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Abstract

mechanisms of gene regulation.

Background: With the maturity of next generation sequencing technology, a huge amount of epigenomic data
have been generated by several large consortia in the last decade. These plenty resources leave us the opportunity
about sufficiently utilizing those data to explore biological problems.

Results: Here we developed an integrative and comparative method, CsreHMM, which is based on a hidden
Markov model, to systematically reveal cell type-specific regulatory elements (CSREs) along the whole genome,
and simultaneously recognize the histone codes (mark combinations) charactering them. This method also
reveals the subclasses of CSREs and explicitly label those shared by a few cell types. We applied this method to a
data set of 9 cell types and 9 chromatin marks to demonstrate its effectiveness and found that the revealed
CSREs relates to different kinds of functional regulatory regions significantly. Their proximal genes have consistent
expression and are likely to participate in cell type-specific biological functions.

Conclusions: These results suggest CsreHMM has the potential to help understand cell identity and the diverse
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Background

With the rapid development of sequencing technologies
[1], a myriad of epigenomic data have been generated by
both large consortia such as ENCODE [2], modENCODE
[3], Roadmap Epigenomics Project [4], and many inde-
pendent laboratories. Those data involve histone modifica-
tions, chromatin openness, DNA methylation, nucleosome
positioning and so on. Among them, histone modifications
have over 100 types, and the combinatorial presence of
them are closely related to distinct patterns of gene regula-
tion. For example, H3K4mel and H3K27ac were success-
fully used to identify genome-wide enhancers. In contrast,
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combination of H3K4mel and H3K27me3 was a well-
studied marker of poised enhancers [5]. With the plenty
of epigenomic data available, there is a challenge in
computational biology to decode the abundant informa-
tion hidden behind the functional regulatory elements.

To this end, dozens of computational tools have been
developed in the past decade [6—15]. ChromHMM [6] is
a typical one used by big consortia to generate genome-
wide chromatin annotations for diverse cell types based
on ChIP-seq peaks of chromatin modifications, transcrip-
tion factors and DNasel hypersensitive sites. It utilizes a
multivariate hidden Markov model with independent
Bernoulli distribution to learn the underlying chroma-
tin states. The algorithm converts raw signals in 200-bp
non-overlapping bins into binary values based on the
Poisson distribution and then concatenates the epigenomes
of multiple cell types to jointly learn the segmentation.
Other methods extended such an algorithm from different
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views recently. For example, EpiCSeg [7] and GenoSTAN
[8] adapted modeling of emission probability to fit raw
count or signal for gaining more information. TreeHMM
[9], hiHMM [10] and IDEAS [11] applied more sophisti-
cated hidden structures to reveal relationship between cell
types or species. Spectacle [12] leveraged spectral learning
to explicitly model mark combinations and accelerate
training process. BIAHMM [13] and dsHMM [14] took
direction into account to better annotate gene structure
on both strands of DNA. GBR-Segway [15] integrated
Hi-C data with histone combinations to better annotate
the genome.

Although, these methods facilitated the determination
and characterization of various chromatin states for a cell
type, they do not explore differences between epigenomes
of cell types directly, which could provide novel informa-
tion of cell type-specific biological functions and cell iden-
tity [16]. To directly identify cell type-specific regulatory
elements (CSREs) by comparing epigenomes, Chen et al.
[17] proposed a differential Chromatin Modification
Analysis (ACMA) strategy, and defined CSREs for nine
cell lines. Wang and Zhang [18] adapted this method to
determine CSREs across 127 cell types and tissues for a
comprehensive characterization of the CSREs and their
funcitons. Their analyses found that epigenomic modi-
fications function in cell type-specific manners and
CSREs show significant, cell-type-specific biological
relevance and tend to be regulatory elements. However,
dCMA only locates CSREs for each cell type, but does
not directly characterize their underlying specific his-
tone codes. Besides, the CSREs shared by multiple cell
types reveal important common functions among them,
which were found via overlap analysis for a given group
of cell types, but could not be done automatically by
dCMA.

