ranges from 89% (50 Mbp) to 96% (300 Mbp).
Table 2 shows the average prediction accuracy of KNN

with 5% additional simulated sequencing error in test

(See figure on previous page.)
Fig. 1 The circular plots of 92 white oak tree samples based on the six dissimilarity measures: a) d�2 , b) d

s
2 d2, c) Euclidean, d) d

s
2, e) CVTree and (f)

Manhattan, using 100 Mbp of next generation sequencing data. Different sectors correspond to different continents, with NA in red, EU in
orange, and AS in blue; GenBank accession numbers are identified in white font. Within each sector, samples are sorted by their longitude, so
that samples that are geographically close are also close to each other in the figure. The most similar tree sample to each sample is linked. The k-
mer length is 12 and the Markov order of the background sequence is 10 for d�2 , d

s
2; and CVTree. The most similar sample to each sample

according to d�2 and ds2 are from the same continent-of-origin

a

c

b

Fig. 2 The principal coordinate plots (PCoA) of 92 white oak tree samples based on the d�2 dissimilarity values using a) 50 Mbp, b) 100 Mbp, and
c) 300 Mbp of next generation sequencing data. The k-mer length is 12 and the Markov order of the background sequence is 10. With sequence
quantity of 100 and 300 Mbp, the Europe (EU) and Asia (AS) samples are clearly separated in the PCoA plots. Four western North America
samples separate from the other eastern North America samples
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data for different sequence quantities, values of K, and
sizes of training data. While prediction accuracy decreases
with increasing sequencing error rate, prediction accur-
acies can reach 100% at sequencing quantity of 100 Mbp
and a training set of 91 samples. At sequencing quantity
of 300 Mbp, the prediction accuracy can reach 100% with
a training set of 75. For most modern sequencers, the
per-position sequencing error rate is much lower than 5%;
for example, the sequencing error rate for Illumina is
about 0.1% [29]. Our results show that KNN can predict
the continental origins of oaks based on d�

2 dissimilarity
values at a high accuracy, and the prediction accuracy is
robust to sequencing errors if the sequencing quantity in
the training data set is at least 100 Mbp.

KNN predictions are robust to sequencing technologies
We next applied the KNN approach to predict the con-
tinental origins of white oak samples from independent
laboratories using a) different Illumina sequencing plat-
forms, b) various short- and long- reads sequencing
technologies, and c) RAD sequencing. The results are
summarized in Fig. 5. The corresponding figures using
ds
2 and Manhattan dissimilarity measures are shown in

Additional File 4 (Additional file 4: Figure S5). The first
example is a white oak sample from NCBI using Illu-
mina NGS data produced by independent laboratories
(described in Methods). For all 11 NGS data sets from
the Californian Valley Oak genome project, the most
similar sequence in our training set was a tree from the
same species (Quercus lobata; SRR2053043), also from
California. For these libraries, the second most similar
sequence from our training set came from a phylogen-
etically closely-related species from a proximal geo-
graphic region in western North America (Q. garryana,
SRR2053062; Oregon, USA) [28]. For all the 11 data
sets, the top 20 most closely related samples were all
from NA. Therefore, KNN with K = 1 to 20 can accur-
ately predict the continental origins of the tree, irre-
spective of the library preparation methods and Illumina
sequencing technologies with different read lengths (e.g.,
100 bp single-end vs. 150 bp paired-end).
The second example is a white oak sample from NCBI

that was sequenced using a mix of short- and long-read
sequencing technologies (described in Methods). For the
eight Illumina data sets from the Pendunculate Oak gen-
ome project (Q. robur; provenance near Lausanne,
Switzerland), the smallest d�

2 dissimilarity between each

data set and the 92 training samples ranged from 0.23–
0.24. The two most similar sequences in our training set
were from a closely related European species (Q. petraea;
SRR2053113, SRR2053111) of German provenance. For
these libraries, the five most similar samples included Q.
robur and Q. petraea, all from EU. Therefore, we can make
accurate predictions for continent-of-origin based on KNN
with K = 1 to 5. This genome project also used long-read
PacBio sequencing [30], a method that shows a higher
per-position error rate of 11–15%. The smallest d�

