Natali et al. BMC Genomics (2018) 19:872

https://doi.org/10.1186/512864-018-5260-2 B M C G enom iCS

RESEARCH ARTICLE Open Access

CrossMark

How Quercus ilex L. saplings face combined ®
salt and ozone stress: a transcriptome
analysis

Lucia Natali, Alberto Vangelisti, Lucia Guidi, Damiano Remorini, Lorenzo Cotrozzi, Giacomo Lorenzini, Cristina Nali,
Elisa Pellegrini, Alice Trivellini, Paolo Vernieri, Marco Landi, Andrea Cavallini and Tommaso Giordani”

Abstract

Background: Similar to other urban trees, holm oaks (Quercus ilex L) provide a physiological, ecological and social
service in the urban environment, since they remove atmospheric pollution. However, the urban environment has
several abiotic factors that negatively influence plant life, which are further exacerbated due to climate change,
especially in the Mediterranean area. Among these abiotic factors, increased uptake of Na +and Cl — usually occurs
in trees in the urban ecosystem; moreover, an excess of the tropospheric ozone concentration in Mediterranean
cities further affects plant growth and survival. Here, we produced and annotated a de novo leaf transcriptome of
Q. ilex as well as transcripts over- or under-expressed after a single episode of O3 (80 nlI-1, 5 h), a salt treatment
(150 mM for 15 days) or a combination of these treatments, mimicking a situation that plants commonly face,
especially in urban environments.

Results: Salinity dramatically changed the profile of expressed transcripts, while the short Oz pulse had less effect
on the transcript profile. However, the short Oz pulse had a very strong effect in inducing over- or under-expression
of some genes in plants coping with soil salinity. Many differentially regulated genes were related to stress sensing
and signalling, cell wall remodelling, ROS sensing and scavenging, photosynthesis and to sugar and lipid metabolism.
Most differentially expressed transcripts revealed here are in accordance with a previous report on Q. ilex at the
physiological and biochemical levels, even though the expression profiles were overall more striking than those found
at the biochemical and physiological levels.

Conclusions: We produced for the first time a reference transcriptome for Q. ilex, and performed gene expression
analysis for this species when subjected to salt, ozone and a combination of the two. The comparison of gene
expression between the combined salt + ozone treatment and salt or ozone alone showed that even though many
differentially expressed genes overlap all treatments, combined stress triggered a unique response in terms of gene
expression modification. The obtained results represent a useful tool for studies aiming to investigate the effects of
environmental stresses in urban-adapted tree species.
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Background

The woody evergreen sclerophyllous Quercus ilex L.
(holm oak) is widely distributed in the Mediterranean
magquis, extending longitudinally from Portugal to Syria
and latitudinally from Morocco to France [1]. This spe-
cies has been used since the sixteenth century in the
landscaping of urban and rural parks [2]. Nowadays,
urban trees provide a physiological, ecological and
social service in the urban environment [3], since they
remove atmospheric pollutants, such as Oz, NO, and
SO, [4], and accumulate airborne particulates [5].

Plants in cities live in a very harsh and constrained
environment that involves changes at the morpho-
logical and functional levels. In this sense, the concept
of urban plant physiology has been developed for asses-
sing how single or multiple environmental factors affect
the key environmental services provided by urban for-
ests [6]. The urban environment has many aspects that
change over time and interact with each other, such as
temperature, light, water availability, soil type, air and
soil pollution. Among these abiotic factors, increased
uptake of Na* and CI7, the major saline ions, usually
occurs in trees in the urban ecosystem, inducing ionic
stress that can disturb plant metabolism [7, 8], particu-
larly the photosynthetic process [9]. Moreover, salt
stress leads to the alteration of chloroplastic electron
flow, which results in the overproduction of reactive
oxygen species (ROS) [10]. In response to salt stress
conditions, plants exhibit several biochemical and mo-
lecular mechanisms to cope with the damaging effects
of salinity, such as translocation of Na* from the leaf tis-
sue to vacuoles [7, 11], activation of ion channels, and
antioxidant and compatible solute accumulation [12, 13].
Many studies on physiological, molecular, morphological
and anatomical adaptation to salt-affected soils in woody
plants have recently been reviewed [14]. Concerning
Quercus ilex, a few articles have described the effect of
salinity [15]. In addition, the photosynthetic process and
protein profile alterations during drought conditions have
been studied [16—20].

Woody sclerophylls are well equipped to face many
stresses that often occur simultaneously, especially in
the Mediterranean area, such as high irradiance, UV and
air pollutants [9, 21]. Anthropic conditions enhance
these abiotic factors. For example, the tropospheric O3
concentration in Mediterranean cities frequently exceeds
the European limit set for the protection of human
health and vegetation [22]. This photo-oxidant pollutant
influences plant growth, induces an acceleration of leaf
senescence, modifications in foliar anatomical charac-
teristics, especially in leaf mass per area and spongy
parenchyma thickness. Moreover, O3 causes negative
effects at both biochemical and physiological levels as a
decreasing in the chlorophyll content, and triggers a
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number of molecular responses in plants, including
antioxidant metabolite accumulation and gene expres-
sion alterations [23-25].

To date, many studies have been carried out on the
effects of different environmental factors occurring
simultaneously on growth, yield and physiological traits
in plants and crops [26, 27]. Some studies have re-
ported on the combined effects of salinity and O3 and
were conducted on a long-term basis, where both
stressors were supplied simultaneously [28, 29].

In a previous study, Guidi et al. (2017) performed an
in-depth physiological and biochemical characterisation of
the mechanisms involved in the photosynthetic responses
of young saplings of Q. ilex subjected to mild salinity
stress (150 mM NaCl, 15 days; a realistic dose in the Medi-
terranean environment) and then subjected to a single
pulse of O3 (80nll™% 5h) [30], a situation that plants
commonly face, especially in urban environments. Besides
the typical response of the plant to salt stress (stomatal
closure, reduced CO, photoassimilation and oxidative
stress), the results showed that in salt-treated plants an ap-
parently harmful peak of O required an enhancement of
the Halliwell-Asada cycle to counteract the further oxida-
tive load induced by the pollutant [30].