To this end, we developed a hidden Markov model to
systematically identify CSREs (CsreHMM). Compared to
dCMA, this method can additionally learn the subclasses
of CSREs and their characterized histone codes directly,
which is necessary to explicitly illustrate the diverse
functions of CSREs. Besides, CsreHMM could naturally
identify groups of cell types which tend to share com-
mon CSREs, revealing the common functions among
those cell types. We first applied it to a data set of 9
cell types and 9 chromatin marks to demonstrate its
effectiveness. The identified CSREs show distinct tendency
to known functional regulatory regions. Their proximal
genes have consistent expression and are likely to partici-
pate in cell type-specific biological functions. These results
suggest the HMM model can not only determine sig-
nificant functionally relevant CSREs, but also reveal
CSRE-related specific histone codes which have the
potential to help understand the gene regulation and
cell identity.
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Methods

Data

We downloaded the ChIP-seq data of 9 chromatin
marks as well as a whole-cell extract (WCE) control
across 9 cell types [19]. The cell types consist of human
embryonic stem cells (H1), chronic myelogenous leukemia
(K562), lymphoblastoid (GM12878), hepatocellular car-
cinoma (HepG2), human umbilical vein endothelial cells
(HUVEC), human skeletal muscle cells and myoblasts
(HSMM), normal human lung fibroblasts (NHLF), normal
human epidermal keratinocytes (NHEK), and human
mammary epithelial cells (HMEC). The nine chromatin
marks include CTCE, H3K27me3, H3K36me3, H4K20mel,
H3K4mel/2/3, H3K27ac, and H3K%ac. Besides, a whole-
cell extract (WCE) was also sequenced as the control
for each cell type. From GSE26386, we downloaded the
reads that have been aligned to hgl8 by MAQ (http://
magq.sourceforge.net/maq-man.shtml). For each pair of
cell type and mark, replicates were merged and peaks
were called. Specifically, the whole genome was divided
into 200-bp non-overlapping bins. Each read was ex-
tended to 200-bp from 5 end to 3" direction and then
was assigned to a bin by its midpoint. The peaks were
called based on a Poisson background model with A
equaling the average read counts across all bins with a
threshold of 10™*,

Input for HMM

For each mark m (one of CTCF, histone marks and
WCE), we have a N by T peak matrix P*” with rows
standing for N cell types and columns indicating T bins
along the whole genome (Fig. 1a). Each element in P
has the following meaning:

cell type i has a peak of mark m on bin j

(m)
Py otherwise

— 17
ijo 07

To extract specificity information, we transformed the
peak matrix P to a specificity matrix S”. In detail, for
each bin j, if there were no more than s cell types (s =2
for data used here) that have signal on that bin, then
we considered that those cell types were specific, and

kept s = P(',"), otherwise set " = 0. Thus, S has
J J .

the following format:
m _ ] L

To catch the combinatorial information of multiple
marks on each bin, we stacked $" for all M marks to
form a MN by T matrix O = (SW; 82 . 54Dy (Fig. 1b).
Each row of O stands for a cell-mark combination,

cell type i is specific on bin j according to mark m
otherwise
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Fig. 1 lllustration of the workflow of CsreHMM. a Transform the binary peak matrix to the specificity matrix for each mark. b Apply HMM to the
feature matrix formed by stacking all specificity matrices of all marks to learn specific states. ¢ The emission matrix of trained HMM model. For
each state, the specific cell-mark combination is marked by *'. Only state with at least one specific cell-mark combination was defined as a
specific state (marked by a colored circle). d A specific cell-mark combination is defined as the one with emission probability above both po and

indicating whether the cell is specific according to that
mark. Then we treated the columns of matrix O as obser-
vations and trained a multivariate HMM model to reveal
the hidden states behind them.

