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Abstract

Background: NGS data contains many machine-induced errors. The most advanced methods for the error
correction heavily depend on the selection of solid k-mers. A solid k-mer is a k-mer frequently occurring in NGS reads.
The other k-mers are called weak k-mers. A solid k-mer does not likely contain errors, while a weak k-mer most likely
contains errors. An intensively investigated problem is to find a good frequency cutoff f0 to balance the numbers of
solid and weak k-mers. Once the cutoff is determined, a more challenging but less-studied problem is to: (i) remove a
small subset of solid k-mers that are likely to contain errors, and (ii) add a small subset of weak k-mers, that are likely to
contain no errors, into the remaining set of solid k-mers. Identification of these two subsets of k-mers can improve the
correction performance.

Results: We propose to use a Gamma distribution to model the frequencies of erroneous k-mers and a mixture of
Gaussian distributions to model correct k-mers, and combine them to determine f0. To identify the two special subsets
of k-mers, we use the z-score of k-mers which measures the number of standard deviations a k-mer’s frequency is
from the mean. Then these statistically-solid k-mers are used to construct a Bloom filter for error correction. Our
method is markedly superior to the state-of-art methods, tested on both real and synthetic NGS data sets.

Conclusion: The z-score is adequate to distinguish solid k-mers from weak k-mers, particularly useful for pinpointing
out solid k-mers having very low frequency. Applying z-score on k-mer can markedly improve the error correction
accuracy.
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Background
The massively parallel next-generation sequencing (NGS)
technology is revolutionizing a wide range of medical
and biological research areas as well as their applica-
tion domains, such as medical diagnosis, biotechnologies,
virology, etc [1]. It has been shown that the NGS data is so
informative and powerful that some ever thorny problems
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can be effectively tackled through this technology, e.g., the
genome wide association study [2].

The information contained in NGS data is deep and
broad, but the raw data is still error prone. Various
kinds of errors exist in the raw sequencing data, includ-
ing substitution, insertion and deletion. The substitution
error rate can be as high as 1 to 2.5% for the data
produced by the Illumina platform [3]; and the collec-
tive insertion and deletion error rate can be as high as
10 to 40% for the PacBio and Oxford Nanopore plat-
forms [4, 5]. It has been widely recognized that correcting
these sequencing errors is the first and critical step for
many downstream data analyses, such as de novo genome
assembly [6], variants calling from genome re-sequencing
[7], identification of single nucleotide polymorphism as
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well as sequence mapping [3, 8]. For instance, the num-
ber of nodes of the De Bruijn graph generated from
the HapMap sample NA12878 (https://www.ncbi.nlm.nih.
gov/sra/ERR091571/) is 6.92 billion; however, this number
can be reduced to only 1.98 billion after error correction.
This reduction significantly alleviates the burden of graph
manipulation.

Owing to the importance of error correction, dozens
of approaches have been proposed to cope with various
types of errors. Depending on the key ideas that have been
used, existing approaches can be categorized into three
major approaches: (i) the k-spectrum-based approach,
including Quake [3], Reptile [9], DecGPU [10], SGA [11],
RACER [12], Musket [13], Lighter [14], Blue [15], BFC
[16], BLESS2 [17], MECAT [18] (ii) the suffix tree/array-
based approach, including SHREC [19], HSHREC [20],
HiTEC [21], Fiona [22] and; (iii) the multiple sequence
alignment-based approach, including ECHO [23], Coral
[8], CloudRS [24], MEC [25]. Among these approaches,
the most advanced ones are the k-spectrum-based. It pro-
vides a very good scalability and competitive performance.
Scalability is crucial for NGS data analysis since the input
volume is usually huge.

The performance of k-spectrum-based approach heav-
ily depends on the selection of solid k-mers. A solid k-mer
is a k-mer frequently occurring in NGS reads. The other
k-mers are called weak k-mers. A solid k-mer often does
not contain any sequencing error, but a weak k-mer often
contains sequencing errors. An intensively investigated
problem is to find a good frequency cutoff f0 to balance
the numbers of solid and weak k-mers, cf. Fig. 1. It is clear
that even a very carefully determined f0 cannot tidily dif-
ferentiate erroneous k-mers from those k-mers that do

not contain any error bases. The reason is that there are
very often a small portion of solid k-mers that contain
errors and there are very often a tiny portion of weak k-
mers that do not have errors, cf. the shaded part in Fig. 1.
This discrepancy is caused by the skewed distribution of
the coverage of the sequencing reads. For instance, Ross
et al. [26] has reported that the coverage of GC rich and
poor regions is markedly lower than the average coverage.
That is, the k-mers from these regions very likely have low
frequency, even lower than f0.