The development of massively parallel sequencing tech-
nologies is changing the way by which transcriptomes and
genomes are discovered and defined, even in non-
model species such as those belonging to the genus
Quercus [31, 32]. For example, a transcriptome assem-
bly was performed in Q. pubescens leaves [33]; Cokus et
al. (2015) performed an evolutionary study on Califor-
nia white oaks by assembling a transcriptome after Illu-
mina sequencing of cDNAs from various organs and
individuals [34]; Lesur et al. (2015) assembled previously
available and newly developed sequence reads of Q. robur
and Q. petraea with the aim of inferring the phylogenetic
relationship in the Quercus genus and to discover gene
networks underlying vegetative bud dormancy release
[35]; and recently, Guerrero-Sanchez et al. (2017) com-
pared different assembly methods to obtain a de novo
transcriptome assembly from acorn embryo, leaves and
roots of Q. ilex [36]. In other studies, massively parallel se-
quencing was also used to evaluate changes in gene ex-
pression after stress conditions: Tarkka et al. (2013)
produced a reference transcriptome of Q. robur to ana-
lyse gene expression regulation by a number of biotic
stressors (pathogenic and beneficial fungi, nematodes,
moths) [37]; Pereira-Leal et al. (2014) produced a com-
prehensive transcriptome of Q. suber, assembling many
454 EST libraries from tissues and organs of plants sub-
jected to Phytophtora cinnamoni, mycorrhizal symbi-
osis and abiotic stresses (drought, salt and oxidative/
light) [38]; and recently, Gugger et al. (2017) assessed
the whole-transcriptome response to water stress in
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different genotypes of Quercus lobata, a California en-
demic oak [39].

To our knowledge, no studies of genes whose expres-
sion modulation allows plants to adapt to the combin-
ation of salinity and Oj stresses occurring in the urban
environment are available. In the present study, using
[llumina cDNA sequencing, we report for the first time
on the construction and annotation of a de novo tran-
scriptome of Q. ilex leaves, with the aim of exploring
the molecular bases of the response of Q. ilex to an O3
insult occurring in plants coping with soil salinity, as
previously physiologically and biochemically assessed
by Guidi et al. (2017) [30].

Methods

Plant material and experimental design

The plant materials and the experimental design are the
same as reported by Guidi et al. (2017) [30]. In brief,
three-year-old half-sib saplings of Q. ilex grown under
field conditions were potted (6.5 L containers) in a grow-
ing medium containing a mixture of Einhetserde Topfsub-
strat ED 63 standard soil and sand at the end of autumn
(December 2014). Potted plants were then maintained
under field conditions. One month before the treatments,
plants were irrigated daily with a half-strength Hoagland
solution. Salt treatments were imposed from 5 to 20 Sep-
tember 2015, and recently developed leaves were marked
at the beginning of the treatment. Plants for salt treatment
were provided, at 2 days intervals, with an optimal nutri-
ent solution with increasing concentrations of NaCl (0, 25,
50 and 100 mM). At the end of an 8day acclimation
period, a final concentration of 150 mM NaCl was applied
until the 15th day. In the same period control plants were
supplied with an optimal nutrient solution. After this time,
salt-treated and control plants were transferred into four
controlled environment fumigation facilities, which were
ventilated with charcoal-filtered air (one box for control
(C) and one for salt-treated (S) plants) or treated with a
single pulse of O3 (80 + 3nL L~ 1 5h: one box for control
plants (O3) and one for salt-treated plants (S + O3). The
O3 exposure was carried out from 09:00 to 14:00 h (local
time). The entire methodology of O3 exposure was per-
formed according to Nali et al. (2004) [40], and further de-
tails on experimental conditions are reported in Guidi et
al. (2017) [30].

At the end of the fumigation, current year leaves of
four individual plants (four biological replicates) grown
under each of the experimental conditions (C, S, O3,
and S + O3) were frozen in liquid nitrogen and stored
at — 80 °C for subsequent RNA isolation.

RNA isolation and sequencing
Total RNA was isolated from leaves of four single plants
per treatment (C, S, Oz, S+ O3), according to a CTAB
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(hexadecyl trimethyl-ammonium bromide) method modi-
fied by Reid et al. (2006) [41]. Leaves (200 mg) homoge-
nised in liquid nitrogen were lysed at 60 °C for 30 min in
1 mL extraction buffer [CTAB 2% w/v, polyvinylpyrroli-
done (PVP) 2% w/v, Tris-HCl 100 mM pH 8, ethylenedi-
aminetetraacetic acid (EDTA) 25mM, NaCl 2.0M,
Spermidin 0.5 g/L, B-mercaptoethanol 2% v/v]. After incu-
bation, the samples were extracted twice with an equal
volume of chloroform:isoamyl alchol (24:1), then nucleic
acids were precipitated for 30 min at — 80 °C by adding 3
M Na-acetate and cold isopropanol (1:6v/v). Samples
were centrifuged at 8000 x g for 30 min at 4°C to pellet
RNA. After washing with aqueous ethanol (70% v/v), sam-
ples were centrifuged at 8000 x g for 10 min at 4 °C, then
supernatants were removed and pellets were solubilised in
Tris-EDTA buffer. A DNAse I (Roche, Mannheim,
Germany) treatment was utilised to completely remove
genomic DNA contamination. Finally, RNAs were purified
by phenol/chloroform extraction (1:1v/v) and were
precipitated following standard procedures.

Sixteen RNA-Seq libraries (four per treatment) were
generated using the TruSeq RNASeq Sample Prep kit
(Ilumina Inc., San Diego, CA, USA). Poly-A RNA was
isolated from total RNA and was chemically fragmen-
ted. First- and second-strand cDNA syntheses were
followed by end repair, and adenosines were added to
the 3" ends. Adapters were ligated to the cDNA, and
200 + 25 bp fragments were gel purified and enriched
by PCR. The libraries were quantified using a Bioanaly-
zer 2100 (Agilent Technologies, Santa Clara, CA, USA)
and run on the Illumina HiSeq2000 (Illumina Inc.)
using version 3 reagents.

Paired-end read sequences 125 bp in length were col-
lected, reads are available on SRA with the bioproject
accession PRJNA490658. The quality of the reads was
checked using FastQC (v. 0.11.5; Babraham Bioinfor-
matics, Cambridge, UK), and the reads were trimmed
with Trimmomatic (v. 0.33; [42]), cropping the first 15
bases and the last 10 bases of each read in order to im-
prove the overall quality. Ribosomal contaminant reads
were removed using CLC mapping on Quercus ribosomal
references from NCBI; non-mapped reads were retained.

De novo transcriptome assembly and annotation

Sequencing reads from leaves obtained from different
treatment libraries were collected to build a de novo tran-
scriptome. The transcriptome was assembled employing
CLC-BIO Genomic Workbench version 8.0.3 (QIAGEN
Aarhus Prismet, Aarhus, Denmark, hereafter called
CLC-BIO), which uses the De Brujin graph algorithm.
After performing several tests on k-mer size, the best suit-
able k-mer length value was 26 bp. Apart from k-mer size,
default parameters were used for the assembly. A se-
quence length cutoff was set as 300 bp, although contigs
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shorter than this threshold length were also collected
when produced by assembling more than 200 reads. To
improve transcriptome quality, contigs showing a simi-
larity cluster of over 95% were trimmed using
CD-HIT-EST [43].