The HMM model
As the number of all possible observations are up to

SN\ M
<Zi_1 <]<[>> (~3.4 x 10" for the data used here),

it is not practical to directly model the probability for
each possible observation by one parameter. Instead, we
used a Bernoulli random variable to model the probability

of presence of a specific cell-mark combination, and a
product of those M x N probabilities to model the total
observation vector. Specifically, we assume there are K
hidden states. For each pair of the K states, and R cell-mark
combinations, there is an emission parameter p; , denoting
the probability of observing the specific cell-mark combin-
ation r under state k. The T bins are from C chromosomes,
each with T, bins. For each chromosome ¢, let (c, t) denote
the ¢ th bin of ¢. The hidden state of bin (c, ) is denoted as
S(,»- Let a; ; denote the probability of transitioning from
state i to j. And let 77; denote the probability that the state
of the first interval on each chromosome is i. Then the
likelihood of all observations can be formulated as:
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As there are hidden variables, we maximize the likelihood
using the incremental expectation-maximization algorithm,
which is a variant of Baum-Welch algorithm for accelerating
the training process with multiple observations [20].

There are many ways to initialize the parameters of
HMM model in literature. For example, several studies
used random initializations [21]. Several studies used
k-means clustering to get an initial segmentation and
estimate parameters [8]. And several studies used entropy-
based method to segment the genome and estimate
parameters [20]. Among them, the entropy-based method
gives similar initializations for models with different num-
ber of states. Hence, models with such initialization would
be more comparable across different number of states.
Thus, we utilized the entropy-based method to initialize
our HMM model.

Determination of specific states

To determine which states are specific to which cell
types, we utilized the emission probabilities (Fig. 1c and d;
and Additional file 1: Figure S1). For each state, we sorted
the emission probabilities of all cell-mark combination
decreasingly and found the maximal difference. The
probability above it was denoted as p;. To remove small
probabilities, we also set a threshold p, (0.3 was used in
this study). Only the cell-mark combination with prob-
ability passing both p, and p, was defined as a specific
one. Then the specific state was defined as one with at
least one specific cell-mark combination. The name of
each specific state was based on its corresponding cell
types. A region consisting of consecutive bins covered
by a specific state was defined as a cell type-specific
regulatory elements (CSRE).

Model selection

We trained models with number of states from 5 to 70,
increased by every 5 states. We found that each model
converged during training procedure within 300 itera-
tions, which means we got a local maximal for the log
likelihood. We calculated the BIC and AIC scores as BIC =
In(#bins) x # parameters — 2 In(likelihood) and AIC =2 x #
parameters — 2 In(likelihood), respectively, where #parame-
ters = (#states — 1) + # states x (#states — 1) + # states x #
cells x # marks. We observed that both BIC and AIC
scores are monotonically decreasing as number of states is
increasing (Additional file 1: Figure S2). Even model of 70
states may not be a minimal. However, for 70-state model,
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there are lots of similar cell-type-specific states, which
cannot be distinguished well with emission probabilities
(Additional file 1: Figure S3). Thus, neither BIC nor AIC
is a proper criterion for selecting a proper model. Finally,
we selected the 30-state model to do downstream ana-
lyses. One reason is that the log-likelihood is increasing
smoothly from 30- to 70-state models. Another important
reason comes to the fact that the 30-state model begins to
harbor a specific state marked by H3K36me3.

We also investigated the robustness of specific states to
models with different initializations or different numbers
of states. For each state s in the 30-state model, we defined
its recovery score V; z in another model H as:

Vs = maxcor(py,py),
s'eH

where p; = (ps, 1, Ps, 2 .- Ps, r)> and s is a state in model H.
We trained ten 30-state models with random initializa-
tions. All of them converged within 500 iterations. We
found that the specific states have significantly higher
recovery scores than non-specific ones (Additional file 1:
Figure S4A and B) which demonstrated the robustness
of our results. We also trained models with different
numbers as aforementioned. Models with number of
states larger than 30 preserve all states in the 30-state
model, and hence use additional states to learn other
patterns (Additional file 1: Figure S5).