2 dissimi-
larity values between the Pendunculate Oak genome Pac-
Bio sequence and the training data were 0.42, indicating
substantial differences attributable to the different sequen-
cing platforms. Despite these large dissimilarities, the most
similar training samples still included Q. robur and Q. pet-
raea from EU. Therefore, if we use 1NN as the classifier
using d�

2 dissimilarities, the prediction accuracy is 100% ir-
respective of the sequencing platform used. Only in two
cases, the second most similar samples are from AS.
Genome-reduction methods are increasingly used in

population genomic analysis, so we tested KNN classifica-
tion for continent-of-origin using seven white oak samples
sequenced with the RAD-Seq technique [31], including 2
from AS, 2 from EU, and 3 from NA [32]. These samples
were highly divergent from our 92 white oak reference
samples, with d�

2 dissimilarities ranging between 0.483 and
0.491. In two cases, identical DNAs were compared by
RAD-Seq and shotgun sequencing: these include Q. mon-
golica (d�

2 = 0.488) and Q. petraea (d�
2 = 0.485). Overall,

we found that the top two highest similarity comparisons
for all RAD-Seq samples were reference sequences from
the correct continental origin, indicating 100% prediction
accuracy. For the identical DNAs sampled by two sequen-
cing methods, RAD-Seq samples did not show minimum
d�
2 dissimilarity with their corresponding shotgun Illumina

samples, but were instead ranked 5th (Q. mongolica) and
6th (Q. petraea) among the 92 pairwise comparisons.
These results indicate that KNN classification of d�

2 dis-
similarities lack the specificity required for individual
identification for samples obtained using different genome
sampling methodologies, but that geographic prediction
accuracy is sufficiently high for continent-of-origin predic-
tion in white oaks.

Assigning confidence to the predicted continental origins
The predicted continent of origin of a wood sample de-
pends on the reference samples and the NGS data. To

(See figure on previous page.)
Fig. 3 Comparison of intra- and inter-continental d�2 dissimilarities with sequence quantity of 100 Mbp based on a) Asian, b) European, and c)
North American sources. The k-mer length is 12 and the Markov order of the background sequence is 10. The p-values were calculated based on
the Wilkinson-Man-Whitney test statistic and by permuting the continental labels of the white oak tree samples 107 times. The inter-continental
d�2 dissimilarities are significantly higher than intra-continental d�2 dissimilarities
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Fig. 4 The relationship between d�2 dissimilarity values and great-circle distances among the tree samples based on sequence quantity of 50, 100 and
300 Mbp. The d�2 dissimilarity values are significantly positively associated with the great-circle distances and both the Pearson and Spearman correlation
coefficients increased with sequence quantity. However, the d�2 dissimilarity is not a strong predictor of great-circle distance
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evaluate the influence of reference sample composition
on prediction accuracy, we defined reference-confidence
(RC) by random sampling of the references and NGS-
confidence (NC) by random sampling of reads (see
Methods section for details). We calculated the RC and
the NC of the predicted continental origins of the Califor-
nia Valley Oak tree and the Swiss Pendunculate Oak tree.
For the 11 NGS data sets derived from the California Val-
ley Oake, all the RC and NC indicate 100% accuracy for K
= 1 to 10. Among the 30 data sets derived from the Swiss
Pendunculate Oak, 14 data sets have RC of 100% and 13
data sets have RC value between 99 and 100%. Only three
data sets, SRR3860432, SRR3860434, SRR3860435, have
RC value of 66, 90, and 74%, respectively. For all these
data sets, they were predicted to come from EU/AS with
100% confidence. In terms of prediction variation due to
NGS reads data, among the 207 non-overlapping data sets
from the 30 reads sets, the predicted continental origins
for 205 sets were EU and 2 data sets with predicted origin
as AS. Therefore, the predictions were not affected by the
different non-overlapping data sets of DNA sequences.

