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When pitch adds to volume: coregulation
of transcript diversity predicts gene
function
Alejandro Cáceres1,2* and Juan R. González1,2,3*

Abstract

Background: Genes corregulate their overall transcript volumes to perform their physiological functions. However,
it is unknown if they additionally coregulate their transcript diversities. We studied the reliability, consistency and
functional associations of co-splicing correlations of genes of interest, across two independent studies, multiple
tissues and two statistical methods. We thoroughly investigated the reproducibility of co-splicing correlations of
APP, the candidate gene of Azheimer’s disease (AD). We then studied how co-splicing correlations in different
tissues contributed to predict functional interactions of three other genes and finally computed co-splicing
frequency for 17 thousand genes across 52 human tissues.

Results: We replicated co-splicing correlations between APP and 5 AD-related genes and reproduced expected
enrichment of APP co-splicing in synaptic vesicle cycle and proteosome pathways. We observed novel associations
for tissue vulnerability to disease with enrichment in APP co-splicing, co-expression and epistasis in AD. APP co-
splicing was the strongest predictor and replicated between studies. We confirmed known gene interactions of
PRPF8 and GRIA1 in testis and brain cortex, and observed a novel interaction of FGFR2, in breast and prostate,
modulated by cancer risk-variants. We produced a co-splicing map across 52 human tissues to help predict the
function of over 17 thousand genes.

Conclusions: We show that coregulation of transcript diversities provides novel biological insights in gene
physiology and helps to interpret GWAS results. Co-splicing correlations are reliable and frequent and should be
further pursued to help predict gene function. Our results additionally support current AD interventions aiming at
the ubiquitin proteosome pathway but unveil the need to consider transcript diversity in addition to volume to
assess treatment response and susceptibility to the disease.
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Background
The correlation between gene expression levels has been
a prominent tool to study the emergence and conserva-
tion of biological functions [1]. However, it is now clear
that most genes support a diverse repertoire of tran-
script isoforms [2], produced by alternative transcription
initiation, alternative polyadenylation and alternative
splicing [3]. Consequently, gene expression can change
not only in volume but also in quality when some

isoform groups are more frequently produced than
others. As coregulation of gene expression contributes
to orchestrate the function of genes, it is then conceiv-
able that genes may also tune in their transcript distribu-
tions in functions that involve selected isoforms.
The transcript diversity of genes is strongly dependent

on the tissue [4], suggesting ample physiological conse-
quences of its regulation [5]. Some insights have been
made from functional associations of gene coregulation
networks. Recently, Iancu and colleagues described
co-splicing correlations across species as a measure of
the coregulation of the transcript diversities between
gene pairs [6]. They observed that network hubs strongly
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represented neurobiological functional pathways. More re-
cently, Saha et al. demonstrated strong presence of spli-
cing regulatory hubs from co-splicing networks across
numerous tissues, using Genotype Tissue-Expression
(GTEx) data [7]. To gain further understanding into the
biological consequences of the regulation of transcript di-
versity, we ask whether significant coregulation among
genes is consistent with their physiological functions.
Therefore, unlike previous studies that aimed to identify
structural properties of co-splicing networks, here, we
considered whether the co-splicing correlations of a gene
of interest play a relevant role in the gene’s biological
function. In this context, we attempted to assess how reli-
able, widespread and informative on gene function
co-splicing correlations are.
We therefore aim to first study the reproducibility and

biological significance of co-splicing correlations of a can-
didate gene for which there is evidence that splicing ratios
play an important role. APP is a prominent candidate gene
for Alzheimer’s disease (AD) [8]. The gene supports nu-
merous isoforms [9] and research indicates that its splice-
form ratios are different between AD patients and
controls, triggering the amyloid cascade and apoptosis or
being involved in aging hippocampi [10–13]. In addition
to the hypothesized toxicity of APP’s amyloid-β fragment,
disruptions of the gene’s function may also be important
contributors to the disease [14]. Increasing our under-
standing of APP’s physiological regulation is, therefore, es-
sential. Validating between independent studies, methods
and brain regions, we therefore aimed to determine the
robustness of APP co-splicing correlations with genes and
pathways that contribute to the gene’s physiological
function and role in AD. We therefore analyzed two in-
dependent studies (GTEx and BRAINEAC) [15, 16],
two co-splicing methods and ten different brain regions
to fully characterize the transcriptome-wide co-splicing
of APP. To assess the further biological insight given by
the regulation of transcription diversity, we studied the
relative contribution of APP co-splicing, co-expression
and genome-wide epistasis (defined in Methods) to a
transcriptomic signature of tissue vulnerability for the
disease [17].
Since, to our knowledge, this is the first effort to try to

infer a gene’s function through transcriptome-wide core-
gulation of transcript diversity, we then studied whether
transcriptome-wide co-splicing correlations were also rele-
vant to predict the function of other genes in different tis-
sues. We therefore hypothesized that transcriptome-wide
co-splicing of genes of interest in relevant tissues predicts
expected protein-protein interactions and informs on
plausible new interactions. We thus studied PRPF8,
GRIA1 and FGFR2, which are involved in the regulation of
splicing in testis, glutamatergic neurotransmission in brain
cortex and susceptibility to breast cancer, respectively

[18–21]. Finally, we assessed the frequency of co-splicing
correlations across 17 thousand genes and 52 human tis-
sues and made the results available at coSplicing4GTEx
web application as novel gene function predictor [22].