Mapping CSREs to various genomic features

We examined the potential functional relevance of
CSREs by mapping them to known genomic features.
We leveraged RefSeq annotation to build a TxDb object
in Bioconductor on December 12, 2016 and extracted
genomic features therein [22, 23]. Each transcript named
with a prefix of “‘NM” by RefSeq was regarded as a gene
here. Beyond that, we defined six genomic features: pro-
moter, 5UTR, 3'UTR, exon, intron and intergenic region.
Promoters were defined as regions within 2000 bp of a
transcription start site (TSS) and intergenic regions were
composed of base pairs in none of the other five features.
We assigned each CSRE to one of its overlapping features
according to the order: promoter > 5'UTR > 3'UTR > exon
> intron > intergenic region.

CSRE proximal genes were defined with a stringent
criterion. Only genes with a consecutive 3 kb region within
their promoters and bodies covered by CSREs from a
specific state are defined as CSRE proximal genes for
that state.

Gene expression and specificity

Microarray data were downloaded for all 9 cell types
from GSE26386. First, we used RMA to process the raw
CEL files. The replicate expression values from the same
cell types were then averaged. Next, the expression values
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of probe sets were averaged according to their correspond-
ing RefSeqs. Finally, the average values were quantile
normalized across 9 cell types and used as the expressions.

For each gene, we computed its z-scores of expressions
across cell types and defined them as gene specificity
scores. High positive (or low negative) specificity score
indicates specific high (or low) expression for a gene. Dif-
ference of gene specificity scores for groups was tested by
two-sample Wilcoxon test.

GO enrichment analysis

We explored the biological functions of CSRE proximal
genes by GO enrichment analysis. Each set of concerned
genes were mapped to GO terms by org.Hs.eg.db and
GO.db Bioconductor packages. Fisher’s exact test was
used to get the P-values, which were then corrected by
Benjamini-Hochberg method for each cell type. Only
GO terms with 5 to 500 genes were kept.

Cell type-specific DNase and EP300 peaks

We obtained the DNase and EP300 peaks from ENCODE
by AnnotationHub and then transformed them from hgl9
to hgl8 version by the liftOver function of rtracklayer.
DNase and EP300 peaks were available for 9 and 4 cell
types, respectively. Cell type-specific DNase or EP300
peaks of a cell type were defined as part of original peaks
that were not covered by peaks from any other cell types.
To examine the relationship between CSREs from each
specific state, and specific DNase or EP300 peaks in the
corresponding cell types, we calculated the overlapping
number of them. We randomly sampled 1000 sets of false
CSREs for each specific state with length and chromo-
some reserved and calculated the overlapping number as
genome-wide background observations. Then, one-sample
Wilcoxon test was used to evaluate the statistical signifi-
cance of the real number of overlapped ones.

Applying CsreHMM to the roadmap Epigenomics dataset
We downloaded the signals of epigenomic modification
tracks [-log;o(P-value)] for five histone marks of 127 tissues
and cell types (Additional file 2: Table S1) generated by
the Roadmap Epigenomics Consortium at http://egg2.
wustl.edu/roadmap/data/. The -log;o(P-value) was gener-
ated by MACS2. We averaged the signal on each 200-bp
non-overlapping bin and binarize it by threshold 2, which
is recommended by the Roadmap Epigenomics Consor-
tium. The histone marks consist of H3K4mel, H3K4me3,
H3K36me3, H3K27me3 and H3K9me3, which relate to
regulatory elements, promoters, transcribed chroma-
tin, Polycomb-repressed regions and heterochromatin,
respectively.

We trained a 30-state model with s =5 for the 127 cell
types or tissues and a 20-state model with s=2 for 9 cell
types of group “HSC & B cell”. The emission probabilities
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were analyzed and GO enrichment analysis was conducted
for proximal genes of each state as aforementioned.