Discussion
In this paper, we show that the continental origin of
plant materials can be identified based on the applica-
tion of d�

2 and KNN classification from a small sample

of random DNA sequences. The challenge of identifying
geographic provenance and species identification is not
limited to illegal timber trade, but is problematic for all
biological materials. Plant material identification has ap-
plications to food safety [33–35] and product labeling
[36], and is of increasing importance to conservation
and sustainable agriculture [15]. Introductions of exotic
invasive species can occur as a result of mislabeling in
the horticulture trade [37]. Game meat sold commer-
cially in the U.S. and elsewhere is often mislabeled [38,
39]. Genetic approaches are used to identify illegal prod-
ucts in trade [4, 40], but as traditionally applied, they
can be expensive, time-consuming to develop, and diffi-
cult to scale. The method we describe here can be ap-
plied uniformly to all biological materials, eliminating
the need for pre-defined panels of genetic markers. The
approach is robust to different laboratory methods and
sequencing environments, making it easy to automate
for speed and consistency. This advance represents a
major step forward in determining geographic proven-
ance and taxonomic identity through genome-scale
comparisons, and this is an essential prerequisite in
order for genomics technologies to make an impact on
this daunting global challenge. We recognize that the
sourcing of wood may be particularly challenging due to
the difficulties of recovering sufficient DNA from wood

Table 1 KNN accuracy on test data for different sample sizes, test sizes, training sizes and different numbers of neighbors K used

Test size Training size K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

Samples of 50 MBases

1 91 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.97 0.88 0.94

17 75 1.00 1.00 0.99 0.99 0.97 0.97 0.95 0.96 0.94 0.96

32 60 0.99 0.99 0.97 0.97 0.94 0.95 0.93 0.95 0.93 0.95

47 45 0.98 0.98 0.95 0.96 0.93 0.94 0.93 0.95 0.91 0.93

62 30 0.95 0.95 0.92 0.93 0.90 0.93 0.90 0.92 0.89 0.91

77 15 0.89 0.89 0.85 0.87 0.81 0.82 0.79 0.77 0.73 0.67

Samples of 100 MBases

1 91 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.96 1.00

17 75 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.99 0.97 0.99

32 60 1.00 1.00 0.98 0.99 0.97 0.98 0.96 0.97 0.95 0.96

47 45 0.99 0.99 0.97 0.98 0.96 0.97 0.95 0.97 0.95 0.97

62 30 0.98 0.98 0.95 0.96 0.94 0.96 0.93 0.95 0.90 0.91

77 15 0.93 0.93 0.90 0.91 0.86 0.84 0.81 0.78 0.70 0.67

Samples of 300 MBases

1 91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

17 75 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

32 60 1.00 1.00 0.99 1.00 0.99 1.00 0.98 0.99 0.98 0.99

47 45 1.00 1.00 0.99 0.99 0.98 0.99 0.98 0.99 0.97 0.98

62 30 0.99 0.99 0.97 0.98 0.96 0.97 0.94 0.95 0.91 0.92

77 15 0.96 0.96 0.92 0.93 0.86 0.86 0.81 0.79 0.74 0.71
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tissues. However, ongoing work suggests this issue is
superable, even for challenging woods like dense and
pigmented rosewood species [41]. Therefore, joint devel-
opment of laboratory methods and bioinformatic tools
like those described here maybe especially successful.
The use of genetic information to identify the source

of natural products is a practical application of popula-
tion and landscape genetics that is widely applied to
track the trade of protected species [40]. The advantages
of genomics approaches include: (1) identification and
determination of geographic origin are based upon a
century of established population genetics and evolu-
tionary theory because the data are explicitly genetic; (2)
large reference databases may be constructed rapidly by
leveraging pre-existing herbarium or museum collec-
tions and using only milligrams to tens of milligrams
from a diversity of tissues; and (3) the sensitivity of ana-
lysis is easily scalable by increasing sequencing depth.
For the alignment-free methods discussed here, there is
no need to develop specific genetic markers, which
greatly simplifies the process. Finally, the method can be
applied to any biological material without a priori know-
ledge of the species’ identity or geographic source. In
contrast, the traditional population genetic methods
(e.g., species-specific SNP arrays) may offer comparable

resolution or cost efficiencies on a per-sample basis once
such genetic methods are developed, but they require
much more development efforts and much greater a
priori knowledge; consequently, their practical utility for
addressing such challenges as identifying illegally
sourced natural products has been severely limited. The
potential for universal procedures makes genomics ap-
proaches especially promising for highly processed mate-
rials, such as mixtures, composites, or veneers that
many include multiple unrelated biological materials.
Chemical methods, such as DART-TOF mass spec-

trometry, have some similarities as a universal approach
to sample identification. Data are captured in a uniform
fashion from diverse sample types, and then compared
to a reference database of known materials for identifica-
tion [13, 42]. DART-TOF mass spectrometry can identify
and categorize novel samples based upon their chemical
profiles, and has the potential to differentiate popula-
tions [13]. However, it is unclear whether the precision
of the chemical analysis methods is equivalent to that of
genomics or genetic marker analysis methods. Further,
unlike genetics, there is no theory that enables extrapo-
lation from one chemical profile to another, so accurate
chemical identification will be entirely determined by
the scale of available reference databases. Stable isotopes