Results
Methods to compute co-splicing correlations
Gene expression levels are intensively used to determine
groups of genes that by coregulating their transcription
volumes perform biological functions. However, it is
conceivable that genes also coregulate their transcription
diversities to determine which transcript isoforms should
be involved in a particular function. The coregulation of
transcript diversity has been recently estimated from
co-splicing correlations [6, 7]. From RNA-seq data,
co-splicing correlations across subjects are derived from
the exon count distributions of genes [6, 7]. As defined
by Iancu and colleagues, the co-splicing between two
genes can be computed from the Mantel’s correlation
between the distance matrices of exon count distribu-
tions across subjects [6] (see Methods). We propose to
visualize these co-splicing correlations back in terms of
exon count data as shown in Fig. 1. The figure illustrates
two genes in high co-splicing, APP and UBQLN1, and
low co-splicing, APP and SSC5D, derived from the exon
count data (RNA-seq) of hippocampus from the GTEx
project, version 6. High co-splicing between two genes,
as measured by Mantel’s correlation, results in a coher-
ent ranking of individuals across numerous exons be-
tween genes. We thus observe that the subject ranking
of count frequencies at APP’s exon 1 is coherent with
the rankings across numerous exons of APP and
UBQLN1 but not across the exons of SSC5D (compare
Fig. 1a with b and with c). To gain further insight into
the coregulation of transcription diversity, we addition-
ally propose an alternative measure of co-splicing based
on the first principal component (PC) of the exon count
distributions across individuals. Interpreting the first PC
as providing main differences between transcript mix-
tures between individuals for a given gene, co-splicing
can then be measured as the correlation between the
first PCs of two genes. PC-based co-splicing is computed
by the partial correlation adjusting for covariates. We
observed, in the example of Fig. 1, that the partial correl-
ation between the first PCs of genes is high between
APP and UBQLN1 and low between APP and SSC5D
(Fig. 1d and e). The PC based method was used for val-
idation of Mantel’s correlations and to test interactions
with genomic variants.

Co-splicing complements co-expression
We aimed to characterize the co-splicing of APP from
its relationship to co-expression. We first studied the as-
sociation between transcriptome-wide co-expression and
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co-splicing of APP with 17,368 genes in the hippocam-
pus data of GTEx (N = 94), one of the main regions af-
fected in AD. We computed the transcriptome-wide
co-expression of APP using a partial Pearson’s correla-
tions of kilobase per million mapped reads (RPKM),
adjusting by tissue-specific covariates. We estimated
transcriptome-wide co-splicing from Mantel’s correla-
tions, also adjusting by covariates. We noticed high cor-
relation between APP co-expression and co-splicing
(Pearson’s r = 0.51, P < 1 × 10− 16, Fig. 2a). Interestingly,
genes in high co-splicing with APP appear as a clear
subset of those in high co-expression, indicating that
coregulation of transcript diversity is likely accompanied
by coregulation of transcription volume; as some iso-
forms become more abundant, they increase the overall
transcription of genes. Whereas, changes in trascription
levels do not necessarily imply changes in splicing ratios.

Reliability of co-splicing correlations between different
methods, studies and tissues
We studied the replication of co-splicing of APP with
different inference methods and its validation across two
independent studies and numerous brain regions. Using
exon-array data of hippocampus from the BRAINEAC
project (N = 130), we investigated the reproducibility of
transcriptome-wide co-splicing of APP between studies
and inference methods. We computed, in both studies,
the co-splicing correlations of APP with 12,577
commonly-annotated genes, using the Mantel and PC
methods, to determine the level of agreement between
analyses and studies. We found high agreement with a
Pearson’s correlation of 0.71 and 0.52 between methods,
in GTEx and BRAINEAC, respectively (Additional file 1:
Figures S1-S2). We also calculated the consistency of the
transcriptome-wide co-splicing of APP between studies

Fig. 1 Co-splicing correlations of APP with UBQLN1 and SSC5D in hippocampus (GTEx). a Equalizer type plot displaying the exon count distributions of
APP ranked across individuals at each exon, with maximum possible ranking for tie. Colors follow the ranking of exon 1 of APP. b The subject ranking
of exon count distributions of UBQLN1, colored by the ranking of APP exon 1, shows a clear coherence between a and b. The tuning of exon count
distributions between genes leads to similar distance matrices between individuals and results in high Mantel’s correlations. c For SSC5D the ranking
coherence is broken, Mantel’s correlation is therefore low and there is no co-splicing with APP. d The first principal component (PC), across individuals,
of the exon count distributions of APP highly correlates with that of UBQLN1, adjusting for covariates. e The first PC of APP does not correlate with the
first PC of SSC5D, suggesting low splicing coregulation
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(Fig. 2b). While the correlation between studies was
moderate (0.36), it was highly significant (P < 1 × 10− 16),
demonstrating that a high degree of APP co-splicing
across the genome was reproduced between studies.
This is a relevant result, as the differences between stud-
ies are numerous: particularly, microarray’s exon expres-
sion distributions are reconstructed from subject
ranking (see Methods); and more generally, they differ in
samples, experiments (RNAseq and microarray), data re-
duction algorithms and co-splicing inference.
We then studied the co-splicing of APP across mul-

tiple brain regions, where deposition of amyloid plaques
begins [23]. We considered six different brain regions
from GTEx and four form BRAINEAC (see Methods),
and searched for the genes that were significantly
co-spliced with APP across methods, brain regions and
studies. We observed, in particular, that the PC-based
co-splicing method in hippocampus had more statistical
power than Mantel’s correlation; P-values for Mantel’s
correlations were computed from the normal distribu-
tion of z-transformed correlations, further standardized
and cube-root transformed to account for right skewness
(Additional file 1: Figures S3-S4). Genes with significant
co-splicing corrected for multiple comparisons were
identified from the PC-based method and validation be-
tween studies was based on Mantel’s correlations, the
reference method. As a result, a total of 11 genes with
reproducible co-splicing across methods, regions and
studies were identified, see Table 1. Five genes, UBQLN1,
APLP2, ATP2A2, ATP6AP2 and DNER, have been previ-
ously linked to AD, suggesting probable disruptions of
APP’s physiological regulation during disease. UBQLN1

links proteosomes and ubiquitin ligases for protein
degradation and its variants have been associated to AD
[24], APLP2 has been involved in glutamatergic
transmission and synaptogenesis in association with APP
[25, 26], ATP2A2 is a SERCA Ca(2+) ATPase, involved
in calcium homeostasis in the endoplasmatic reticulum,
and regulates amyloid-β production [27], ATP6AP2 is a
constituent of the renin-angiotensin system whose
down-regulation has been associated to AD [28] and
DNER promotes glia differentiation activating gamma
secretase signaling [29].