Results

Diversity of specific states

We trained a HMM model of 30 states on the data set of
9 cell types and 10 marks. Twenty of those are identified
as specific ones, which covers 20% of the whole genome
(Fig. 2a, Additional file 3). Even though the specific
regions are only a small part of the genome, this model
automatically suggests 2/3 states to describe them,
which shows its effectiveness. WCE (having signals in
regions with copy number variations (CNVs) or repeats
[19]) is not specific for any cell type in any of the 20
specific states, indicating that all the specific states are
indeed caused by differences of epigenomic marks,
other than CNVs or repeats. Moreover, CTCF is also not
specific for any cell type. This is consistent with previous
studies which have shown that CTCF localization is
largely invariant across different cell types [24]. Some
histone modifications are only specific in one of the 9 cell
types, such as H3K27me3 for H1 and H3K36me3 for
HepG2, indicating those cell types own their distinct
specific histone modifications. H3K4mel is the unique
specific mark for 6 states, indicating that it is the most
commonly specific mark. There are also 9 states harbor
no less than 3 active marks, confirming that there are
combinatorial specific histone modifications. Interestingly,
there are three states, each of which harbor specific
cell-mark combination from two cell types, implying simi-
lar cell types can share specific regulatory elements.

The 20 specific states have, on average, ~ 35,501
CSREs (ranging from 9554 in HepG2_3 to 77,601 in
NHEK_HMEC_1; and Additional file 1: Figure S6A),
spanning an average ~ 1% of the genome. The median
lengths of CSREs across the 20 states were similar
(around 600 bp), except two of them (1200 bp for H1_3
and 2200 for HepG2_3) are longer than the others
(Additional file 1: Figure S6B). The genome covered by
specific states, varies from ~ 10.5 (HSMM_NHLF) to 51.9
Mb (NHEK_HMEC_1) (Additional file 1: Figure S6C).
The number of CSRE proximal genes also varies, from
284 (HSMM_1) to 3459 (HepG2_3) (Additional file 1:
Figure S6D). The diversity of those statistics may indicate
the functional complexity of those specific states.

Specific states relate to various genomic features

We next explored the relationship between CSREs from dif-
ferent specific states and six genomic features. The propor-
tion and fold change of CSREs in genomic features varies
across different specific states (Fig. 2b, and Additional file 1:
Figure S7 and S8). Specific states marked by H3K4mel have
more proportion of CSREs in intergenic regions and less in
promoters than states with H3K4me3 in corresponding cell
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types, e.g. K562_1 vs K562_2, which is consistent with
that H3K4mel mainly locates in enhancers but H3K4me3
mainly centered around TSSs. H1_3, the unique state
marked by H3K27me3, which is related to Polycomb-
repressed region, has the highest proportion of CSREs in
promoters, implying their proximal genes are tuned in

poised status. Observation of this state is consistent with
the characteristic of embryonic stem cells [25]. CSREs of
HepG2_3 are substantially enriched in 5’UTR, 3'UTR,
exon and intron when compared to those of the other
specific states, which is expected as HepG2_3 has specific
high H3K36me3 signals.
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Even though specific states are not enriched in inter-
genic regions (Additional file 1: Figure S7), this group still
constitutes ~ 43.6% of total CSREs on average, indicating
the potential regulatory roles of non-coding regions. For
the intergenic CSREs of each specific state, we calculated
the distances to their nearest TSSs and found that they
are significantly shorter than those of randomly simulated
CSREs (Fig. 2c), suggesting they have the tendency to their
nearest genes even though they do not overlap them. This
implys that intergenic CSREs may regulate its nearby
genes.
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CSREs demonstrate distinct functional specificity