Table 2 KNN accuracy on test data with 5% simulated sequencing error for different sample sizes, test sizes, training sizes and
different numbers of neighbors

Test size Training size K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

Samples of 50 MBases

1 91 0.93 0.93 0.90 0.92 0.90 0.91 0.84 0.85 0.71 0.81

17 75 0.88 0.88 0.84 0.87 0.82 0.83 0.76 0.79 0.71 0.78

32 60 0.86 0.86 0.80 0.83 0.78 0.79 0.74 0.79 0.75 0.82

47 45 0.80 0.80 0.73 0.76 0.69 0.74 0.71 0.76 0.73 0.80

62 30 0.77 0.77 0.68 0.75 0.71 0.77 0.74 0.79 0.78 0.81

77 15 0.66 0.66 0.64 0.68 0.70 0.74 0.74 0.73 0.69 0.67

Samples of 100 MBases

1 91 1.00 1.00 0.98 1.00 1.00 1.00 0.99 0.99 0.82 0.92

17 75 0.99 0.99 0.96 0.98 0.93 0.93 0.86 0.90 0.82 0.88

32 60 0.96 0.96 0.92 0.94 0.87 0.89 0.84 0.87 0.83 0.88

47 45 0.93 0.93 0.87 0.90 0.83 0.87 0.83 0.88 0.83 0.88

62 30 0.86 0.86 0.79 0.84 0.78 0.83 0.80 0.84 0.82 0.85

77 15 0.77 0.77 0.72 0.76 0.73 0.75 0.73 0.72 0.68 0.65

Samples of 300 MBases

1 91 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.95 0.98

17 75 1.00 1.00 1.00 1.00 0.98 0.99 0.95 0.97 0.93 0.95

32 60 0.99 0.99 0.97 0.98 0.94 0.95 0.92 0.95 0.93 0.95

47 45 0.98 0.98 0.94 0.95 0.92 0.93 0.91 0.94 0.92 0.95

62 30 0.95 0.95 0.90 0.93 0.90 0.93 0.89 0.91 0.87 0.89

77 15 0.88 0.88 0.84 0.86 0.81 0.82 0.78 0.76 0.72 0.70
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have also been used to identify the geographic source of
natural products [43]. Like chemical analysis, analysis of
stable isotopes is entirely based upon availability of rele-
vant empirical databases; there is no established theory
linking geographic variation in mineral isotopes and that

in co-occurring biological samples. While isotopes are
considered to provide location information independent
of population genetic structure and even species identity,
isotopic fractionation can in fact depend on these fac-
tors. Presently, stable isotope analysis may be effective

a

b

c

Fig. 5 The circular plots for independent samples sequenced using (a) Illumina NGS of a California Valley Oak tree, (b) a mixture of short- and long-
read from with both Illumina and PacBio sequencing of the Pendunculate Oak tree, and (c) seven diverse tree samples using RAD-seq.
The d�2 dissimilarity measures of each independent sample with the 92 reference samples were calculated and the two most similar
reference samples are linked
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for determining geographic origin among sites dispersed
by at least hundreds of kilometers; however, they lack
the precision to differentiate more finely and, unlike
genetic information, cannot differentiate individuals.
Future work that directly compares and contrasts these
approaches across a wide variety of different sets of
common samples is essential, as a combination of ap-
proaches may ultimately be needed for authoritative as-
sessment of taxonomic identity and geographic origin.
We evaluated six alignment-free sequence comparison

dissimilarity measures for predicting continent-of-origin
based on NGS short read data from 92 white oak trees
sampled in North America, Europe, and Asia. The re-
cently developed background-adjusted dissimilarity mea-
sures d�

2 and ds
2 correctly predicted the continent-of-

origin with highest accuracy, and we explored prediction
accuracies of d�

2–based KNN classification for the contin-
ental origins of white oak samples. We found that predic-
tion accuracy reaches 100% with as little as 50 Mbp
sequence data (< 1/10 the size of the white oak genome),
small values of K (1–2), and a modest training database of
75 samples. With a larger training database of 92 trees,
the prediction accuracy is 100% for 100 Mbp of sequence
data and larger values of K (< 6). Although the prediction
accuracy of KNN decreases with increasing sequencing
error, the prediction accuracy of KNN can be as high as
100% with 5% additional errors over the observed experi-
mental errors, as long as the sequencing quantity is at
least 100 Mbp. This suggests that d�

2 -based classifica-
tion is sufficiently accurate for portable nanopore-based
sequencers [44]. This would expand the utility of field-
based DNA sequencing beyond simple organisms with
small genomes to organisms with larger genomes, and
open new applications for remote field-based studies
that put DNA-based identification closer to supply re-
gions with the greatest risk of illegal harvesting.
To evaluate the applicability of d�

2–based KNN pre-
diction of continent-of-origin for oak DNA sequence
data from different library preparation methods and
different sequencing platforms, we predicted the con-
tinental origins of tree genome sequences obtained
from NCBI that were based on whole genome se-
quencing (Q. lobata from NA; Q. robur from EU) and
one genome reduction technique (RAD-Seq; seven
trees from AS, EU and NA). We found that different
library preparation methods and laboratories had the
smallest impact on d�

2 dissimilarity, that different se-
quencing platforms (Illumina versus PacBio) had a
larger effect, and that different genome sampling
methods (shotgun sampling versus RAD-Seq) had the
largest effect. Surprisingly, KNN still predicted contin-
ental origins of oak trees perfectly for all of these
methodological permutations (laboratory; sequencer;

genome sampling), as long as the query tree sample
NGS data was compared with reference tree data de-
rived from a single, accurate sequencing platform
(Illumina, in our case). Although technical and sam-
pling errors in data acquired using PacBio or RAD-Seq
are larger than those in the reference data sets gener-
ated using Illumina sequencing, data from these alter-
native methods still show smaller dissimilarities to the
correct geographic assignment, and this allows KNN to
accurately predict the continental origins of tree
samples.
In this study, we predicted the continent-of-origin for

oak trees with high accuracy. “Continent-of-origin” is a
broad definition for geographic origin, but it is relevant to
laws pertaining to commercial trade of white oak wood.
The white oaks include some of the most important hard-
woods for flooring and furniture, and represents the spe-
cies with the highest export volume from the U.S. [24].
The generic trade name “white oak” applies to over a
dozen of the 50+ known species from Quercus sect. Quer-
cus, and they are geographically distributed across North
America, Europe and Asia [45]. One species from this
group – Q. mongolica – is protected by the Convention
on International Trade in Endangered Species Appendix
III as regionally threatened due to pressure from illegal
logging (http://checklist.cites.org). Species of white oak
cannot be discriminated using anatomy or chemistry, and
this has allowed illegally-harvested Q. mongolica wood to
be mixed with legally-sourced white oak wood in the com-
mercial product stream [25]. For white oaks, quickly and
accurately determining the geographic source of wood to
country, continent, or hemisphere would make it possible
to independently validate claims of geographic origin and
taxonomy for diverse wood products.
White oaks are notorious for exhibiting high intraspe-

cific variation, low reproductive barriers, and genetic vari-
ation that transcends species boundaries [46, 47]. This
makes white oaks an exceptionally challenging group to
classify based on DNA variation. Evolutionary studies
based on chloroplast and nuclear genome partitions have
shown that the combined influences of hybridization, geo-
graphic isolation, and evolutionary divergence [28, 48, 49]
have created a network of genealogies that cannot be
translated into simple classifications [15, 50](e.g., DNA
barcodes). The scale of ‘continent’ is where phylogenetic
and geographic signals show the greatest congruence in
white oaks [28], and this is the signal we are able to cap-
ture with our alignment-free method. In this particular
case, the taxonomic identity of samples within the group
of white oaks cannot be determined, but the continental
geographic origin can be determined with great accuracy.
In less complex biota than the genus Quercus, the d�

2 –
based KNN prediction approach may be informative at
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finer geographic scales (e.g., specific countries, provinces,
or conservation reserves), and it has the potential to be
extended to determining taxonomic identity.
The fact that our approach works so well for differenti-

ating white oaks, one of the most complicated groups of
trees, is strong indication that it has wider utility for deter-
mining the geographic origin and taxonomic identity of a
broader array of biological samples. Not only is our ap-
proach effective, it can also be implemented uniformly
across any taxon that can be sampled by shotgun sequen-
cing or ‘genome skimming’ [51]. The practical implica-
tions of this are enormous, given the recent rapid growth
in DNA sequencing capacity, as well as the massive scale
of commerce involving biological material and the high
prevalence of provenance and taxonomic mislabeling. The
improvements in identification described here can directly
aid ongoing domestic and international efforts to improve
legality, an important facet of sustainability.