Modulation of co-splicing by a SNP
Notably, we found reproducible APP co-splicing with
UBQLN1, which in physiological state is a chaperone of
APP that contributes to its synthesis and processing [30].
UBQLN1’s alternative splicing and common variation
has been associated with increased susceptibility to AD
[24, 31–33], not without controversy [34, 35]. Since the
polymorphism UBQ-8i (rs12344615) in UBQLN1 has
been associated with increased risk of late-onset
Alzheimer’s disease (LOAD) and differences in UBQLN1
exon 8 splicing, we asked whether APP/UBQLN1
co-splicing was modulated by UBQ-8i. We found that, in
the frontal cortex, the interaction between the first PC of
APP’s exon count distribution and the SNP was signifi-
cantly associated with the first PC of UBQLN1 (β = − 0.08,
P = 0.035, Additional file 1: Figure S5). We adjusted for 6
genome-wide surrogate covariates and sex. While the
interaction was not significant in other tissues tested, they
all showed a consistent direction of the estimate, suggest-
ing a link between UBQ-8i and APP splicing ratios.

A B

Fig. 2 Consistency and reproducibility of APP co-splicing in hippocampus. a Correlation between transcriptome-wide APP co-expression and
co-splicing correlations. Each point is a gene for which its co-expression and co-splicing correlations (z-transformed) with APP were computed. A
high correlation was found for hippocampus data of GTEx, where high co-splicing is a clear subset of high co-expression: {genes such that z
co-splicing > 1} ⊂ {genes such that z co-expression > 1}, where z = 1 corresponds to a correlation of 0.76. b Reproducibility between independent
studies. Mantel co-splicing correlations (z-transformed) with APP was computed in two independent studies (GTEx and BRAINEAC). While the
correlation is moderate, it is highly significant, showing that genes with high APP co-splicing in GTEx are also likely to be high in APP co-splicing
in BRAINEAC. Co-splicing correlations in GTEx are higher than in BRAINEAC
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Contribution of APP’s co-splicing, co-expression and
epistasis in tissue vulnerability to AD
We then studied whether transcriptome-wide co-splicing
of APP lead to significant enrichment of biochemical
pathways, exploring further the physiological functions
of APP at pathway level through co-splicing correlations.
We computed the pathway enrichment of APP
co-splicing on 277 KEGG pathways, given by genes with
APP co-splicing P-value > 0.05. The overall agreement
between the GTEx and BRAINAC studies to declare a
pathway significantly enriched in APP co-splicing was
given by a Cohen’s κ of 0.37 (P = 1.71 × 10− 10), in line
with the observed reproducibility at gene level. After
correcting for multiple comparisons, that included num-
ber of pathways and brain regions, we observed a total
of six significant pathways validated between studies
(Table 2). Consistent with known APP’s physiological
functions, Synaptic vesicle cycle showed the most
significant combined P-value between experiments [36]
(P = 8.67 × 10− 7), followed by Protein processing in
endoplasmic reticulum [37] (P = 2.10 × 10− 5), a pathway
in which UBQLN1 is involved (Additional file 2: Table
S1). Also relevant to AD, Ubiquitin mediated proteoly-
sis was reproducible between studies, as it was long
term potentiation. Consistent with co-splicing being a
factor influencing co-expression, we confirmed that all
pathways with reproducible enrichment in co-splicing
were also enriched in co-expression and that many
more pathways were enriched in co-expression than
co-splicing (Additional file 2: Table S1).
To determine a putative impact of a deregulation of

transcript diversity in disease, we correlated the path-
way’s enrichment in APP co-splicing with a recent

transcriptional signature of tissue vulnerability to AD
[17] The signature is based on expression differences be-
tween Braak regions I to III and unaffected brain re-
gions, and it is enriched for pathways that co-aggregate
with amyloid-β and tau protein, in plaques and tangles
[17]. As a measure between normal APP functioning
and genetic susceptibility to disease derived from inad-
equate protein degradation, we tested whether the path-
way vulnerability score correlated with enrichment in
APP co-splicing (Additional file 2: Table S1). We ob-
served that the tissue vulnerability score of pathways
strongly correlated with their enrichment in APP
co-splicing, both in GTEx (β = 0.18, P = 8.6 × 10− 9) and
BRAINEAC (β = 0.10, P = 0.018, Fig. 3a and b). We also
found that enrichment in co-expression correlated with
the vulnerability score weaker than co-splicing and was
not validated between studies (β = 0.08, P = 1.1 × 10− 4 in
GTEx, β = 0.05, P = 0.13 in BRAINEAC). This results
shows that the specificity gained by enrichment in
co-splicing improved the associations between the physio-
logical function of APP and the vulnerability score.
We applied an enrichment analysis of epistatic effects as

described in Caceres et al. [38], with the objective of find-
ing significant genomic associations of co-splicing correla-
tions at a pathway level. Specifically, we asked which
pathways were enriched in interactions with multiple
SNPs in APP, and if the pathways correlated with those
enriched in APP co-splicing. This analysis is well powered
(80%) to detect interactions with SNPs having odds ratios
greater than 1.28 in studies with more than 1000 subjects,
and false positive rate is kept under control when adjust-
ing for multiple comparisons for the number of pathways
tested (Additional file 1: Figures S6-S11). We analyzed