In this research, we focus on a more challenging but
less-studied problem: (i) remove a small subset of solid
k-mers that are likely to contain errors, and (ii) add a small
subset of weak k-mers that are likely to contain no errors,
into the set of solid k-mers. This is achieved by using f0
as well as z-score of k-mer, z(κ). With the purified set
of solid k-mers, the correction performance can be much
improved.

Our approach starts with counting k-mer frequencies
by using KMC2 [27], then calculates the z-scores of
k-mers. Later, the statistically-solid k-mers are mined by
considering both frequency and z-score. After that, the
Bloom filter is constructed by the statistically-solid k-
mers, and the weak k-mers are corrected. The newly pro-
posed approach is named as ZEC, short for z-score-based
error corrector.

Algorithm: mining statistically-solid k-mers
A solid k-mer is conventionally defined as a k-mer which
occurs in a data set of NGS reads with high frequency.
A solid k-mer is usually considered error-free, and taken
as the template for error correction. If a k-mer is not
solid, then it is defined as a weak k-mer considered as
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Fig. 1 Frequency distribution of both error-free and error-containing k-mers for a NGS data set. The frequency distribution of erroneous k-mers is
represented by the dash orange line, while the distribution of the correct ones is shown as the dash sky-blue line. The solid black line is the
distribution of all the k-mers. The α-labeled area is the proportion of correct k-mers having frequency less than f0, while the β-labeled area is the
proportion of erroneous k-mers having frequency greater than f0
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error-containing. Existing k-mer-based approaches use a
frequency cutoff, f0, to identify solid and weak k-mers
from NGS reads, e.g., BLESS2 [17], Musket [13], and BFC
[16]. The main difference of these methods is how the f0 is
determined.

In fact, a solid k-mer is not definitely error-free. Some-
times, it may contain errors with a small chance. It is
also true for the weak k-mers — a weak k-mer can be
absolutely error-free. The reason that a solid k-mer is not
always correct is that the coverage is not under uniform
distribution. Thus the cutoff f0 itself is unable to perfectly
distinct correct k-mers from erroneous k-mers; cf. the part
labeled as α and β in Fig. 1. However, the purpose of the
research is to obtain correct k-mers as many as possible.

In this study, we present a time and memory efficient
algorithm to purify the solid k-mer set as well as the weak
k-mer set, so that more correct k-mers can be identified.

Let R be the input set of NGS reads, and K be the set
of k-mers contained in R. To determine whether a k-mer,
say κ , of K is correct or not, the following metrics are
examined:

• f (κ), the frequency of κ ;
• z(κ), the z-score of κ .

Calculating f(κ)

The straightforward approach to determine f (κ) is as fol-
lows: (i) scan each read r of R from the beginning to the
end; (ii) sum over the occurrence that κ appears. Then the
summation is f (κ). This approach works for one k-mer,
but it cannot be applied to all the k-mers simultaneously
as the number of k-mers can be very large, demanding a
huge size of memory.

In this study, we make use of the k-mer counting algo-
rithm, KMC2 [27], to solve this problem. KMC2 can
remarkably reduce the memory usage because: (i) it is
disk-based; (ii) it uses (k, x)-mer; and (iii) it applies the
minimizer idea to deal with k-mer.

Computing z(κ)

Given a k-mer κ , we define the neighbor of κ , N(κ), as

N(κ) = {
κ ′ : D

(
κ , κ ′) ≤ d0, κ ′ ∈ K

}
,

where D(κ , κ ′) is the edit distance between κ and κ ′, and
the d0 is the predefined maximum distance. The default
value of d0 is 1 as used in this study, but user can adjust
this value to any reasonable integer.

The k-mer cluster centered at κ is defined as

C(κ) = {κ} ∪ N(κ),

and the set of frequencies associated with these k-mers is
defined as

F(κ) = {f (κ) : κ ∈ C(κ)}.

The z-score of κ , z(κ), is computed by

z(κ) = f (κ) − μ

σ
,

where μ is the averaged frequency of F(κ) and σ is the
standard deviation of F(κ).