Methods
NGS data from white oak samples
NGS whole genome shotgun (WGS) sequencing data of
99 white oaks from North America, Europe and Asia
were downloaded from NCBI BioProject PRJNA269970.
The sequence data for these samples was derived from
leaf tissue sampled from specimens collected in the field,
which were previously published [15]. Four samples
(SRR2053123, SRR2053080, SRR2053066, SRR2053060)
showed less than 8 Mbp sequence data and were dis-
carded due to insufficient data. Two-dimensional PCoA
of the 95 tree samples based on all six dissimilarity mea-
sures identified three samples (SRR2053124 [Q. robur],
SRR2053125 [Q. robur], SRR2053082 [Q. dentata]) as
extreme outliers (Additional File 5, Figure S1). These
samples also had low sequence yields (237 Mbp, 274
Mbp, 473 Mbp), which could be indicative of poor li-
brary quality; for this reason, these samples were also re-
moved from analysis, leaving 92 samples with sequence
yields in the range of 360 Mbp to 1765 Mbp.
Mean dissimilarity measures used in this study are

weakly and inversely correlated with sequence quantity.
To reduce confounding effects caused by different se-
quence quantities, we down-sampled data for all 92 sam-
ples to produce three different datasets. Two datasets
consisted of random samples of reads totaling to 50
Mbp and 100 Mbp for each sample, respectively. The
third consisted of reads totaling to 300 Mbp. All samples
were divided into three geographic categories based on
their continental origin. Samples from the United States
and Canada were categorized as North America (NA),
samples from west of 60°E longitude were categorized as
Europe (EU), and samples from east of 60°E longitude
were categorized as Asia (AS).

Dissimilarity measures between genomes based on NGS
data
We used six alignment-free distance/dissimilarity measures
based on the relative frequencies of k-mers (k-grams,
k-tuples, k-words) to compare any pair of samples. These
are the traditional Manhattan, Euclid, and d2 [26] dis-
tances, and three recently developed background-ad-
justed dissimilarity measures: CVTree [16], d�

2 and ds
2

[17–19]. Detailed definitions of these measures are
given in Additional File 6. The background-adjusted
dissimilarity measures are obtained based on a model
of the background DNA sequence using an m-th order
Markov chain, with m estimated using the method de-
veloped for NGS short read data [18]. For the available
white oak NGS data, m = 10. Previous studies showed
that d�

2 and ds
2 performed well when k = m + 2 [21].

Therefore, we used k = 12 and Markov order m = 10 to
calculate the dissimilarity between pairs of samples. For
comparison, we also used k = 12 in the calculation of
the traditional Manhattan, Euclid and d2 distances. All
calculations of the pairwise dissimilarity values were
carried out using the software package CAFE [22], a
user-friendly and efficient package for calculating 28
alignment-free sequence dissimilarity measures.

Circular plots and principal coordinate analysis
For each sample, we found the most similar samples
to it and linked them using the circular visualization
tool [27] based upon each of the six pairwise distance/
dissimilarity measures. Of the six dissimilarity mea-
sures, the circular plots of the 92 samples show that
the most similar samples are from the same continent-
of-origin using the d�

2 and ds
2 dissimilarity, while

others contain some mistakes. Since d�
2 is simpler to

calculate than ds
2 and ds

2 is more sensitive to sequen-
cing platforms (Additional File 4, Figure S5(A)), we fo-
cused on d�

2 for the remaining studies. Pairwise d�
2

dissimilarities among the 92 white oak samples (33
samples from Asia, 16 samples from Europe, 43 sam-
ples from North America) of 50, 100, and 300 Mbp
were used for principal coordinate analysis using R.