Table 1 Genes with significant APP co-splicing between studies (GTEx and BRAINEAC) and different brain regions (HIPP: hippocampus,
AMYG: amygdata, HYP: hypotalamus, ACTX: anterior cingulate cortex, CTX: cortex, FCTX: frontal cortex, OCTX: occipital cortex, TCTX:
temporal cortex)

Genes GTEx BRAINEAC

HIPP
PCA-cor (P)

HIPP
M-cor (P)

AMYG
M-cor (P)

HYP
M-cor (P)

ACTX
M-cor (P)

CTX
M-cor (P)

FCTX
M-cor (P)

HIPP
M-cor (P)

FCTX
M-cor (P)

OCTX
M-cor (P)

TCTX
M-cor (P)

DNAJC6 0.75 (1.1e-13) 0.83 (0.007) 0.84 (0.002) 0.84 (0.02) 0.89 (0.004) 0.79 (0.003) 0.91 (0.009) 0.52 (0.002) 0.32 (0.013) 0.42 (0.006) 0.3 (0.038)

DNER 0.71 (9.0e-12) 0.75 (0.019) 0.71 (0.014) 0.85 (0.017) 0.81 (0.014) 0.65 (0.018) 0.8 (0.039) 0.38 (0.022) 0.31 (0.015) 0.34 (0.027) 0.35 (0.019)

UBQLN1 0.69 (6.6e-11) 0.83 (0.007) 0.73 (0.01) 0.82 (0.026) 0.75 (0.027) 0.72 (0.008) 0.8 (0.039) 0.52 (0.002) 0.52 (1e-4) 0.44 (0.004) 0.48 (0.002)

ATP6AP2 0.68 (9.0e-11) 0.82 (0.008) 0.82 (0.003) 0.86 (0.015) 0.87 (0.006) 0.75 (0.006) 0.92 (0.008) 0.48 (0.004) 0.35 (0.007) 0.43 (0.005) 0.32 (0.028)

APLP2 0.68 (1.9e-10) 0.77 (0.016) 0.59 (0.047) 0.75 (0.048) 0.76 (0.025) 0.67 (0.014) 0.81 (0.037) 0.42 (0.012) 0.39 (0.003) 0.42 (0.006) 0.43 (0.004)

TPD52 0.66 (6.0e-10) 0.79 (0.013) 0.75 (0.008) 0.81 (0.028) 0.82 (0.012) 0.7 (0.01) 0.9 (0.011) 0.4 (0.018) 0.32 (0.013) 0.43 (0.005) 0.36 (0.016)

PRKAR1A 0.64 (3.3e-09) 0.8 (0.011) 0.81 (0.003) 0.78 (0.038) 0.8 (0.016) 0.72 (0.008) 0.83 (0.03) 0.41 (0.015) 0.29 (0.022) 0.34 (0.029) 0.36 (0.014)

ACLY 0.63 (5.1e-09) 0.79 (0.013) 0.7 (0.016) 0.79 (0.035) 0.88 (0.004) 0.73 (0.006) 0.89 (0.013) 0.5 (0.003) 0.31 (0.017) 0.46 (0.002) 0.4 (0.007)

ATP2A2 0.58 (2.0e-07) 0.81 (0.009) 0.77 (0.006) 0.77 (0.042) 0.8 (0.016) 0.8 (0.002) 0.82 (0.031) 0.5 (0.003) 0.37 (0.004) 0.35 (0.021) 0.37 (0.012)

STAU1 0.56 (6.5e-07) 0.77 (0.016) 0.7 (0.016) 0.79 (0.033) 0.8 (0.015) 0.69 (0.011) 0.81 (0.037) 0.41 (0.015) 0.44 (0.001) 0.44 (0.004) 0.44 (0.004)

MTMR4 0.51 (6.2e-06) 0.74 (0.022) 0.64 (0.029) 0.77 (0.042) 0.81 (0.014) 0.62 (0.023) 0.87 (0.018) 0.41 (0.016) 0.34 (0.008) 0.35 (0.021) 0.32 (0.029)

The first column shows the co-splicing correlations obtained by the PC method and corresponding P-values in parenthesis. Mantel’s correlations follow
from the second column
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three LOAD GWAS: ADG (2686/935 cases/controls),
NIA (587/289) and GENADA (806/782). We pruned
SNPs within APP keeping those that were in pair-wise
linkage equilibrium at R2 < 0.2 within studies. We
performed 27 genome-wide interaction analyses (GWIAs)
for the 27 SNPs in APP, covered in the three studies
(Additional file 1: Tables S2-S4). Each GWIA tested the
interactions of one the SNPs in APP with all the SNPs ge-
notyped across the genome. For each GWIA, we then per-
formed enrichment analysis on 277 KEGG pathways. A
pathway’s multiple enrichment in APP epistasis was
defined as the total number of GWIAs in which the path-
way was found significantly enriched (Additional file 3:
Table S5). We did not find statistical evidence for the

association between multiple enrichment in APP epistasis
and enrichment in APP co-splicing (β = 0.18, P = 0.36 in
GTEx, β = 0.13, P = 0.62 in BRAINEAC). However, we ob-
served a strong correlation between multiple enrichment
in APP epistasis and the tissue vulnerability score (robust
regression, β = 0.033, P = 3.96 × 10− 5, R2 = 0.045, Fig. 3c),
confirming a strong link between the vulnerability score
and the genetic variability of APP. We fitted, in GTEx, a
regression model for the vulnerability score that included
enrichment of APP co-splicing, co-expression and
epistasis, and observed that all the factors contributed sig-
nificantly to the model (F(3,208) = 19.56, P = 3.2 × 10− 11,
R2 = 0.22), being co-splicing the strongest contributor of
all (β = 0.15, P = 2.7 × 10− 7).