Contigs were annotated using NCBI Blastx and
RefSeq plant database of NCBI [44]. NCBI Blastx ran
with the following parameters: maximum number of
hits = 10, E-value cutoff = 10~ °. Contigs were also ana-
lysed on reference Quercus spp. transcripts OCV3_91K
[35] using Blastn by default parameters.

Gene Ontology (GO) terms, InterPro ID and KEGG
ID on annotated contigs were found using Blast2GO
[45] with default parameters. GO enrichment analysis
with Fisher exact tests on differentially expressed tran-
scripts was performed with Blast2GO analysis tools
using P-values corrected with a false discovery rate of
(FDR) < 0.05; enriched GO terms were summarised
using REVIGO with “tiny allowed similarity” parameter
[46]. GO-Slim was run to reduce complexity of GO
terms for gene class analysis.

Differential gene expression analysis

Expression abundance of the transcripts was estimated
by mapping reads from the individual library onto the
de novo transcriptome in the four growth conditions
using CLC-BIO. This software counts unique reads and
discards multi-reads, or distributes multi-reads at simi-
lar loci in proportion to the number of unique reads re-
corded. In the first case, the expression of genes that
have closely related paralogues would be underesti-
mated. Hence, besides unique reads, reads that oc-
curred up to ten times were also included in the
analyses, a strategy that should also allow correct
estimation of activity for paralogue genes [47].

Raw counts of mapped reads were analysed using the
R statistical package edgeR [48]. Gene expression level
was calculated as reads per kilobase per million reads
mapped (RPKM) as described in Mortazavi et al.
(2008) [47]. We filtered out contigs with RPKM <1 in
at least one library.

Aligned reads counts of four replicates of each
treatment were analysed with the R statistical pack-
age EdgeR [48] as specified by manual instruction
and by Anders et al. (2013) [49]. A pairwise compari-
son test was performed between stressed and control
libraries. The resulting P-values were corrected with
the FDR [50], and contigs showing an FDR corrected
P value <0.05 were selected as significant. The fold
changes between controls and treatments were con-
sidered significant when the expression value of a
sample was at least two fold higher or lower than the
other samples, splitting contigs into two groups:
up-regulated or down-regulated.
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A GO term was derived for each contig, slimmed
using Blast2GO (plant GO slim) and classified ac-
cording to biological process, molecular function and
cellular component.

Results

cDNA sequencing and production of a de novo
transcriptome of Quercus ilex

For the first time a de novo transcriptome for Q. ilex
leaves subjected to mild salinity and/or O3 treatments
was produced and annotated. A total of 543,086,098
sequence reads were generated, each 125 nt in length.
The total number of tags per library (independent of
the treatment) ranged from 24.96 to 58.75 million
(Table 1), a tag density sufficient to assess a de novo
transcriptome and for quantitative analysis of gene ex-
pression [51]. Filtering reads for quality resulted in a
total of 520,727,296 trimmed reads, 100 nt in length,
corresponding to a dataset of about 65 Gb of sequence
data (Table 1). De novo assembly of high quality reads
was performed, and 182,985 contigs were produced.
N50 and N75 were 724 nt and 372nt, respectively.
Both indexes were in the range of those previously re-
ported for other transcriptome assemblies of oak tree
species [32, 35, 36]. The minimum length of the as-
sembled contigs was 82 nt, the maximum was 15,621
nt, with an average length of 574 nt. The resulting Q.
ilex leaf transcriptome of control (C), salt treated (S),
ozonated (Oz) and salt plus O3 treated (S + Oz) plants
included 126,369 putative transcripts.

In order to confirm the robustness of our assembly a
comparison with transcriptomes of Q. robur and Q. pet-
raea [34] was performed. Blast analyses are reported in
Additional file 1: Table S1 and showed that 75,543 contigs
were shared with sequences from transcriptomes gener-
ated from these close oak species, a number quite similar
to that obtained by Guerrero-Sanchez et al. (2017) [36].

After mapping reads of each library using this de
novo transcriptome as reference, the percentage of
mapped reads ranged from 79.60 to 81.71% (Table 1).

Functional annotation of Q. ilex leaf transcriptome
sequences was based on sequence alignments to the
RefSeq plant database. The total number of annotated
contigs amounted to 53,500 (42.3% of whole tran-
scriptome). At least one GO term was attributed to
39,954 contigs. The distribution of GO terms in the
transcriptome is reported in Fig. 1, keeping the main
ontologies separated: molecular function, biological
process, and cellular component. Independently of
treatment, the GOs most represented were nucleotide
binding (7028/41,434 16.9%), metabolic process
(3859/3,1631 12.2%) and membrane (7046/17,152
41.07%) for molecular function, biological process
and cellular component, respectively.
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Table 1 Summary of RNA sequencing and mapping results. Number of raw and trimmed Illumina reads used in the experiments
and number of reads matching the de novo Quercus ilex leaf transcriptome for each library

Library nr. Number of Number of reads Number of mapped reads on % of mapped reads on
(and treatment) raw reads after trimming de-novo transcriptome de-novo transcriptome
10O 29,780,158 28,507,766 23,116,305 81.09%
2 34,707,140 33,397,650 27,251,484 81.60%
300 30,142,604 28,938,768 23,290,009 80.48%
4O 31,504,924 30,332,808 24,980,007 82.35%
5() 27,286,188 25,418,352 20,578,777 80.96%
6 (S) 28,946,286 27,599,316 22,254,839 80.64%
7(5) 24,962,794 23,641,096 18,818,381 79.60%
8(9) 28,231,268 27,499,364 21,995,959 79.99%
9 (O3) 27653576 26,359,594 21,539430 81.71%
10 (O3) 38,657,480 37,427,844 30,572,382 81.68%
11 (03) 58,745,972 57,078,984 46,381,516 81.26%
12 (O3) 35,218,784 34,468,334 28,082,724 81.47%
13(5+05) 57,199,362 54,995,868 44,442,489 80.81%
14 (S+05) 32,727,622 31,290,440 25418644 81.23%
15 (S+03) 27,994,188 26,349,048 21,210,329 80.50%
16 (S+05) 29,327,752 27,422,064 22,169,515 80.85%

C Control plants, S Salt-treated plants, O3 Ozonated plants, S + O Salt plus Os treated plants

Global analysis of salinity-, ozone- and salinity+ozone-
regulated transcripts

A total of 126,369 putative transcripts (contigs), included
in the de novo Q. ilex leaf transcriptome in the four treat-
ments were evaluated. The analysis was limited to tran-
scripts with RPKM >1 in at least one of the four
individuals in at least one treatment. By this method, we
selected 84,264 significantly expressed contigs.