It is straightforward to calculate the z-score of each k-
mer given the frequency of the k-mer as well as that of
its neighbor that have been determined by the aforemen-
tioned approach.

Determining f0

Unlike existing approaches that determining solid k-mers
based on their frequency only, we examine their z-scores
as well.

Traditionally, an optimal f0 is used to distinct weak and
solid k-mers, which is determined as the count minimiz-
ing misclassification rates (see misclassified parts labeled
as α and β in Fig. 1). To learn the optimal value, we model
the frequency of erroneous k-mers by a Gamma distri-
bution PG(X), and those correct ones by a mixture of
Gaussian distributions PN (X). A Gamma distribution is
defined as:

PG(X = x; k, θ) = 1
�(k)θk xk−1e− x

θ

where k accounts for the shape of the distribution, θ is
for the scale of the distribution, i.e., how the data spread
out, �(k) is the Gamma function evaluated at k; cf. the
dash sky-blue line in Fig. 1. While a mixture of Gaussian
distributions is

PN (X = x; π , μ, σ) =
K∑

i=1
πi · N (μi, σi),

where πi is the mixture parameter, μi and σi represent the
mean and standard deviation of the component i, and K
is the number of Gaussian components. In this study, K
is set as 2, with one accounting for k-mers that are from
GC rich or poor regions, and the other for the rest correct
k-mers.

The two distributions are estimated by using EM algo-
rithm based on the frequencies of k-mers. An example of
the two distributions are shown in Fig. 1, i.e., the sky-blue
dash line and the orange dash line. Based on the two dis-
tributions, we can determine the threshold f0, such that
it can minimize the area marked as α and β . Note that,
the threshold f0 determined in this way may not be the
intersection point of the two density functions.

Mining solid k-mers
It is clear that the optimal f0 cannot perfectly distinct the
solid k-mers from the weak k-mers. Taking Fig. 1, the
k-mers marked by α will be wrongly corrected although
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they do not have errors but just because their frequen-
cies are lower than f0; likely, the ones marked by β will
keep unchanged although they have errors because they
have high frequency. To further refine the purity as well as
the completeness of solid k-mers, we borrow the statistical
idea of using z-score to solve the problem. The purity is
defined as

purity = 1 − p2
correct − p2

erroneous ,

where pcorrect is the proportion of correct k-mers in
the solid k-mers, and perroneous is the proportion of erro-
neous k-mers in the solid k-mers. The completeness is
calculated as

completeness = N solid
correct/Ncorrect ,

where N solid
correct is the number of correct k-mers in the

solid k-mers, and Ncorrect is the total number of correct
k-mers.

The z-score as well as the frequency are collectively
incorporated into solid k-mer identification through the
following two situations:

• If f (κ) < f0 and z(κ) ≥ z0, then κ is removed from
the weak k -mers and added to the solid k -mers, i.e.,
increases the completeness.

• If f (κ) ≥ f0 and z(κ) < z′
0, then κ is removed from

the solid k -mers and added to the weak k -mers, i.e.,
improves the purity.

The f0 is the minimum frequency that has been deter-
mined, while the z0 and z′

0 are the maximum z-score
and minimum z-score for weak k-mers and solid k-mers,
respectively.

The z0 and z′
0 are learned from the z-score distribution

automatically. To obtain the optimal z0, the z-scores of the
k-mers having frequency less than f0 are collected. Later,
the distribution of these z-scores is estimated and z0 is
set as the value having the lowest density between two
peaks (viz. the trough of the bimodal; see results for more
details). Analogously, z′

0 is determined on the z-scores of
k-mers having frequency greater than f0.

Methods
Our error correction model contains two main steps:
(i) build Bloom filter from solid k-mers and; (ii) correct
errors in weak k-mers by the Bloom filter.

Build bloom filter
Bloom filter [28] is a probabilistic data structure that can
check whether an item is contained in a set of items with
very frugal memory consumption. Instead of storing each
item as is, the Bloom filter maps the item into several bits
of a bit vector. Each bit can be reused by many items,
and the mapping is achieved by hash functions. To check
whether an item exists in a set of items, one only need to

check whether all the mapped bits are “1”s. In case any
one of them is “0”, it indicates that the item is definitely
not contained in the set. Since each bit can be reused, it
is possible that an item is not contained in the set but all
of its mapped bits are “1”s. The probability that it happens
is false positive rate. The relation between the number of
hash function h, the false positive rate p, the size of the bit
vector n, and the actual number of elements m is

p =
(

1 −
(

1 − 1
n

)hm
)h

≈
(

1 − e−h m
n
)h

.