Table 2 KEGG pathways enriched in co-splicing with APP in GTEx and BRAINEAC, across limbic and neocortex regions

STUDY KEGG Pathway Description corrected P

GTEx hsa04070 Phosphatidylinositol signaling system 8.93E-4

hsa04728 Dopaminergic synapse 8.93E-4

hsa04141 Protein processing in endoplasmic reticulum 4.04E-3

hsa04120 Ubiquitin mediated proteolysis 5.32E-3

hsa04022 cGMP-PKG signaling pathway 6.82E-3

hsa04730 Long-term depression 1.46E-2

hsa04530 Tight junction 1.65E-2

hsa04724 Glutamatergic synapse 1.67E-2

hsa04520 Adherens junction 1.80E-2

hsa04713 Circadian entrainment 2.28E-2

hsa04723 Retrograde endocannabinoid signaling 2.36E-2

hsa04261 Adrenergic signaling in cardiomyocytes 3.18E-2

hsa04721 Synaptic vesicle cycle 3.34E-2

hsa04727 GABAergic synapse 3.34E-2

hsa05130 Pathogenic Escherichia coli infection 3.47E-2

hsa04114 Oocyte meiosis 4.75E-2

hsa04611 Platelet activation 4.75E-2

hsa04015 Rap1 signaling pathway 4.75E-2

hsa04720 Long-term potentiation 4.94E-2

BRAINEAC hsa4142 Lysosome 1.82E-9

hsa4721 Synaptic vesicle cycle 1.46E-6

hsa4961 Endocrine and other factor-regulated calcium reabsorption 6.20E-6

hsa4141 Protein processing in endoplasmic reticulum 3.62E-4

hsa5110 Vibrio cholerae infection 8.07E-4

hsa4144 Endocytosis 1.04E-3

hsa4261 Adrenergic signaling in cardiomyocytes 2.65E-3

hsa4114 Oocyte meiosis 1.00E-2

hsa4720 Long-term potentiation 1.00E-2

hsa4145 Phagosome 1.20E-2

hsa4120 Ubiquitin mediated proteolysis 1.28E-2

P-values are corrected for the number of pathways tested (277) and brain regions. Pathways in bold face were validated between studies
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Co-splicing correlations predict gene function of PRPF8
and GRIA1 in testis and brain
We studied two additional genes of interest for which al-
ternative splicing have shown to be relevant for the
genes’ function. We first considered PRPF8. Prp8p is a
component of the U5 assembly within the catalytic cen-
ter of the spliciosome [18]. As testis is a tissue with high
levels of splicing events, we looked at the genes that
co-spliced the strongest with PRPF8 in this tissue. Re-
markably, in the top 20 genes with highest co-splicing,
we observed SNRNP200 (small nuclear ribonuclear pro-
tein U5 subunit 200), SF3B3 (splicing factor 3B subunit
3), PRPF6 (Pre-mRNA-processing factor 6) and SF3B2
(splicing factor 3B subunit 2) with Mantel’s correlations
of 0.9, 0.87, 0.86 and 0.85, respectively. Enrichment ana-
lysis of KEGG pathways confirmed spliceosome as the
most significant pathway (adjusted-P = 1.24 × 10− 4).
These findings suggest that the complex cascade of

spliceosome interactions may be a physiological feature
of alternative splicing beyond developmental stages [39]
and are in line with the enrichment in splicing genes for
the transcriptome-wide networks that combine expres-
sion and relative isoform levels [5].
We further looked at the transcriptome-wide co-spli-

cing of GRIA1 (Glutamate Receptor 1) in the brain cor-
tex. Different isoforms of GRIA1–4 combine in various
tetramers to produce different versions of AMPA recep-
tors for glutamate, each with a specific function [19].
We found that the most co-spliced gene in the genome
with GRIA1 was GRIA3 (Mantel’s correlation 0.85).
Interestingly NSF, which binds to AMPA receptor GluR2
subunit (GRIA2), was the second highest in co-splicing
with GRIA1 (0.84). From the top 20 genes in co-splicing
with GRIA1, 4 were part of synaptic vesicle cycle
(adjusted-P = 5.85 × 10− 4) and 5 form the cAMP signal-
ing pathway (adjusted-P = 1.42 × 10− 3). We therefore

Fig. 3 Association between the tissue vulnerability score of AD (Delta BI-III) and enrichment of APP co-splicing, and multiple enrichment in APP
epistasis. a Box plots (box: 3rd, 2nd and 1st quartiles, whiskers: outlier fences of 1.5 interquartile range) representing the distributions of Delta BI-III
for pathways with no significant enrichment in APP co-splicing (No APP-spl) and for pathways with significant enrichment (APP-spl), for GTEx data.
The difference between means (beta) and P-value are reported at the bottom. b Similar plot to (a) for BRAINEAC data. c Dose-response
relationship between tissue vulnerability and multiple enrichment in APP epistasis. Each dot is a pathway. The x axis shows the number of
genome-wide interaction analyses (GWIAs), from 27 SNPs in APP, in which a pathway was found significantly enriched
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confirmed expected interactions between genes in a
physiological function that is regulated by the alternative
splicing of its factors. We further computed the
genome-wide co-expression network of GRIA1 to deter-
mine whether the top genes that co-spliced with it also
topped in co-expression. We observed a similar but
more dramatic pattern than that for APP (Additional file
1: Figure S12). That is, many more genes highly
co-expressed with GRIA1 than those that highly
co-spliced with it. We also observed that no significant
pathways were found for the top 20 co-expressed genes.
In particular, we found that the co-expression of GRIA1
and GRIA3 was much lower ranked (1347 highest correl-
ation with value 0.80) than their co-splicing, suggesting
that expression levels are not enough to drive the core-
gualtion between the genes. This type of specific obser-
vations indicate a tight regulation between the genes’
isoforms that can be further investigated.