As CSREs from specific states are covered by cell type-
specific histone marks, their proximal genes are expected
to participate in cell type-specific functions. To verify our
expectation, we conducted GO enrichment analysis for
CSRE proximal genes from each specific state. We found
the overrepresented GO terms were indeed highly rele-
vant to the specific functions of corresponding cell types
(Fig. 3). For example, CSRE proximal genes of HUVEC
related states are enriched in terms “angiogenesis”,
those of GM12878 related states are enriched in terms
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“lymphocyte proliferation” and “leukocyte differentiation”.
Interestingly, we found that CSRE proximal genes from
different specific states of a cell type can work corporately
in some biological functions and can also work independ-
ently in some others. For example, CSRE proximal genes
from H1_1/2/3 are all enriched in “axon development”,
indicating they work collaboratively to conduct this
biological function. In contrast, only genes from H1 3
are enriched in “skeletal system development” and “cartil-
age development”. Similarly, genes from HepG2_1 and
HepG2_2 also conduct distinct functions about metabolic
process and compound transport, respectively. For specific
states shared by two cell types, their CSRE proximal genes
are also enriched in GO terms they shared. For example,
proximal genes of HSMM_NHLF are enriched in “extra-
cellular structure organization”. Moreover, some GO terms
relate to genes proximal to CSREs from diverse cell types.
For example, both proximal genes of H1_3 (potential
Polycomb-repressed poised regulators) and HSMM_2
(potential active regulators) are enriched in “muscle
tissue development”, suggesting this function is repressed
in H1 and activated in HSMM. Those results highlight the
potential important roles of CSREs in regulating expres-
sion patterns of genes with cell type-specific functions.

If CSREs really participate in regulating its proximal
genes, the expression of those genes should also be specific.
To examine this assumption, we calculate the distribution
of gene specificity for each group of CSRE proximal
genes and the others in corresponding cell types (Fig. 4,
Methods). We found that CSRE proximal genes from
all specific states, except those of H1_3, have specific
high expression compared with the ‘others’. Consistently,
all those specific states, except H1_3, harbor active specific
histone modifications (Fig. 2a). In contrast, H1_3 owns
specific high Polycomb-repression mark H3K27me3 and
CSRE proximal genes from this group are indeed specific
low expressed as expected. Thus, for H1, there are two
opposite directions of gene regulation for CSREs from
different specific states. We also noticed that for 8 cell
types, CSRE proximal genes from specific states with more
active histone marks have higher median gene specific-
ities, suggesting there are incremental effect of histone
marks in activating cell type-specific gene expression. For
specific states that are shared by two cell types, such as
HSMM_NHLE, their CSRE proximal genes are specific
high expressed in both cell types, implying those genes are
likely to play a role in biological functions shared by both
cells. We should note that genes from HI1_1/2 and
NHEK_HMEC_1 have low median expression compared
with the ‘others’ in H1 and NHEK, respectively (Additional
file 1: Figure S9). Thus, the specific high expressed genes
are not necessarily the top expressed ones in a cell type,
which would be easily ignored without the comparative
analysis.
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Relationship between CSREs and DNase peaks or EP300
binding sites

Peaks of DNase-seq are open chromatin around where
transcription factors can easily bind to DNA. DNase
peaks have been comprehensively exploited to identify
regulatory elements in diverse cell types [26]. Differential
DNase-seq footprinting identifies cell type determining
transcription factors [27]. Thus, we expected CSREs
were likely to be proximal to cell type-specific DNase
peaks. Indeed, CSREs from all specific states overlap sig-
nificantly more peaks than the random simulated ones
do (Additional file 1: Figure S10), which suggests that
CSREs, as well as their underlying modifications, could
play a crucial role in cell type-specific regulatory
activities.