Figure 2 reports the number of transcripts that was
significantly over- or under-expressed in S, O3 and S +
O3 plants in comparison to control plants. Overall
2388, 337 and 3003 differentially expressed transcripts
were detected in S, O3 and S + O3 plants, respectively.
A comprehensive list of these transcripts is reported in
Additional file 2: Table S2, Additional file 3: Table S3,
Additional file 4: Table S4. Moreover, a large number of
transcripts were specifically (i.e., not shared with other
treatments) regulated by salinity and by combined S +
O3 treatments.

Based on GO-slim annotations, up- and down-regulated
transcripts were classified into three ontological categor-
ies: cellular component, biological process, and molecular
function. The GO terms of over-expressed transcripts are
reported in Fig. 3. A larger number of over-expressed GO
terms was identified in S and in S + O3 than in O plants.
In S and S + O3 plants, 34 and 38 GO terms, respectively,
were recognised. Within the biological process category,
the most frequent GO terms in S and S + O3 plants were
cellular protein modification processes, metabolic and

biosynthetic processes. Within cellular component, the
most frequent GO terms were membrane, ribosome
and nucleus, while for molecular function, the most
abundant GO terms were nucleotide binding, protein
binding, catalytic activity and, in S + O3 plants, hydro-
lase activity (Fig. 3).

For some GO terms, the number of transcripts in S
+ O3 plants was more than two fold compared to S
plants, indicating that the short O3 pulse affected tran-
scription much more in combination with salt stress
than alone. Even though for some GO terms the effect
of a single pulse of O3 overlapped with those of S and
S + O3, the distribution of GO terms in O3 plants was
different from that of S and S+ O3 plants, especially
for the cellular component category. The most repre-
sented GO terms (with the exception of membrane)
were different between O3 and S plants, and the GO
term cell wall was even more represented in Oz than
in S or S+0Oj3 plants (Fig. 3). Moreover, for some
terms, the effect of O3 was almost negligible or even
absent (see for example nucleus and ribose for cellular
component; RNA and DNA binding for molecular
function; and cellular homeostasis for biological
process) (Fig. 3).

S and S + O3 plants showed also a much higher num-
ber of under-expressed GO terms compared to plants
treated with O3 (Fig. 4). Considering the three main
ontological categories, the most represented GO terms
were often the same for under-expressed and over-
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molecular functions, the most enriched term was pro-
tein kinase activity (Fig. 5). No cellular component
term was enriched in salt-regulated transcripts.

The list of differentially expressed transcripts under
salt treatment is reported in Additional file 2: Table S2.
In total, 1158 of 2389 contigs were annotated.

A comprehensive view of activated transcripts

scavenging. Concerning the first group some tran-
scripts encode receptors such as G-type- and mitogen
activated protein-kinases and other are involved in
calcium signalling, for example those encoding cal-
cineurin B-like (CBL) interacting kinases, Ca*"-bind-
ing CML44-like protein and calcineurin subunit B.
Also many transcripts encoding transcription factors
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Fig. 5 Enriched GO terms in contigs over-expressed in leaves of Quercus ilex salt-treated plants
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WRKY) and -independent (ABI, ERF) pathways were
found. Other salt activated transcripts were related to
other phytohormones such as jasmonic acid, salicylic
acid and ethylene. Examples are transcripts encod-
ing linoleate 13S-lipoxygenase 2- chloroplastic-like,
12-oxophytodienoate reductase 3-like, salicylate
carboxymethyltransferase-like, DMR6-LIKE oxygen-
ase 2, 1-aminocyclopropane carboxylate oxidase.

Concerning up-regulated sequences related to salt
stress scavenging, some are involved in osmolytes bio-
synthesis (encoding inositol-transporter, trehalose
phosphate phosphatase C, phosphatidylinositol phos-
phatidylcholine transferase). Moreover also sequences
encoding ions transporters (plasma membrane calcium-
transporting ATPase, potassium transporters, copper
transporters), V-type proton ATPase and channels (an
aquaporin PIP1-2) were over-expressed.

Other salt activated transcripts were related to photo-
synthesis, cell wall formation, ROS degradation, and
membrane repair (Additional file 2: Table S2).

Many under-expressed transcripts encode members of
the ABC transporter family, while others are involved in
ABA biosynthesis or in cell wall sugar and protein modi-
fications (bifunctional UDP-glucose 4-epimerase and
UDP-xylose 4-epimerase 1-like isoform X4, polygalactur-
onase, rhamnogalacturonate lyase B, pectate lyase, xylan
alpha-glucuronosyltransferase 2 isoform X1, cellulose
synthase, pectin acetylesterase 8-like, lysosomal beta
glucosidase-like and subtilisin-like protease). Also, a few
transcripts involved in ascorbate homeostasis (for ex-
ample, encoding L-ascorbate peroxidase 6 isoform X2)
were down regulated (Additional file 2: Table S2).

Differentially expressed genes after ozone treatment

As shown in Fig. 2, 207 Q. ilex transcripts were signifi-
cantly over-expressed and 130 were under-expressed
by greater than 2-fold following O3 treatment when
compared to C plants. No GO terms exhibited signifi-
cant enrichment in the O3 up-regulated and down-reg-
ulated transcripts.

There were 337 transcript sequences significantly
regulated by the O3 pulse and these are reported in
Additional file 3: Table S3. Among these, 149 were
annotated.

An overview of up-regulated transcripts showed that
they were mainly involved in stress signalling and ROS
scavenging, in particular in calcium signalling, ethylene
and auxin network, ROS sensing and degradation. A
calcineurin subunit B, a calcium sensor belonging to
CBL-interacting kinase family, and a calcium-binding
calmodulin 42-like protein encoding transcripts were
among the most over-expressed in Oz plants. Also two
auxin-induced transcripts and transcripts involved in ethyl-
ene biosynthesis or in the ethylene network such as those
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encoding an amino-cyclopropane-1-carboxylate oxidase,
an S-adenosyl-methionine decarboxylase, methylenetetra-
hydrofolate reductase 2-like and an ethylene-responsive
transcription factor ERF084 were up-regulated.

Concerning ROS scavenging, transcripts over-expressed
by an O3 pulse encoded a catalase isozyme and other en-
zymes related to the Halliwell-Asada cycle, such as
mono-dehydro-ascorbate reductase and L-ascorbate per-
oxidase cytosolic.