In our study, m is the number of solid k-mers that have
been determined from all the k-mers by means of the
aforementioned algorithm. Per existing approaches, p is
set to 1%. One can also tune p, h and n to fit the real
hardware limitations.

It has been reported that the Bloom filter has been suc-
cessfully used to correct NGS errors, such as BLESS2 [17]
and BFC [16]. The major difference between our model
and the existing models is that we dedicate to efficiently
refine the solid k-mers that are used to construct Bloom
filter, which directly improves the error correction per-
formance in theory. Note that, the solid k-mers play the
key role in error correction, as all the rest k-mers (viz. the
weak k-mers) are to be corrected based on the solid ones.

Figure 2 illustrates the forward search and backward
search.

Correct errors
By using Bloom filter, the errors contained in each read
can be correct as follows: (i) check the existence of each
k-mer of the read from the beginning to the end sequen-
tially. (ii) partition the k-mers into groups that each group
contains only solid k-mers or weak k-mers, deemed as
solid group Gs or weak group Gw, respectively. The order
of the groups is kept according to their appearance in the
read. (iii) correct the errors causing the weak group Gw
according to the following situations:

1 If Gw is the first group and there exists a successive
group Gs that is solid, we iteratively change the first
base of each k -mer of Gw to its alternatives and
check the existence of the k -mers against the Bloom
filter. Once there exist a solution that makes all the
weak k -mers solid, the amendment of the bases is
accepted, thus the correction of the error. This
process is applied to the k -mers of Gw from the last
one to the first one. In case the number of k -mers
contained in Gw is less than a predefined value, say τ ,
the processive solid k -mers that are extended from
the corrected k -mers will be generated until the total
number of k -mers in Gw is τ . If this criterion cannot
be satisfied, the solution is abandoned. On the other
hand, if Gs does not exist, we will alter the bases to
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Fig. 2 Illustration of the forward and backward search to correct sequencing errors. The forward search starts from the first k-mer to the last k-mer.
At each step the last base of the k-mer is substituted by its alternatives to check the solidity. Inversely, the backward search starts from the last k-mer
to the first k-mer. On the contrary to the forward search, the first base of the k-mers are altered other than the last one

their alternatives of all the k -mers iteratively until a
solution that make all the k -mers solid can be found.

2 If Gw has a solid processive group Gs and a solid
successive group G′

s, we substitute the last base of
each k -mer in Gw by its alternatives from the first
k -mer to the last k -mer, namely the forward search.
Solutions that make all the k -mers solid till the
current substitution are recorded. Similarly, the
backward search is conducted on the first base of the
k -mers from the last one to the first one. A solution
is accepted if the forward search and the backward
search meet and the k -mers contained in both of
them are solid. In case the number of k -mers in Gw is
less than k, we will only alter the last base of the first
k -mer.

3 If Gw is the last group and there exists a solid
processive group Gs, we will apply the backward
search to obtain the solution. Analogously to the first
situation, if the number of k -mers of Gw is less than
τ , we will extend the k -mers toward their
downstream until the number is satisfied. In case Gs
does not exist, it is the same as the second part of the
first situation, thus the same approach is applied.

Results
Datasets
We collected six data sets to test the performance of
our proposed method in comparison with the state-of-art

methods. Four of the six data sets are the NGS reads
produced by the Illumina platform, including Staphylo-
coccus aureus (S. aureus), Rhodobacter sphaeroides (R.
sphaeroides), Human Chromosome 14 (H. chromosome
14) and Bombus impatiens (B. impatiens). These data sets
are the gold standards used by GAGE [6] for NGS data
analysis. Besides these real data sets, two synthesized data
sets have been generated by using ART [29] based on
the genomes H. chromosome 14 and B. impatiens. The
two synthetic data sets contain exactly the same number
of reads as the real ones. They are included because
the ground truth of the synthesized errors are known,
i.e., the positions of the errors as well as their bases are
available. On the contrary, such information is unavail-
able for the real data sets. Typically, the raw reads of the
real data sets are mapped to the corresponding reference,
and those mapped are kept for performance evaluation.
Although this is arguable as various deleterious situa-
tions can emerge from the mapping, e.g., unmapped reads,
multi-mapped reads, wrongly mapped reads, it is neces-
sary to carry out the mapping as only in this way can we
perform the evaluation directly. This is another reason
that the synthetic data should be included. Details of these
data sets are shown in Table 1.