EP300 is a transcriptional co-activator and lineage-specific
EP300 peaks has been used to identify cell type-specific
transcriptional enhancers [28]. We found that CSREs from
all specific states, except HepG2_3, overlap significantly
more EP300 peaks than the random simulated ones do in
corresponding cell types (Fig. 5 and Additional file 1: Figure
S11), indicating many CSREs in those states are adjacent to
enhancers. Interestingly, even CSREs from H1_3 are covered
by repressive mark H3K27me3, they are still enriched in
EP300 peaks, suggesting many of them are poised enhancers
[29]. In contrast, HepG2_3 is marked by the specific
H3K36me3 and its CSREs locate largely in gene bodies
(Fig. 2a and b). Thus, those CSREs are expected to be
on bodies of highly expressed genes, and not likely to
be enhancers, which is consistent with our observation.

CSREs reveal cell type-specific behavior of genes: Two
case studies

As aforementioned, CSREs may regulate genes in different
directions in a cell type, which was not shown by dCMA.
To explicitly illustrate that, we took H1 embryonic stem
cells as an example. POU5F1, also known as OCT4, is a
well-known marker gene of human embryonic stem cells
(hESCs). It is essential for maintaining the self-renewing
undifferentiated state of hESCs [30]. A previous study
showed that POU5F1 repress NR2F2 at the transcriptional
level in the undifferentiated state [31]. Interestingly, in the
H1 hESC cell line, both POU5F1 and NR2F2 contain
CSREs, but from different specific states (Fig. 6a and b).
Specifically, promoters of POU5F1 isoforms are covered
by CSREs belonging to either H1_1 or H1_2. The CSRE of
H1_1 contains peaks of H3K4mel/2 unique to this cell
line, and that of H1_2 harbors additional specific his-
tone modifications, including H3K27ac, H3K9ac and
H3K4me3 (Additional file 1: Figure S12 and S13),
which is consistent with the emission probability profile
of the two states (Fig. 2). As both CSREs are covered by
combinations of active histone modifications, their prox-
imal genes may be upregulated. Consistently, POU5F1 has
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a pronounced expression against the other cell types
examined (Fig. 6¢). In contrast, three NR2F2 isoforms are
encompassed by a CSRE of H1_3, which contains specific
H3K27me3 peaks and lacks of H3K27ac and H3K%ac
compared with other cell types (Additional file 1: Figure S14
and S15). As aforementioned, H3K27me3 marks Polycomb-
repressed region [32]. Thus, we expects NR2F2 to be in
a poised status, and the expression of NR2F2 is indeed
relatively lower than the other cell types (Fig. 6d). These
distinctive chromatin modification patterns highlight spe-
cialized epigenomic regulation of these two genes, which

can be precisely revealed by the subclasses of CSREs in
this cell type.

For the CSREs shared by two cell types, we expected
that their proximal genes also function specifically in
both cell types. We took a CSRE in NHEK_HMEC_2 as
an example. We found that the third longest CSRE of
NHEK_HMEC_2 is a 9600-bp region encompassing the
whole gene body of KRT14 (Additional file 1: Figure S16).
This gene provides instructions for making keratin 14,
which is a fibrous protein making up skin [33]. Besides, it
was also known as an epithelial marker [34]. As expected,
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we observed strikingly expressed KRT14 in both NHEK
and HMEC (Additional file 1: Figure S17B). Intriguingly,
in the two cell types, more than 3/4 of the CSRE harbors
active marks H3K27ac, H3K9ac and H3K4mel/2, which
are nearly empty in this region among the other cell types
(Additional file 1: Figure S17A), indicating KRT14 may be
regulated by the precise histone modification pattern in
both cell types.

Application of CsreHMM to a large-scale dataset reveals
hierarchical specific CSREs

We also applied CsreHMM to a large-scale dataset of 127
cell types and tissues from the Roadmap Epigenomics
Project [4] (Additional file 2: Table S1). Some of these cell
types or tissues come from the same lineage and are very
similar to each other. As the difference of cell types from

different lineages would be larger than that of cell types
within the same lineage, directly applying CsreHMM to
this dataset would more likely focus on difference between
lineages and lead to lineage-specific chromatin modified
region.