A number of transcripts related to cell wall sugar and
protein turn-over were found to be over-expressed after
O3 treatment such as those encoding pectinesterase,
beta-galactosidase, polygalacturonase, exopolygalactur-
onase, bi-functional UDP-glucose 4-epimerase and
UDP-xylose 4-epimerase, pectate lyase and subtilisin-
like protease.

Other over-expressed transcripts are related to energy
metabolism for example encoding ATP synthase sub-
unit mitochondrial, cytochrome ¢ oxidase subunit 5b —
mitochondrial-like, V-type proton ATPase subunit a3
and ATP-citrate synthase alpha chain 2-like.

A few transcripts encoding Rubisco interacting pro-
teins and disease related proteins were under-expressed
(Additional file 3: Table S3).

Differentially expressed genes after combined salt and
ozone treatment

The gene set regulated by combined salt and O3 treatment
was the most conspicuous, amounting to 1377 and 1626
over- and under-expressed transcripts, respectively (Fig. 2).
Among these, a total of 2081 transcripts (879 over- and
1202 under-expressed) were specifically differentially
expressed in combined stress, while 498 over- and 424
under-expressed transcripts were shared between the salt
and/or ozone treatments, suggesting that combined treat-
ments have a stronger effect on gene expression modifica-
tion compared to separate treatments.

Gene Ontology analysis (Fig. 6) revealed the occur-
rence of numerous enriched GO terms both in activated
and repressed transcripts. Amongst up-regulated gene
sequences, the most represented GO categories were
cellular nitrogen compound biosynthetic process, meta-
bolic process and translation, all belonging to the gen-
eral category of biological process. The most enriched
cellular component term was ribosomal subunit and the
most enriched molecular function term was structural
constituent of ribosome. Interestingly, no enriched GO
categories were shared between S and S + O3 treatments
(compare Fig. 5 to Fig. 6), further showing the specificity
of the response to the combined stress compared to salt
or Oj stresses separately.

In order to explore the biological processes, cellular
components, and molecular functions specifically related
to the combined S+ Oj treatment, a GO enrichment
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analysis was carried out focusing only on the 879 and
1202 transcripts specifically over- and under-expressed
in this treatment, respectively (see Fig. 2). For these
transcripts, specific roles in response to the combination
of stress may be argued. The GO terms specifically af-
fected by the S + O3 treatment are reported in Fig. 7.

In total, 26 and 10 GO terms were enriched in the spe-
cific over- and under-expressed transcript sets, respectively.
Concerning the activated transcripts, the most striking dif-
ferences between specific (i.e., up-regulated only by S + O,
Fig. 7 above) and non-specific (i.e., up-regulated by S + O3
and by S and/or Oj separately, Fig. 6 above) GO terms
were related to cellular component, i.e., cytoplasm, cell, cell
part, intracellular and organelle, suggesting that deep
changes in the localisation of biochemical activities oc-
curred following the combined stress.

The distribution of GO categories for transcripts spe-
cifically repressed by the combined treatment (Fig. 7
below) was different from that for transcripts under-
expressed by S + O3 and shared with S and/or O3 (Fig. 6

below). For example, GO terms such as membrane part,
cell periphery, phenylpropanoid metabolic process, trans-
ferase activity (transferring acyl groups) were not enriched
in the specifically repressed gene set. On the other hand,
lignin catabolic process was enriched only in the specific-
ally repressed transcripts.

There were 3003 over- or under-expressed transcripts
after combined S + O3 treatment and these are reported in
Additional file 4: Table S4. Among these, 1488 were anno-
tated. When differentially expressed transcripts in S + O3
plants were shared with S or O3 plants, the resulting fold
change was generally comparable (Additional file 2: Table
S2, Additional file 3: Table S3, Additional file 4, Table S4).
Among these transcripts there were some involved in sig-
nalling such as encoding kinases (CBL-interacting kinase
5-like, cysteine-rich receptor 15, Leucine-rich repeat fam-
ily isoform 1, LRR receptor-like serine threonine EFR),
and other involved in ethylene biosynthesis such as
aminocyclopropane-1-carboxylate oxidase. Others
cluded genes related to ROS production or detoxification

in-
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(catalase isozyme 1) or genes involved in different path-
ways such as energy metabolism and defence response
like those encoding ATP synthase subunit mitochon-
drial and disease resistance RPM1 isoform X2.

In some shared transcripts a different expression
level was also found between individual and combined
stress condition responses. Among these, sequences
encoding subunit beta of chloroplastic Chaperonin 60
were down-regulated in the O3 and S treatments but
were unchanged in the S + O3 treatment and a prob-
able disease resistance RPP8 2 transcript was highly
expressed in O3 and S plants but only slightly activated
after S+ O3 treatment. In a few cases, individual and
combined stressed plants also showed some contrast-
ing molecular responses. For example, a transcript en-
coding disease resistance RGA2-like protein was
over-expressed in both O3 and S plants but were repressed
after combined treatment. Similarly, a sequence related to
a probable WRKY transcription factor 40 was up-regulated
in S plants but was down-regulated in S+ O3 plants and
was unchanged after ozone treatment (Additional file
2: Table S2, Additional file 3: Table S3, Additional
file 4, Table S4).

Many transcripts differentially expressed after S + O3
treatment were specific to this combined stress (Fig. 2
and Additional file 4: Table S4). An overview of these
transcripts indicates they are mainly involved in stress
signalling, osmotic adjustments, ROS scavenging and
signalling, primary metabolism and cell wall remodel-
ling. Concerning stress signalling, sequences encoding
CBL-interacting serine threonine- kinase 25-like, a
calcium-binding CML39-like and one specific calcine-
urin B4-like were down-regulated only in the combined
treatment. Concerning transcript putatively involved in
osmotic adjustments, one transcript encoding a puta-
tive sucrose-phosphate synthase, a transcript encoding
a putative inositol transporter 2 and a D-xylose-proton
symporter were over-expressed in S+ Oj stressed holm
oaks while a down-regulation of a gene sequence encoding
an alpha-trehalose-phosphate synthase was found.

Also, sequences encoding one Mn-SOD, two cata-
lases, three members of the glutathione transferase
gene family, a transketolase-chloroplastic, a glyoxylate
hydroxypyruvate reductase, as well as several tran-
scripts related to disease resistance were specifically
up-regulated in the combined stress. Under-expressed
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transcripts from S + O3 plants encoded a calcium-binding
CML39-like protein, an alpha-trehalose-phosphate syn-
thase, and proteins involved in cell wall remodelling such
as beta-D-xylosidase 1, fasciclin-like arabinogalactan 11,
beta-1,4-xylosyltransferase IRX10, UDP-glucuronate:xylan
alpha-glucuronosyltransferase 1-like, cellulose synthase
and pectinesterase (Additional file 4: Table S4).