Performance evaluation
The error correction performance is evaluated through
the widely accepted procedure implemented by [30].

Table 1 The data sets that are used for evaluating the performance of error correction models

Data set Genome name Genome size (bp) Error rate (%) Read length (bp) Coverage Number of reads Insert length Is sythetic

R1 S. aueus 2,821,361 1.28 101 46.3× 1,294,104 180 No

R2 R. sphaeroides 4,603,110 1.08 101 45.0× 2,050,868 180 No

R3 H. chromosome 14 88,218,286 0.52 101 41.8× 36,504,800 155 No

R4 B. impatiens 249,185,056 0.86 124 150.8× 303,118,594 400 No

S1 H. chromosome 14 88,218,286 0.97 101 41.8× 36,504,800 180 Yes

S2 B. impatiens 249,185,056 0.98 124 150.8× 303,118,594 400 Yes
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Metrics that are considered include gain, recall, precision
and per base error rate (pber). Gain is defined as (TP −
FP)/(TP + FN), recall is TP/(TP + FN), precision is
TP/(TP + FP) and pber is Ne/N , where TP stands for
the number of corrected bases that are truly erroneous
bases, FP represents the number of corrected bases that
are not sequencing errors intrinsically, FN is the number
of erroneous bases that remain untouched, Ne is the num-
ber of erroneous bases and N is the total number of bases.
Among these metrics, gain is the most informative.

All experiments are carried out on a cluster having eight
Intel Xeon E7 CPUs and 1Tb RAM. Each CPU has eight
cores.

Overall Performance of ZEC. The experimental results
of ZEC are presented in Table 2. ZEC performs well on
both of the real data sets and the synthetic data sets.
Comparing the performance on H. chromosome 14 and
B. impatiens, ZEC has a much better performance on
S. aueus and R. sphaeroides. This is consistent with our
understanding that the genomes of the former two data
sets are much more complicated than the latter two, where
the errors introduced in complicated genomes are more
difficult to correct.

Relation with GC-content. A previous study by Ross et al.
[26] shows that the GC-content (GC poor and GC rich)
regions have direct influence on the low sequencing cov-
erage of NGS data. Hence, the k-mers obtained from the
reads sequenced from these regions are more likely to be
treated as weak. Figure 3 highlights an example of the
relation between GC-content (GC poor and GC rich) and
k-mer frequency derived from H. chromosome 14. It can
be seen that the k-mers having a low frequency can spread
out wider than those having a high frequency, and the
wide range is coincident with the GC content. This result
is in accordance with the performance shown in Table 2,
meanwhile it also consolidates our intuition that refining
the set of solid k-mers is necessary, particularly for the
subset of k-mers that have a low frequency. More impor-
tantly, it empirically supports our idea of using mixture
model to treat solid k-mers and weak k-mers separately.

Comparison with State-of-the-art. The performance of
ZEC is much superior to the state-of-the-art methods,
including Lighter [14], Racer [12], BLESS2 [17], Musket
[13], SGA [11], BFC [16]. See Table 2. ZEC markedly out-
performs the existing error correctors in terms of the most
informative evaluation metric—gain. For instance, on the
dataset R4, the gain of ZEC is 0.746, while the best per-
formance produced by the other methods is 0.705. For the
synthetic datasets, ZEC also has higher gain than other
methods. For example, on the dataset S2, the gain of ZEC
is 0.853, while the best and worst gain generated by the
other methods are 0.849 and 0.058, respectively. The low-
est average per-base error rate of ZEC also consolidates its
effectiveness.