Intra- and inter-continental d�
2 dissimilarity distributions

For each quantity of sequence (50, 100 and 300 Mbp),
we contrasted pairwise intra-continental dissimilarities
with pairwise inter-continental dissimilarities. The hy-
pothesis that intra-continental dissimilarities should be
lower than inter-continental dissimilarities was tested
with the Wilcoxon-Mann-Whitney (WMW) test statis-
tic. To obtain a p-value, we permuted the continental la-
bels of the tree samples 107 times and then compared
the intra- with inter-continental d�

2 dissimilarities using
the WMW statistic for the permuted samples. We
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approximated the p-value by the fraction of times that
the WMW values for the permuted data were higher
than that for the original labelled data.

Continental origin prediction by KNN and d�
2

A K-nearest neighbors (KNN) algorithm was used to
predict the continental origins of white oaks. For each
quantity of sequence (50, 100 and 300 Mbp), samples
were randomly divided into training and test data sets,
with the training set making up 91, 77, 60, 45, 30 or 15
of the total 92 tree samples. For each sample in the test
set, we found its K-nearest neighbors measured by d�

2 in
the training set and predicted its continental origin by a
majority vote. One hundred distinct splits of the data
into training and test data sets were constructed, for
each of which the origin was predicted for a range of K
from 1 to 10.
To investigate the effects of sequencing error on the

prediction accuracy of KNN, we randomly mutated the
sequences by altering individual nucleotides at a rate of
5%; erroneous bases were selected with equal probability
without regard to transition/transversion bias or regional
nucleotide composition. We recalculated d�

2 dissimilar-
ities between test samples and training samples and then
calculated the prediction accuracy, and repeated the
process of evaluating the KNN prediction accuracy 100
times. We then compared the average KNN prediction
accuracy with simulated errors to the KNN prediction
accuracy without simulated errors; both cases included
the non-zero background of naturally occurring errors.

Effect of reference tree on geographic prediction
accuracy
For each DNA sample, the predicted continental origin
depends on the identity of reference trees and the NGS
data obtained from the query sample. We quantified
variation in prediction due to each of these sources
using random resampling. First, we created 1000 sets of
reference tree samples, each consisting of a random se-
lection with replacement of 92 reference tree samples
from the original 92 samples. Continental origin was
predicted with K = 1 and K = 3. The reference-confidence
(RC) was defined as the fraction of times that the pre-
dicted continental origin is consistent with that using all
92 original reference tree samples.
To quantify the variation resulting from NGS data de-

rived from the unknown samples, we created 10 samples
from the data by sampling reads to a total of 100 Mbp
per sample without replacement. The NGS-confidence
(NC) is defined as the fraction of times the predicted
continental origin is the same as that for the most com-
monly predicted origin among the 10 runs.

Effect of laboratory and sequencer error on accuracy
To test if our computational method of predicting contin-
ental origin is sensitive to variation in NGS library con-
struction method or sequencing platform, we assembled
data from other genomics studies of white oaks that
were unrelated to the training data set, and used the
data to predict continent-of-origin for each sample.
For each of these comparisons, we randomly chose
100 Mbp from each data set, calculated the d�

2 dis-
similarity between these datasets and the 92 samples
in our reference data set, and used KNN to predict
the continental origins of the test samples. Three
data sets were used and the characteristics of all sam-
ples are given in Additional file 7 (Table S1).

(A)Total genomic data derived from one North
American California Valley Oak (Q. lobata Nee),
a white oak member from Sect. Quercus (https://
www.ncbi.nlm.nih.gov/bioproject/308314; https://
valleyoak.ucla.edu) [52]. Samples were sequenced
using Illumina HiSeq2500 with different library
preparation methods and read lengths than those
used to construct our reference library. These
data allowed us to test whether different library
construction methods produce accurate geographic
predictions.

(B) Total genomic data derived from one European
Swiss Pedunculate Oak (Q. robur L.), another
white oak member from Sect. Quercus (https://
www.ncbi.nlm.nih.gov/bioproject/327502). DNA
was isolated from leaves of two branches of a
234-year-old oak tree [53]. This project includes
30 SRA experiments, 8 using the Illumina HiSeq
2000 (similar to our reference data), and 22
using long single-molecule (2489 bp to 7622 bp)
real-time sequencing from the PacBio-SMRT
platform. These data allow us to test whether
different sequencing platforms with different
error profiles produce accurate geographic
predictions.