In practice, we trained a 30-state model for the whole
dataset. As expected, we found that some states are spe-
cific regions shared by cell types from the same lineage,
which could be traited as lineage-specific regulatory
elements. For example, state 1 obtains specific H3K4mel
and H3K4me3 signal of multiple brain tissues (Fig. 7a),
and their proximal genes are significantly enriched in GO
term “learning” and “cognition” (Additional file 2: Table S2),
which implies this state consists of regulatory elements
specific for brain. In additation, we also found that state 6,
23, 26, 30 relate to blood-, muscle-, liver- and ES-specific
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regulatory elements, respectively (Fig. 7a and Additional
file 2: Table S2). Interestingly, we noticed that state 2 are as-
sociated with both fetal brain and ES-derived neuron
cells, and their proximal genes are significantly enriched in
GO term “axon development” and “axonogenesis”, which
indicates that this state covers region that may play an
important role in brain development.

Even though it is hard to focus on the difference within
a lineage by directly applying CsreHMM to the whole
dataset, we can still achieve it by applying the model to

epigenomics within a specific lineage. For example, we
trained a 20-state model for 9 cell types in group “HSC &
B cell”, to see the subtle difference among them (Fig. 7b).
We found that state 1, 14 and 18 has neutrophils-specific
H3K36me3, H3K4mel and H3K4me3 signal, respectively,
indicating that they are activate regulators of neutrophils.
Surprisingly, for all the 3 states, their proximal genes are
significantly enriched in GO term “neutrophil activation”
(Additional file 2: Table S3). State 19 obtains nature killer
cell-specific H3K4mel signal. Interestingly, its proximal
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genes are significantly enriched in “T cell activation”
(Additional file 2: Table S3), which seems surprising
but is consistent with recent observation that NK cells
contribute to the activation of T cells [35].

In summary, this application demonstrates the ability
of CsreHMM to find lineage- or cell type-specific regula-
tory elements from large-scale epigenomic data.

Discussion

Here we introduced a comparative computational method
CsreHMM to systematically identify cell type-specific
regulatory elements along the whole genome and their
characterized histone codes. We applied our method to
a ENCODE dataset and found that two thirds of states
from the trained HMM model were identified as spe-
cific ones, illustrating its efficiency in revealing more
detailed regulatory characteristic. The identified CSREs
were enriched in different kinds of regulatory regions; their
proximal genes were likely to participate in cell type-
specific biological functions; the expressions of those genes
were also in line with the underlying histone codes of their
proximal CSREs. All those results demonstrate the effect-
iveness of our method.

Compared with dCMA, CsreHMM can not only locate
CSRE:s for each cell type, but also identify the mark com-
binations that characterize their specificity and reveal their
sub-patterns and explicitly label the CSREs shared by
multiple cells. Those additional features can bring us a
more deep understanding of CSREs. However, the limited
number of states can only capture recurrent types of
CSREs, consequently omitting the rare ones, which can be
picked up by carefully examining the histone codes of each
CSRE provided by dCMA. Thus, CsreHMM is more suit-
able to get a general picture of CSREs to help understand
specific behaviors of histone modifications in a cell type
and the formation of cell identity.

Large epigenomic datasets usually contain cell types
from the same lineage. When applied to such a dataset,
CsreHMM would be more likely to find lineage-specific
regulatory elements, rather than cell type-specific ones.
Even thouth increasing the number of states would
grasp subtle difference between cell types within a
lineage, and may discover the cell type-specific regula-
tory elements, this procedure would also increase the
training time quadratically. Instead, we suggest to apply
CsreHMM to a specific lineage of cell types to make
the comparison more reasonable and make the cost
much lower.

With the continuous generation of more genome-wide
epigenomic data by large consortium like IHEC [36], we ex-
pect this method to become a useful tool for investigating
diverse chromatin modifications among multiple cell types
or conditions.
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