Discussion

Plants in cities must face multiple environmental fac-
tors, which limit their growth and development. Among
these factors, salinity and ozone excess are commonly
experienced in Mediterranean areas [52]. Here, we ana-
lysed transcriptome changes in Quercus ilex half-sib
saplings after salt, ozone and a combination of salt and
ozone treatments by Illumina RNA sequencing.

Oak saplings were grown in salinity conditions for
more than 15 days (i.e., simulating long-term stress) in
combination with a short (5 h) O3 treatment, simulating
a condition to which urban plants are often exposed
during the day.

Differential expression analyses showed that salt
treatment produced greater gene expression alterations
than the ozone treatment. This difference is likely re-
lated to the different intensities of the two stress treat-
ments. Indeed, compared to the O3 treatment, salinity
was imposed for a longer period (15 days) to saplings,
and the responses to these stresses were detected at the
end of both treatments.

Although the Oj treatment induced a low number of
differentially expressed transcripts between treated and
control plants, it was apparent that the short O3 pulse
had a very strong effect in inducing gene over- or
under-expression when it was combined with salt
treatment. In fact, the group of over- or under-
expressed transcripts in the leaves of plants subjected
to the combined S + O3 treatment was the most repre-
sented (Fig. 2).

These results were confirmed by the analysis of Gene
Ontology. Many GO categories of differentially regulated
genes occurred in all treatments (S, Oz and S + O3). The
GO counts in O3 plants were generally very low, and
those of plants subjected to the combined treatment was
often much higher than the GO counts regulated by the
treatment with salt only (Figs. 3 and 4). Such a great in-
crease of gene regulation determined by a combination
of stressors has been observed in other studies; for ex-
ample, in Triticum durum plants subjected to heat and
drought separately or in combination [53].

Many differentially expressed transcripts, shared
among treatments or treatment specific, will be dis-
cussed hereafter in relation to the treatment, modula-
tion, functional role and to biochemical data described
by Guidi et al. (2017) [30].
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Differential gene expression under salt treatment

As indicated by Gene Ontology enrichment analysis, salt
treatment induced the over-expression of many tran-
scripts encoding kinases, similar to that observed in rice
defence mechanisms and stress signalling [54]. Interest-
ingly, among these, a transcript encoding a putative
y-subunit PV42a of an SNFl-related kinase was
over-expressed. This kinase activates catabolic processes
and represses energy consuming anabolic processes and
growth [55], suggesting a shift to the remobilisation of
allocated carbon skeleton instead of a de novo biosyn-
thesis via anabolic processes.

Calcium is a second messenger for stress responses
and plays an important role in salt signalling mecha-
nisms [12]. Many transcripts involved in calcium sig-
nalling and perception were over-expressed in leaves of
salt-treated holm oak plants.

As observed in other studies [56], in our experiments,
salt receptor activation and signalling determined a num-
ber of cascade molecular modifications leading to
over-expression of both ABA-dependent and -independ-
ent transcription factor encoding sequences. However,
three transcripts involved in ABA biosynthesis (ABA hy-
droxylase, phytoene synthase and B-carotene isomerase)
were down-regulated, in agreement with previous bio-
chemical data showing no ABA accumulation in
salt-treated leaves of Q. ilex [30].

In addition, our analysis confirmed that other phyto-
hormones such as jasmonic acid and salicilic acid were
involved in plant responses to salinity [57, 58]. Many
transcripts related to jasmonic acid and salicylic acid
biosynthesis were indeed over-expressed in holm oak
leaves grown under salinity. Some of these transcripts
have been related to defence-associate responses as a
sequence encoding a DMR6-LIKE oxygenase 2 suggest-
ing common regulation pathways between salinity and
pathogen responses [59].

Osmolytes are usually accumulated in response to salt
stress for salt scavenging [60]. In our previous study, no
significant changes in the level of proline produced or
in the activity of enzymes related to its metabolism
were found [30]. The present transcriptome analysis is
in accordance with these data. It is noteworthy that
gene sequences related to the biosynthesis of other
osmolytes (inositol and trehalose) were up-regulated.
Also sequences encoding ions transporters were
over-expressed, suggesting that osmotic adjustments in
salt-stressed holm oak plants are also controlled at
transcriptional level. In particular, a transcript encodes
a V-type proton ATPase that exerts a key role in salt
tolerance by promoting secondary active Na*/H" anti-
port through the tonoplast [61], ensuring active trans-
port of Na' into the vacuole thus avoiding its
harmfulness for the cytosolic compartment. Concerning
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other transcripts presumed to play a role in salt stress
scavenging, one encoding Late Embryogenesis Abun-
dant proteins was over-expressed, as reported by
Amara et al. (2014) [62].

Our previous work showed that, in salt-treated oak
trees, the photosynthetic process was limited, mainly be-
cause of low chloroplast CO, concentration determined
by both low stomatal and mesophyll conductance [30].
The CO, assimilation decrease was compensated by a
higher efficiency of carboxylative activity of Ribulose-
1,5-bisphosphate carboxylase/oxygenase (Rubisco). This
was found to be coupled with an enhancement of ther-
mal dissipation in the PSII antennae of excess excitation
energy in order to avoid possible photodamage to PSII
[63]. Most photosynthesis-related transcripts were not
affected by salt treatment; however, a gene encoding Ru-
bisco small subunit was slightly induced, while the
down-regulation of a transcript encoding a protein in-
volved in Rubisco folding was observed. Interestingly,
the amount of transcripts encoding a peroxisomal
(S)-2-hydroxy-acid oxidase GLO4 increased with salt
treatment. This is a photorespiratory enzyme that can
exert a strong regulation of photosynthesis, possibly
through a feed-back inhibition on Rubisco activase [64].

Evergreen sclerophylls such as Q. ilex, with their
long-lived leaves have a low photosynthetic efficiency
on a mass basis because these species invest preferen-
tially in vascular and cell wall formation [65]. This in-
duces these species to decrease intercellular spaces and
increase cell wall thickness, increasing CO, drawdown
but also maintaining high foliar relative water content
[66] and osmotic stress tolerance. Concerning genes re-
lated to cell wall, salt treatment led to a down-regula-
tion of transcripts encoding proteins involved in
modifications of sugars and proteins. Similar results
were obtained in Populus x canescens under salt stress,
in which genes involved in cellulose synthesis were re-
pressed, leading to an increase in the ratio of lignin to
cellulose [67]. Interestingly, other transcripts encoding
expansins, xyloglucan endotransglucosylase hydrolase
and xyloglucan galactosyltransferase ~were over-
expressed in our experiments. These enzymes catalyse
the splitting and/or reconnection of xyloglucan
cross-links in the cellulose-hemicellulose framework of
cell wall, hence they are likely involved in salt-elicited
leaf succulence in higher plants [68]. In our experi-
ments, their over-expression in salt-treated plants is
likely related to the increased leaf succulence observed
in the previous study [30].