FGFR2 /CASC4 co-splicing is modulated by cancer risk
SNPs in breast and prostate
We also asked whether co-splicing correlations could
add information to validated transcriptome-wide associ-
ation studies (GWAS) results. In breast data, we looked
at the transcriptome-wide co-splicing correlations of
FGFR2, whose SNP rs2981582 has been associated with
breast cancer [20] and for which numerous splicing
forms have been found specifically expressed in breast
cancer cells lines [21]. Although correlations were
smaller than in previous cases, we found that the top 20
genes that co-spliced with FGFR2 significantly enriched
the pathway Central carbon metabolism in cancer
(adjusted-P = 1.57 × 10− 2). We then considered CASC4,
other gene whose alternative splicing has been linked to
breast cancer [40]. We tested whether the co-splicing
between the genes was modulated by rs2981582. We used
PC derived co-splicing, to test the association of the inter-
action between the first PC of FGFR2 and rs2981582 with
the first PC of CASC4, adjusting for covariates (interac-
tion-β = 0.10, P = 0.017). Interestingly, we replicated the
interaction in prostate (interaction-β = 0.09, P = 0.027),
and also found a significant interaction with rs10749415
(interaction-β = − 0.14, P = 0.038), a SNP in FGFR2 re-
cently associated with prostate-specific antigen levels
[41]. While needing to be confirmed, co-splicing cor-
relations suggest an underlying coregulation of the al-
ternative splicing of FGFR2 and CASC4, modulated
by risk SNPs for cancer.

Co-splicing is ubiquitous across tissues
We finally analyzed the exon count data from GTEx cor-
responding to 52 human tissues. For each tissue, we re-
moved genes for which a single exon accounted for 90%
of the total gene counts, leaving a total of 17,368. With

the aid of a supercomputing facility from the Spanish
network for supercomputing (https://www.res.es/), we
computed the Mantel co-splicing correlations of all gene
pairs across all tissues (coSplicing4GTEx - http://cospli
cing.isglobal.org/). We found that co-splicing is ubiqui-
tous across tissues, as numerous gene pairs were ob-
served with high co-splicing with respect to the
co-splicing distribution of all possible gene pairs per tis-
sue (Fig. 4a). We computed the fraction of outlier pairs,
given by the number of pairs with z-transformed corre-
lations higher than 2.5 times the interquartile range, for
each tissue (Fig. 4b). We observed that testis was the tis-
sue with most co-splicing pairs, consistent with previous
studies showing this tissue with high rates of alternative
splicing events [42].

Discussion
We showed that coregulation of transcript diversity
among genes is a novel predictor of gene function. To
support this, we extracted reliable and robust correlates
of the transcript diversity of APP and we illustrated with
three other examples how coregulation of transcript di-
versity can recover established gene interactions, help to
interpret GWAS results and provide new biological in-
sights on their function.
We particularly demonstrated that coregulation of

transcript diversity among genes provides new important
observations of APP’s physiological function and its links
to AD. We produced a series of robust and coherent re-
sults indicating physiological links between APP’s tran-
script distribution and the proteosomal degradation
system, which may be affected during disease. The re-
sults are in line with previous knowledge on APP’s asso-
ciations with proteosomal degradation and synaptic
signaling [43], adding the important contribution of
APP’s transcript variety to health and disease, besides
transcript volume [10]. Our observations particularly
support a role played by the regulation of transcript di-
versity in shaping the gene’s function. In particular, we
observed a physiological modulation of the coregulation
between APP and UBQLN1 given by UBQ-8i. This result
suggests that inconsistencies in the risk of UBQ-8i asso-
ciated to AD could be derived from the non-accounted
disruption of the coregulation between the genes. In line
with the association between the physiological coregula-
tion of APP’s transcription diversity and proteosomal
degradation pathways, we also found evidence for the as-
sociation between APP co-splicing and protein aggrega-
tion [17, 36, 44]. In particular, we observed that the
association of tissue vulnerability to AD was stronger for
APP’s co-splicing than co-expression. Our result may
help to explain why no strong evidence of APP’s func-
tion is derived from co-expressed genes, as provided by
gene function predictors such as GeneMania [45] or
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STRING [46], in addition to recent transcriptome
meta-analyses that have not been able to confirm
up-regulation of APP in cases with respect to controls
[44, 47]. We observe that specific coregulation of tran-
script diversity explains better the links between the
physiological function of APP and tissue-vulnerability to
disease. Our analyses in particular support new calls for
interventions targeting the ubiquitin proteosomal system
[48] and underscores the need to study its transcript di-
versity regulation in association to AD.
We used co-splicing correlations to study the coregu-

lation of transcript diversities among genes. Our esti-
mates are based on exon count distribution data
(RNA-seq) which is an indirect measure of isoform mix-
ture [6]. New methods to estimate co-splicing correla-
tions methods should be considered for full-length
RNA-sequencing, as it becomes more available. In
addition, co-splicing correlations include transcript di-
versity that could also be derived from alternative tran-
scription at different start and end sites or splicing. The
contributions of each of these processes to the correla-
tions need to be further explored because mayor differ-
ences in transcript diversity across tissues are given by
alternative transcription and not splicing [5]. However,
regardless their origin, we show that the coregulation of
transcript diversity predicts expected gene correlates. In
relation to transcription volume, we observed that
changes in transcription quality is likely accompanied
with increases in overall gene expression (Fig. 2a), as

increments in isoform subgroups are likely to increase
the overall expression. Increments in only transcription
volume without changes in diversity are also common.

Conclusions
Co-splicing correlations predict functional correlates of
genes. To support this, we extracted reliable and robust
correlates of the transcript diversity of APP and we illus-
trated with three other examples how co-splicing correla-
tions can recover established gene interactions, help to
interpret GWAS results and provide new biological in-
sights on their function. We also produced a comprehen-
sive and accessible map of co-splicing between genes
across numerous human tissues (http://cosplicing.isglo
bal.org/), showing that the specific co-regulation of genes
at isoform level is ubiquitous and can be an important
contributor to overall co-expression. Numerous gene
function predictors, such as STRING [45], GeneMania
[46] or FunCoup [49], amongst many others, currently use
multiple sources of evidence that include co-expression
but are yet to consider co-splicing. Co-splicing correla-
tions of genes of interest are an important additional
source of evidence to predict their function.