(C) Targeted genomic data derived from a restriction
site-associated DNA Sequencing (RAD-Seq) [31]
study of multiple white oaks [32]. This study used
the restriction enzyme PstI to selectively enrich
genomic regions for targeted Illumina sequencing.
For our study, we predicted the continental origins
of seven white oak samples based on RAD-Seq data:
North America (Q. bicolor: SRR5632514, Q. stellata:
SRR5632513, Q. lobata: SRR5632586), Europe (Q.
robur: SRR5632600, Q. petraea: SRR5284338), and
Asia (Q. dentata: SRR5632587, Q. mongolica:
SRR5284345). Importantly, two of these RAD-Seq
samples were derived from the identical DNA
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preparation from single trees that were used in our
reference database of shotgun DNA sequences (Q.
petraea: shotgun library SRR2053073; Q. mongolica:
shotgun library SRR2053072) [15, 28].

Additional files

Additional file 1: Figure S2. The circular plots of 92 white oak tree
samples based on the six dissimilarity measures: d�2 , d

S
2, CVTree, Euclidean,

and Manhattan, using (A) 50 Mbp and (B) 300 Mbp of next generation
sequencing data. Different sectors correspond to different continents,
with NA in red, EU in orange and AS in blue. Within each sector, samples
are sorted by their longitude, so that samples that are geographically
close are also close to each other in the figure. The most similar tree
samples to each sample are linked. The k-mer length is 12 and the
Markov order of the background sequence is 10 for d�2 , d

S
2 and CVTree.

The most similar samples to each sample according to d�2 and dS2are from
the same continent-of-origin. (PDF 671 kb)

Additional file 2: Figure S3. The relationship between the first three
principal coordinates and (A) longitude and (B) latitude of the tree
samples based on the d�2 dissimilarity values using sequencing quantity
of 100 Mbp. The k-mer length is 12 and the Markov order of the
background sequence is 10. The first principal coordinate separates the
North America tree samples from the Europe and Asia tree samples, and
the third principal coordinate separates the Europe samples from Asia
samples. The second principal coordinates of most Asian samples are
larger than that of the Europe samples. However, the second principal
coordinate does not separate them. (PDF 68 kb)

Additional file 3: Figure S4. Comparison of intra- and inter-continental
d�2 dissimilarities with sequence quantity of 50 Mbp and 300 Mbp, based
on comparisons to a) Asian, b) European, and c) North American sources.
The k-mer length is 12 and the Markov order of the background sequence
is 10. The p-values were calculated based on the Wilkinson-Mann-Whitney
test statistic and by permuting the continental labels of the white oak tree
samples 107 times. The inter-continental d�2 dissimilarities are significantly
higher than intra-continental d�2 dissimilarities. (PDF 170 kb)

Additional file 4: Figure S5. The circular plots for independent
samples sequenced using a) Illumina NGS of a California Valley Oak
tree, b) a mixture of short- and long read from with both Illumina
and PacBio sequencing of the Pendunculate Oak tree, and c) seven
diverse tree samples using RAD-seq. The (A) dS2 dissimilarity and (B)
Manhattan distance measures of each independent sample with the
92 reference samples were calculated and the two most similar reference
samples are linked. (PDF 225 kb)

Additional file 5: Figure S1. The two-dimensional principal coordinate
(PCoA) plots of the 95 tree samples based on the Euclidean distance (Eu),
Manhattan distance (Ma), d2 dissimilarity, CVTree, dS2 and d�2 of the samples
for different sequence quantities of 50, 100 and 300 Mbp, respectively.
Three outliers, SRR2053124 [Q. robur], SRR2053125 [Q. robur], SRR2053082 [Q.
dentata], were identified. However, the other samples cluster together.
(PDF 224 kb)

Additional file 6: Details on the definitions of six alignment-free
distance/dissimilarity measures between two genomes based on NGS
data. (PDF 123 kb)

Additional file 7: Table S1. Library construction, sequencing, and
genome enrichment methods used for all DNA libraries in this study.
(PDF 29 kb)
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AS: Asia; EU: Europe; KNN: K nearest neighbors; NA: North America; NC: NGS-
confidence; NGS: Next generation sequencing; RAD-Seq: restriction site-
associated DNA sequencing; RC: reference confidence; WGS: whole genome
shotgun sequencing; WMW: Wilcoxon-Mann-Whitney test
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