Reactive oxygen species are important salt-stress sig-
nalling molecules [69]. For example, ROS triggers cyto-
plasmic calcium to increase during salt stress perception,
regulate ion homeostasis and act as second messengers
that induce antioxidant defences in herbaceous species
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[70-72] and trees [73, 74]. Concerning gene expression
linked to the antioxidant status of cells, we observed an
increase of transcripts encoding superoxide dismutase, a
key enzyme involved in the abatement of superoxide an-
ions under salt [10], even though no changes in the activ-
ity of this enzyme were observed [30]. Transcripts
encoding L-ascorbate peroxidase 6 isoform X2 were
down-regulated by salt treatments according to the reduc-
tion of ascorbate peroxidase activity [30].

As a final result of the weak activation of the antioxidant
system, a strong increase in malondialdehyde by-products
(an index of lipid peroxidation) was observed in S plants
[30] and some membrane repairing mechanisms were en-
hanced, as confirmed by the over-expression of transcripts
encoding 3-oxoacyl-[acyl-carrier-] reductase, acyl-[acyl-
carrier-] desaturase chloroplastic-like and oxalate-ligase-
like carboxylesterase 5.

Differential gene expression under ozone treatment

As in response to salinity, calcium or protein kinases
are known to play important roles in Oz responses
[75]. It has been observed that calcium channels were
activated in response to Oj, and increased cytosolic
calcium induced ozone-responsive genes [76]. In our
experiments, no genes encoding the Ca>* channel were
differentially expressed following O3 exposure. On the
other hand, other Ca" related transcripts were among
the most over-expressed in Oz plants as for example
those encoding calmodulins that are sensor relay pro-
teins unique to plants and are involved in many stress
responses [77].

The analysis of major hormone pathways revealed no
changes of transcript accumulation concerning ABA
signalling following Oj treatment. Differential regula-
tion of some genes involved in ethylene biosynthesis or
in the ethylene network was observed. Also, two
auxin-induced transcripts were over-expressed, suggest-
ing the possible involvement of auxin-mediated factors
in the oak response to O3 treatment. These data con-
firm complex interactions between hormones in tree
responses to O3 exposure [78, 79].

Ozonated plants had similar net photosynthetic rates
when compared to control plants, suggesting no damage
to photosystems or to the Calvin-Benson cycle compo-
nents [30]. However, under-expression of transcripts in-
volved in the photosynthetic process was observed. One
encoded a chlorophyll a-b binding protein involved in
photosystem II (CP26), which mediates the distribution
of excitation energy between photosystems II and I [80]
preventing over-excitation of thylakoid membranes. In
addition, the down-regulation of several gene sequences
encoding Rubisco interacting proteins (such as Rubisco
large subunit-binding protein, subunit alpha and beta of
chloroplastic chaperonin 60,) was observed.
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O3 exposure induces the accumulation of ROS with
their dual role, i.e., toxic compounds and signal mole-
cules [81]. Several transcripts over-expressed by an O3
pulse are related to ROS and Halliwell-Asada cycle, such
as catalase isozyme, L-ascorbate peroxidase, and 1-ami-
nocyclopropane-1-carboxylate oxidase, an enzyme regu-
lated by glutathione to induce ethylene synthesis during
stress [82]. All these enzymes are involved in mainten-
ance of a high antioxidant capacity to scavenge ROS
[83]. These results partially agree with the biochemical
study by Guidi et al. (2017) in which activities of antioxi-
dant enzymes such as superoxide dismutase and catalase
slightly decreased while ascorbate peroxidase and glutathi-
one reductase increased after O5 treatment [30].

Other highly up-regulated gene sequences encode
membrane receptors such as leucine-rich and
cysteine-rich receptor protein kinases. These receptors
are likely involved in signalling/sensing the ROS pro-
duction triggered in the apoplast [13, 84]. Some of
these receptors are also implicated in cell wall integrity
maintenance because they are capable of detecting cell
wall fragments or changes in cell wall composition/
structure [85]. Q. ilex is characterised by a great thick-
ness of the cell wall [50, 64], which is an early target of
O3 [86]. Interestingly, several transcripts related to cell
wall sugar and protein turn-over were over-expressed
after O3 treatment, suggesting cell wall structural mod-
ifications and consequently cell wall thickening [87].

Guidi et al. (2017) showed Os treatment increased
malondialdehyde by-product accumulation, indicating
lipid peroxidation [30]. Gene expression analyses showed
the accumulation of transcripts related to lipid metabol-
ism encoding glycerophosphodiester phosphodiesterase
(GDPDL3), palmitoyl-acyl carrier, omega-6 fatty acid
endoplasmic reticullum isozyme 2-like, squalene epoxi-
dasel, confirming lipid metabolism alterations. In addition,
squalene epoxidase is involved in sterol biosynthesis, a
pathway strictly linked to ROS production, playing an es-
sential role in the localisation of NADPH oxidases required
for regulation of ROS under stress conditions [88].

A number of gene sequences up-regulated by O3 in our
experiments (e.g., salt-activated ATPases, calcineurin B,
disease resistance genes such as those encoding TMV re-
sistance N-like, disease resistance RPP8 2 and RGA3, phos-
phatidylinositol:ceramide inositolphosphotransferase) are
also known to be activated in other abiotic or biotic stress
conditions, suggesting common response pathways among
different stresses [27] and confirming accumulation of
defence-related transcripts in O3-exposed plants [89].

Differential gene expression under combined salt and
ozone treatment

Comparing responses to combined and single treat-
ments, many differentially expressed transcripts detected
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in individual O3 and/or S treated plants were also differ-
entially expressed after the combined S + O treatment,
suggesting common stress molecular responses, for ex-
ample those related to production, decoding, detoxifica-
tion of ROS [90], and calcium-, phytohormone- and
protein kinase-signalling pathways, as observed in others
species treated with a combination of stresses [27]. For
most of these shared transcripts, the fold change was
similar between individual and combined stress and,
when two single treatments showed a contrasting ex-
pression pattern, the final response to combined stress
was often determined by the more severe condition (salt
stress), as in other studies on plants subjected to mul-
tiple stress combinations [27]. Examples are transcripts
encoding subtilisin-like proteases that, after S or S + O3
treatment, were under-expressed but were up-regulated
after individual O3 treatment, Such proteins were related
to plant-pathogen reactions and have recently been asso-
ciated with a number of aspects of the plant life cycle,
including cell wall modification, processing of peptide
signals, and biotic and abiotic stress signalling [91].
However, our results showed also opposite expression
pattern between individual and combined stress of
shared transcripts, suggesting new regulation factors
take place in response to combined treatment.