Methods
Co-splicing correlations between two genes
The fact that individual exons from different genes can
have correlation expression levels, even when there is no
correlation between overall expression levels, is due to

Fig. 4 Co-splicing across 52 human tissues. a Box plots (box: 3rd, 2nd and 1st quartiles, whiskers: outlier fences of 1.5 interquartile range) for the
distributions of co-splicing correlations between all gene-pairs in the genome (17,368 genes) across 52 human tissues, from GTEx. The distributions
show numerous outlier pairs with high correlations. b Fraction of outlier pairs per tissue shows testis as the tissue with the highest co-splicing rates
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the coregulation of splicing [6, 7]. Co-splicing networks
have been derived in two different ways, each based on a
different method to measure the pair-wise coregulation
of splicing, see Fig. 5. For instance, Saha et al. have re-
cently used the correlation between individual isoform
levels [7]. Here, exon sequencing data is first used to
infer the isoform abundance in each gene and then sub-
ject correlations between the isoforms across genes are
computed. A co-splicing network can then be built form
the correlation network based on isform correlations.
While this method informs on specific splicing events, it
requires isoform inference and numerous correlations to
be tested. Using RNA-sequencing (RNA-seq) data, the
co-splicing between two genes can also be estimated
from the correlation between the exon count distribu-
tions of the genes, as proposed by Iancu et al. [6]. This
approach is based on distance matrix correlations where
a single measure is obtained for each gene-pair. No
intermediate isoform inference is required, reducing data

processing and likelihood of introducing modeling error.
Regarded as a multivariate isoform method, greater de-
tection power can be expected at the expense of inter-
preting correlations at isoform level. Despite this, the
method is adequate for our objective to identify the
genes that coregulate their splicing with a gene of inter-
est, and from this perspective, inform on its possible
physiological functions.
For matrix based cosplicing cosplicing correlations,

the exon count distributions of the genes, per subject,
are obtained from the relative frequencies at which the
exons of a gene are mapped by reads. The exon count
distribution of a gene a for subject i is therefore defined
as the normalized vector

Pi að Þ ¼ ai
aij jj j ;

of dimension equal to the number of exons in a. ai is

Fig. 5 Schematic representation of two pair-wise correlation measures that have been used to derive co-splicing networks (isoform correlations
and cosplicing correlations). In the top track, exon count data for two genes is used to infer the isoform abundance for each subject (shown in
colors). Gene a and gene b contain 4 and 3 exons, under 2 and 3 isoforms models, respectively. As, isoform ratios between genes a and b are
obtained, all possible correlations (2*3 = 6) among the isoforms of both genes can be computed. The example illustrates a significant correlation
between isform 2 of gene a and isoform 3 of gene b. In this work, we take the lower track to compute the gene correlations of the co-splicing
networks. Here, exon count data is directly used to determine differences between individuals at each gene. No inference of specific isoform
models is required and all data is used to determine the distance matrix of individuals. The matrix-based correlations test weather the similarities
in the exon count distributions across subjects are kept between genes. The figure illustrates a likely high co-splicing correlation between the
genes derived from the fact that, in both genes, the curve of the exon count distributions for subject 3 (red) is substantially different to the
curves for subjects 1 and 2 (green and blue). With one single measure the co-splicing correlation between genes, based on distance matrix,
informs on the possible coregulation of splicing across all isoforms
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vector with Euclidean norm that encodes the counts for
each exon of a for individual i. dThe distance between
subjects i and j, given by their respective exon count dis-
tributions of a, is computed by the inner product

da i; jð Þ ¼ 1−Pi að Þ∘Pj að Þ:

The matrix da measures the differences in exon count
distributions among individuals, which correlates with
the distance matrix of another gene b when the genes
coregulate their transcript distributions, i.e. their tran-
script diversities. The overall co-splicing between genes
a and b is computed from the Mantel’s correlation be-
tween their distance matrices Mantel(da, db) [6]. The
correlation can be adjusted for transcriptome-wide batch
effects using a partial Mantel’s correlation, where the
correction matrix is the distance between subjects given
by their exon count distributions of the entire genome.
We propose to measure the co-splicing between two

genes from the correlation between the first principal
components (PC) of the exon count distributions of each
gene across subjects. A PC is performed on the exon
count distribution of a gene a across subjects. We as-
sume that first PC captures the variability in the isoform
transcript diversity among subjects. As such, we correl-
ate the first PCs obtained for two genes a and b using a
partial correlation that can be adjusted by covariates.
The PC-based co-splicing correlation was used to valid-
ate between methods significant co-splicing identified by
Mantel’s correlation. In addition the method allows the
testing of interactions with genomic variants.

GTEx data
We downloaded version-6 data from the GTEx project
web-site [15]. RNA-seq count data was obtained for 52
different tissues. Pair-ended RNA-seq was performed with
Illumina HiSeq 2000 following the TrueSeq RNA protocol.
See The GTEx Consortium (2017) and Saha et al. for fur-
ther details [7]. We were given access to download GTEx
genotypes from dbGAP [50] with accession number
phs000424.v6.p1. Approximately 1.9 million SNPs were
genotyped using whole blood samples with Illumina
HumanOmni 2.5M and 5M BeadChips. Tissue specific
covariates that included transcriptome-wide PC, inferred
batch effects and sex were also downloaded from the
GTEx web-site.

BRAINEAC data
We also downloaded the brain expression data of
the BRAINEAC project [16] that consists on tran-
scriptomic data of about hundred healthy individuals
across 9 different brain tissues. We obtained exon
expression data corresponding to Affymetrix Human
Exon 1.0 ST array. Gene expression data, from

winsorized values, was also downloaded. All data
had been previously normalized and corrected for
batch effects. See the BRAINEAC consortium for
further details.