Table 2 Error-correction performance comparison between ZEC,
Lighter, Racer, BLESS2, Musket, BFC, SGA and MEC

Data Corrector Gain Reca Prec Pber(%)

R1 ZEC 0.908 0.912 0.996 0.102

Lighter 0.839 0.845 0.994 0.163

Racer 0.760 0.822 0.929 0.190

BLESS2 0.189 0.409 0.650 0.879

Musket 0.499 0.628 0.830 0.448

SGA 0.746 0.815 0.922 0.202

BFC 0.753 0.817 0.927 0.196

MEC 0.909 0.911 0.998 0.102

R2 ZEC 0.584 0.663 0.894 0.537

Lighter 0.226 0.329 0.762 1.076

Racer 0.364 0.450 0.839 0.780

BLESS2 0.318 0.405 0.806 0.890

Musket 0.265 0.364 0.786 0.984

SGA 0.331 0.423 0.822 0.843

BFC 0.306 0.400 0.811 0.893

MEC 0.570 0.631 0.912 0.541

R3 ZEC 0.802 0.923 0.884 0.087

Lighter 0.445 0.764 0.706 0.256

Racer 0.562 0.814 0.764 0.196

BLESS2 0.130 0.641 0.556 0.438

Musket 0.533 0.802 0.749 0.211

SGA 0.567 0.818 0.765 0.194

BFC 0.603 0.833 0.783 0.176

MEC 0.788 0.852 0.930 0.117

R4 ZEC 0.746 0.833 0.905 0.137

Lighter 0.126 0.408 0.591 0.688

Racer 0.313 0.541 0.703 0.484

BLESS2 -0.517 0.018 0.003 0.862

Musket 0.502 0.660 0.807 0.320

SGA 0.542 0.690 0.823 0.289

BFC 0.195 0.457 0.636 0.607

MEC 0.705 0.806 0.889 0.201

S1 ZEC 0.918 0.935 0.982 0.056

Lighter 0.791 0.851 0.934 0.130

Racer 0.882 0.916 0.964 0.071

BLESS2 0.634 0.740 0.875 0.243

Musket 0.819 0.871 0.944 0.111

SGA 0.810 0.865 0.940 0.117

BFC 0.866 0.903 0.961 0.081

MEC 0.899 0.916 0.982 0.063

S2 ZEC 0.853 0.894 0.956 0.109

Lighter 0.058 0.329 0.548 0.891

Racer 0.168 0.408 0.630 0.720

BLESS2 0.311 0.509 0.719 0.543

Musket 0.232 0.453 0.672 0.636

SGA 0.075 0.342 0.562 0.862

BFC 0.751 0.822 0.920 0.157

MEC 0.849 0.887 0.959 0.122

The numbers in bold face are the best gain achieved for each data set
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Fig. 3 A relation between k-mer frequency and GC-content. The bottom left panel shows the smoothed scatter plot between k-mer frequency and
GC-content, the top left is the distribution of k-mer frequency, and the bottom right is the distribution of GC-content. It is clear that GC-content
k-mers have relatively low frequency. The data shown in this example is obtained from the H. chromosome 14 with k-mer size of 25

Distinguishbility of z-score
The key to the performance improvement is the idea of
using z-score for identifying the two special subsets of k-
mers from the sets of solid k-mers and weak k-mers. An
example of z-score distribution pertaining to k-mer fre-
quency is shown in Fig. 4, which is derived from B. impa-
tiens. The highlighted k-mers shown in the figure have
relatively low frequencies—less than 9, while the z-scores

are pretty high—greater than 1. Interestingly, almost all
the solid k-mers (the top right region) have the simi-
lar level of z-scores comparing to these highlighted ones.
These observations indicate that the highlighted k-mers
are very likely to be correct k-mers instead of erroneous k-
mers although their frequencies are very low. The z-score
distribution pertaining to the other three real data sets has
similar patterns compared to the one shown here.

−1

0

1

0 25 50 75 100
K−mer frequency

Z−
sc

or
e

Fig. 4 A relation between z-score and k-mer frequency. The level of shade represents the density of the distribution. The darker the color is, the
more k-mers are presented. The frequencies of the k-mers highlighted in the red box are less than nine, which are very likely to be treated as weak
for all existing k-mer based approaches. However, the very high z-score reflects that they should be treated as solid k-mers. The data shown here is
obtained from B. impatiens with k-mer size of 25
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By exploring the four real data sets, we found that
the proportion of k-mers that can be refined com-
paring to the solely frequency determined k-mers are
12.3%, 14.2%, 11.4%, 7.1% for the real data R1, R2,
R3 and R4, respectively; see Fig. 5. These refine-
ment are the major contributions of the performance
improvement.