In plants under S+ O3 stress, a high number of
“unique” (i.e., specific of the combined stress) differen-
tially expressed transcripts were found. Many of these
transcripts are members of the same gene family; for
example, different transcripts encoding members of the
NAC-domain transcription factor family that were dif-
ferentially regulated when comparing S+ O3 to S or O3
plants. It is known that this gene family is strongly reg-
ulated by different stresses [92]. Moreover, a number of
different gene sequences encoding F-box family pro-
teins, known to have a role in plant development, hor-
mone signalling and defence pathways were specifically
regulated by the combined treatment [93].

Results indicate that genes specific of the combined
stress are mainly involved in stress signalling, osmotic
adjustments, ROS scavenging and signalling, primary
metabolism and cell wall remodelling and hereafter will
be discussed.

Although some transcripts related to ethylene biosyn-
thesis (aminocyclopropane carboxylate oxidase and
S-adenosyl-methionine decarboxylase) were activated
in S, S+ O3 and Oj plants, the combination of the two
stresses promoted the transcription of specific isoforms
of these sequences compared to that activated by Os.
Similarly, a transcript encoding a SKI interacting-like,
involved in modulation of stress resistance through
transcriptional regulation of salt stress-related genes
[94], was not regulated in S plants but was regulated
only after the combined stress.
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Concerning osmotic adjustment, it is known that high
levels of sucrose help plants to overcome salt stress condi-
tions [25] and trehalose is considered both as an excellent
candidate to preserve the lipid bilayer integrity and as an
osmoprotectant [95]. One transcript encoding a putative
sucrose-phosphate synthase was over-expressed in S + O3
plants, however we found down-regulation of a gene se-
quence encoding an alpha-trehalose-phosphate synthase,
an enzyme involved in trehalose biosynthesis. On the
other hand, a transcript encoding a putative inositol trans-
porter 2 and a D-xylose-proton symporter were strongly
over-expressed, indicating sugar-specific transcriptional
alterations of gene sequences related to sugar metabolism
occur only in combined stress.

Interestingly, a number of genes that are commonly de-
scribed as responding to O3z [81] or to salt treatments
were up-regulated only when these two stresses were ap-
plied simultaneously, while in saplings treated only with a
single stress, these genes were not regulated. Examples are
given by many sequences related to ROS detoxification
and related to mitogen-activated kinases presumably in-
volved in ROS sensing, [96]. Also, the regulation of ROS
production and detoxification of plants under ozone alone
or in combination with salinity differed at the transcrip-
tion level. While transcripts encoding one L-ascorbate
peroxidase cytosolic were over-expressed both after S and
S+ O3 treatment, transcripts encoding one isoform of
Mn-SOD, two catalase isozymes, and three members of
glutathione transferases gene family were specifically acti-
vated only by the combined S + O3 treatment. These data
partially confirm the biochemical data, which showed no
interactive effects of Oz and salinity on the activity of
SOD and catalase and a strong increase of ascorbate
peroxidase activity [30].

Transcripts related to photosystem II, such as photo-
system II 22kDa chloroplastic, were under-expressed
after the combined treatment, as already observed after
salt treatment. However, the combined treatment led to
down-regulation of a higher number of gene sequences
encoding photosystem II proteins (for example, photo-
system II Z and photosystem II M) compared to the
salt treatment alone.

As observed in the leaves of S plants, transcripts en-
coding mitochondrial, vacuolar and chloroplastic ATP
synthase were over-expressed in the leaves of S+ Oj
plants. However, two gene sequences encoding a
transketolase-chloroplastic and a glyoxylate hydroxy-
pyruvate reductase, two key enzymes involved in plant
carbon metabolism and photorespiration, respectively,
were over-expressed only in S+ O3 leaves, suggesting
transcriptional modifications for stimulating the regen-
eration phase of the Calvin-Benson cycle or the photo-
respiratory process, as observed in other stress
conditions [97, 98].
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Concerning genes related to cell wall remodelling, the
combined treatment regulated a higher number of gene
sequences than Oz or the salt treatment separately.
Among these, a transcript encoding a shikimate O-hydro-
xycinnamoyl transferase, which is related to lignin biosyn-
thesis [99], was under-expressed only in the combined
treatment. A transcript related to inositol oxygenase,
known to be involved in the biosynthesis of nucleotide
sugar precursors for cell wall matrix polysaccharides
[100], resulted in being strongly over-expressed only in S
+ Os plants. Interestingly, concerning the pectinesterase
gene family, both O3 and S + O3 plants showed a strong
increment of pectinesterase 63 transcripts, whereas S + O3
plants showed a decrement of pectinesterase 2 and 11
transcripts, indicating a stress-specific fine tuning of tran-
scription of genes belonging to this family.

Taken together, these data suggest the response to a
combination of stresses cannot be predicted easily and
cannot be directly extrapolated from the response of
plants to each of the different stresses applied individually.

Conclusions

In our experiments, we studied Q. ilex, an urban-adapted
plant that is very common in cities at different latitudes
and is adapted to environments very different from natural
ones. We analysed changes in its transcriptome profile by
mimicking two realistic stressful conditions that may occur
regularly in a Mediterranean urban environment.

Here, we produced for the first time a reference tran-
scriptome for Q. ilex subjected to salt, ozone and their
combination.

Overall, the transcriptome analysis unveils that salinity
dramatically changed the profile of gene expression,
whereas the impact of ozone was less severe. However, the
short O3 pulse had a very strong effect on changing the Q.
ilex transcriptome, when it was combined with the salt
treatment. Although responses to combined and individ-
ual stresses shared a number of regulated genes, several
differences were observed in their expression level.

Moreover, new specific transcripts were detected
under combined stress conditions in respect to
individual treatments.

Our data indicate expression changes in response to com-
bined stress is a unique adaptation strategy tailored for stress
combination, which is perceived by the plant as a new stress,
leading to major remodelling of gene expression [27, 101].

In conclusion, the transcriptome and expression data
reported here are a reliable dataset that will be useful
for future studies aiming to define gene expression in
urban-adapted plants to be conducted in vivo, i.e., in
plants really living in urban environments, for unravel-
ling the complex biochemical and physiological pat-
terns allowing plants to adapt to this extreme and
unnatural environment.
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