Reproducibility of transcriptome-wide co-splicing of APP
between two independent studies
We studied the co-splicing of APP across multiple brain
regions, where deposition of amyloid plaques begins. We
selected brain regions within the neocortex and the limbic
system, which are early affected by amyloid-β deposition,
Thal stages 1–3 (23). From the GTEx project, we analyzed
data corresponding to the hippocampus (N = 94),
amygdala (N = 72) and hypothalamus (N = 96) from the
limbic system, and anterior cingulate cortex (N = 84), cor-
tex (N = 114) and frontal cortex (N = 108) from the neo-
cortex. Transcriptome-wide expression data was obtained
from the BRAINEAC project, which includes exon-wise
expression of 318,197 probes and 26,493 transcripts and
genotype data for 134 neurological normal brains in 9
brain regions. Normalized and batch corrected data for
Affymetrix 1.0 ST exon array was directly downloaded.
From the limbic region, we obtained data for hippocam-
pus (N = 130) and, from the neocortex, we downloaded
data for frontal cortex (N = 134), occipital cortex (N = 134)
and temporal cortex (N = 134). We selected genes be-
tween 3 and 40 exon probes, leaving 19,027 transcripts.
For this microarray study, we adjusted the exon data by
the principal components of the transcriptome-wide dis-
tance matrix and use the residuals as exon expression
levels. As microarrays are subject-wise normalized, to re-
cover a measure of the exon expression distribution in a
gene a, we ranked the individuals within each exon and
used the subject rankings across a to compute Pa(i) for
each subject i.

Pathway enrichment in APP co-splicing
We computed, for each study, the enrichment of 277
KEGG pathways in APP’s co-splicing correlations, using
Bioconductor’s package clusterProfiler. The genes selected
for enrichment analysis were those with Mantel correl-
ation P-values < 0.05. For each pathway and brain region,
we computed the enrichment P-values, (Benjamini and
Hochberg) adjusted for the number of pathways tested.
We additionally adjusted for the number of brain regions
and took the minimum adjusted value, across regions, as
the P-value for the pathway. We look for the pathways sig-
nificantly enriched in co-splicing in both studies and com-
puted the combined P-value between studies. We also
tested, using Cohen’s κ, the agreement between studies to
declare a pathway significantly enriched in APP
co-splicing.
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Pathway enrichment in epistases with multiple SNPs in APP
We designed a framework to test whether pathways were
enriched in epistases with more than one independent
SNP of APP. The method, an extension of a previous
method [38], comprised three steps: (1) We first per-
formed genome-wide interaction analyses (GWIA) of
late-onset Alzheimer’s disease (LOAD), for uncorrelated
SNPs in APP (paired-wise R2 < 0.2) (see Supplementary
Methods). A set of genome-wide additive-by-additive
interaction P-values was obtained for all uncorrelated t
SNPs in the gene (APPsnpi, i = 1...t), using the likelihood
ratio test, χ2(1), between the logistic models

y ¼ snp j � APPsnpi þ snp j þ APPsnpi þ covariates

and

y ¼ snp j þ APPsnpi þ covariates

where y is the case/control status, snpj encodes the
number of variant alleles of the SNP with index j in the
array, j varies over the whole array, and the covariates
included the genome-wide principal components and
the principal components times APPsnpi. Q-Q plots were
created for each GWIA in order to detect and remove
APP-SNPs with possible false interactions due to unob-
served latent variables (Supplementary Tables S1-S3). (2)
We then applied an enrichment pathway analysis for all
the GWIAs and counted the number of GWIAs, or asso-
ciated SNPs in APP, for which each pathway was found
significantly enriched. We used iGSEA4GWAS-v2 on
KEGG pathways [51], where we mapped genes to SNPs
within 100Kb distance. (3) We tested if the number of
GWIAs, for which a pathway was found enriched,
was significantly greater than what would be found by
chance (Supplementary Methods). False positive rates
and statistical power of the method were also
assessed (Supplementary Methods).

LOAD genotype data
We used data of three genome-wide studies of LOAD,
all accessible in dbGAP [50]. We selected individuals
from European ancestry. The studies are: (1) National
Institute of Aging (NIA) study (accession: phs000
168.v1.p1) with 587 cases and 289 controls with
590,247 SNPs. (2) GenADA study (phs000219.v1.p1)
with a total of 806 cases, 782 controls and 349,252
SNPs. (3) Alzheimer’s Disease Genetics Consortium
(ADGC) (phs000372.v1.p1). We kept the first geno-
typed batch (ADG12) as the second one (ADG3) had
limited number of individuals with age at on-set.
ADG12 has 2686 cases and 935 controls with 592,652
SNPs. Written informed consent was obtained for all
participants at local ethics committee of each study, see
dbGap under the accession numbers.

We filtered SNPs and samples by standard quality con-
trol measures. We analyzed SNPs with minor allele fre-
quency > 5%, Hardy-Weinberg Equilibrium Z score < 4
and call rate > 80%. At the sample level, genome-wide
principal components were calculated with Bioconduc-
tors’s snpStats package. Individuals with more than four
standard deviations from the mean of the first two com-
ponents were removed from the analysis. Principal com-
ponents were recomputed with the selected individuals
and the first five components were used in epistasis
models as covariates to control for ancestry.

Additional files

Additional file 1: Supplementary Methods, Supplemental Figures S1-S11.
and Tables S2-S4. (PDF 968 kb)

Additional file 2: Table S1. KEGG Pathways’ enrichment in APP co-splicing,
co-expression, epistasis and vulnerability index (Delta BI-III) (XLS 58 kb)

Additional file 3: Table S5. Pathways with multiple enrichment in APP
epistasis across three LOAD GWAS. (XLS 58 kb)
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