Efficiency of z-score calculation
Calculating z-score of k-mers is not trivial for very
large data sets, as the k-mers and their frequencies are
usually too large to be hold by a main memory of a
moderate computer. We designed a novel algorithm and
solved this problem. The efficiency of the algorithm
in terms of the memory usage and running speed are
studied.

Figure 6 shows the relation between memory saving
ratio and the percentage of input (k-mers as well as their
frequencies) that can be held by only one bit vector. The
memory saving ratio is calibrated as the ratio between
the real memory allocation and the input data volume.
For instance, the ratio of 0.01 pertaining to the data R4
means that the allocated memory is one percent of the
input size of R4. That is, 70Mb memory is allocated for
holding the 6.97Gb data. It is promising that, with one per-
cent memory allocation, around 22 percent input data can
be hold by only one bit vector. When the memory alloca-
tion increased to 2.5 percent, 30 percent input data and
even more can be held by one bit vector. Obviously, keep
increasing the size of allocated memory does not guaran-
tee the linear scale of holding the input data. Based on
the experiments, we set the memory allocation ratio to 2.5

percent through the whole study. Typically, three bit vec-
tors are constructed for holding all the input. Note that,
the size of bit vector decreases along with the reduced size
of input. The ratios between the input and the total allo-
cated memory are 20.0, 13.4, 7.0 and 7.9 for the four real
datasets, respectively.

Regarding the running speed, this algorithm is linearly
scaled. Since locating each k-mer in a bit vector is O(1)
pertaining to time complexity by using hash, this algo-
rithm is pretty fast. For instance, based on our computing
power, it only takes 387 s to construct the bit vectors and
calculate the z-scores of all the k-mers of R4—the largest
data set.

Since a Bloom Filter has false positives, this may cause
the z-score of a k-mer different from its genuine value.
However, the false positive rate is pretty small, usually less
than 1%, thus this impact can be neglected.

Discussion
Our model effectively pinpoints out correct k-mers hav-
ing low frequency, achieving an improvement of 11.25%
on weak k-mers. However, some issues still remain further
exploration, including neighbor inclusion and neighbor
retrieval.

Neighbor inclusion means how neighbor k-mers are
determined given a k-mer of interest, say κ . Our current
approach takes k-mers having edit distance of 1 as neigh-
bors of κ , but there still has a small chance that a true
neighbor having edit distance larger than 1. Suppose the
error rate is e, the probability of a k-mer having exactly
one error is k · e(1 − e)k−1/k · e = (1 − e)k−1. When e=1%
and k = 1, the probability is (1−0.01)31−1 = 73.97%. That
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Fig. 5 The proportion of k-mers refined by z-score. The refinements come from two folds: weak k-mers having high z-score (moved to the solid
k-mer set), and solid k-mers having low z-score (excluded from the solid k-mer set)
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Fig. 6 Memory saving analysis on the six data sets. The x-axis shows the memory saving ratio between the size of real memory allocation and raw
input, while the y-axis shows how much proportion of an input held by a bit vector

been said, about 26% real neighbors are excluded. How-
ever, even extending the minimum edit distance from 1
to 2 significantly elongates running time. This is because
the number of candidate k-mers increases from 3 ∗ k to
3 ∗ k ∗ 3 ∗ (k − 1).

Neighbor retrieval is another issue to be considered.
Usually, the size of counted k-mers is too large to fit into
a main memory. Hence, a more sophisticated approach
is required to solve this problem. We use Bloom Filter to
overcome the limitation. For k-mers having small count,
say 5, we use classical Bloom Filters to save them, each
Bloom Filter saves k-mers having the same count. For k-
mers having large count, we use coupled-Bloom Filter to
save them. One Bloom Filter for k-mer encoding, while
the other is for count representation. This approach sig-
nificantly reduces memory usage while achieving constant
time complexity of k-mer retrieval. However, it may cause
false positives although the probability is small. Hence,
more effort is required to handle this problem.

Conclusions
We have proposed a novel method for correcting the
NGS errors. The novel idea is the use of statistically-solid
k-mers to construct the Bloom filter. These k-mers are
mined from all the k-mers of a NGS data set by con-
sidering both their frequency and z-score, particular the
latter one that can effectively fishing out the solid k-
mers having low frequency. Pinpointing out such k-mers
has been a very challenging problem. The experimen-
tal results show that our approach markedly outperforms
the existing state-of-the-art methods in terms of error
correction performance.
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