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Ameasure of agreement across
numerous conditions: assessing when changes
in network structures are tissue-specific
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Abstract

Background: There is great interest to study how gene pathways change their structure across different tissues. The
assessment of inter-study reliability of pathway changes across tissues can inform on the fraction of tissues with
specific functional changes in network structure. However, there is a lack of agreement measures among studies that
independently observe how a group of observations change across conditions. We, therefore, propose λ, a new
inter-study reliability measure that determines the consistency to distinguish observations by condition.

Results: We derived λ’s distributional characteristics, determine its reliability properties and compared it with
Cohen’s κ . We studied the co-expression structure of 287 gene pathways across four brain regions in two
transcriptomic studies and applied λ to assess the inter-study reliability of the pathways’ brain-regional changes.
Brain-related pathways showed highest λ; the top value was for the nicotine addiction pathway whose structure was
reliably distinguishable among regions with dopaminergic projections.

Conclusion: Our results offer novel substantial evidence that changes in network structure across tissues can be
inferred independently of samples, algorithms and experiments (RNA-sequencing or microarrays). Reliability
measures, such as λ, can inform on the tissues where changes in a network’s structure are likely functional. An R
package is available at https://github.com/isglobal-brge/lambda.

Keywords: Brain, Transcriptome, Co-expression networks, Reliability, Coehn’s kappa, GTEx, RNA-sequencing,
Addiction, Nicotine

Background
Reproducibility is a pressing issue in biomedical research
that particularly worries a large number of researchers
in the field [1]. Research guidelines from leading jour-
nals and the American Statistician Association urge for
the need of confirmation studies and accurate statisti-
cal reporting [2, 3]. In systems biology, gene interaction
networks are often derived from the integration of high-
throughput data with the aim to determine gene struc-
tures with probable biological functionality. Networks,
therefore, also need to be reproduced between indepen-
dent studies in order to contain valid scientific content
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[4]. Inferred networks or established gene pathways may
be additionally assessed under different and numerous
conditions to understand the physiological changes of
their associated biological functions. The interest here
is, for instance, to determine for which tissues a path-
way has a specific function [5]. Therefore, if the pathway
is physiological only in specific tissues, the inter-study
reproducibility of its structure across other tissues, where
it is not functional, is expected to be low. As such, neu-
robiological networks would be expected to meaning-
fully change in structure between nervous tissues but not
between connective tissues like blood [6]. While pair-wise
comparisons of a network reproducibility between two
studies can be applied on a single tissue [7], there is a need
to measure the reproducible changes in network structure
across multiple tissues which, in particular, informs on
the fraction of tissues for which the changes may underlie
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tissue-specificity. We, therefore, aimed to propose a mea-
sure that allows us to determine the degree to which the
changes in network structure among a range of tissues are
reproducible across studies; Fig. 1 shows a schematic rep-
resentation of the data and the type of network reliability
we intent to assess.
Classical statistics include numerous ways to measure

the reliability of an observation [8]. Reliable observa-
tions are reproducible and accurate. Agreement measures
between two independent experiments are used to assess
the consistency of the observations being made. If obser-
vations are categorical, Cohen’s κ and its generalizations
are typically used [9, 10]; if observations are continuous
then a number of correlation measures can be used, such
as intra-class correlations [11]. These and other agree-
ment measures are suitable when experiments are per-
formed under comparable, unchanged conditions. When
studies are designed to test how a group of individuals
change under a range of varying conditions, it is of inter-
est to assess how reliable the changes across conditions
are. However, there is a lack of recommended inter-rater
measures that assess reliable changes among conditions
[8, 12].

A first question that can be asked is the degree to which
themost similar observations between studies correspond
to those under the same condition, and hence have a
measure of how reliably the observations can be distin-
guished by condition. Similarity can be assessed by any
statistic, namely a preservation statistic, that compares
two sets of observations at any particular property. A cor-
relation of the observations between two conditions is an
example of one preservation statistic. If a preservation
statistic for observations between studies is defined [4],
we can ask whether the preservation is maximum when
the conditions between studies match. The question can
be addressed mathematically by computing a preserva-
tionmatrix, whose elements are the preservation statistics
between conditions across studies, and assess the extent
to which the diagonal terms are maxima across rows and
columns. In particular, a preservation matrix across con-
ditions can be defined for cross-tabulated tables used in
classical inter-study reliability studies and, therefore, the
ability to correctly pair observations by condition can
be studied in those cases. We thus aimed to construct
a reliability measure for the correct condition pairing of
observations between studies, compare it with Cohen’s κ

Fig. 1 Definition of λ for a co-expression network inferred in 6 tissues in two different studies. Schematic representation of am-gene pathway (A)
whose co-expression structure is inferred from the transcriptomic data of different tissues/conditions (1 to 6) across two studies (E1, E2). The
inference for tissue 1 from data is illustrated. The figure shows the preservation matrix Z (blue) for the network A that is constructed from the
pair-wise preservation statistics between tissues across different experiments. The arrows show the pairing between tissues across experiments
given by the maximum Z found in the rows and columns that cross each diagonal term of Z. Network structures in tissues 1, 2, 4 and 5 in E1 are
correctly matched by tissue in E2, as their diagonal elements are row and column maxima. Tissues 3 and 6 are not matched correctly. The fraction of
tissues for which network structures in E1 can be correctly paired to those in E2 is 4/6, illustrated by the red stars that fall in the diagonal. λ is a
reliability measure defined as the probability that the diagonal terms in Z are their row and column maxima. λ informs on how diagonal Z is
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and apply it to assess the inter-study reproducibility of
changes in co-expression network structure across tissues.
The GTEx project is an unprecedented effort to study

the gene expression in tens of tissues in hundreds of sub-
jects using RNA-sequencing [13]. It is, therefore, a strong
candidate for becoming a preferred benchmark for inter-
action networks across different tissues. As the number of
studies with expression data inmultiple tissues is expected
to increase, agreement measures against GTEx may serve
to assess the reproducibility of network changes across
tissues [3]. Some studies that measure gene expression
in different tissues are publicly available, one of which is
the BRAINEAC project [14]. Here, the gene expression
using microarray data was measured in hundreds on indi-
viduals, free of neurodegenerative disorders at the time
of death, in nine different brain tissues, four of which
overlap with those in GTEx. Using our agreement mea-
sure between the studies, we assessed the fraction of
brain regions for which 287 KEGG pathways [15] reliably
changed across the cerebellum, frontal cortex, hippocam-
pus and putamen.

Results
For two studies that measure the same group of units
(subjects, co-expression pairs in a network, etc.) across k
conditions, we propose to construct the k × k preserva-
tion matrix Z between conditions. The matrix element zij′
(i, j = 1, ...k) is the correlation (or any preservation statis-
tic) of the units’ observations between condition i in the
first study and condition j in the second study. When the
observations are the connections between all node-pairs
in a network then zij′ may be any normally distributed
statistic where pairwise topologies are compared. Figure 1
shows the case in which a co-expression network A of
m gene transctipts is inferred for n subjects in 6 tissues
(1,...6) in 2 different experiments (E1 and E2). The matrix
Z is given by all pair-wise comparisons between tissues
for the network connections across both experiments. The
arrows show the values of Z that are maxima across the
rows and columns that intersect at each diagonal term.
We are interested in measuring how reproducible the

changes of units observations, such as network edges, are.
In the case of perfect inter-study reproducibility across
all conditions/tissues then the matrix Z looks diagonal.
That is, zii′ is maximum across row i and column i′, for
all i. In general, this is not the case and the preservation
corresponding to row i and column j′ �= i′ may be maxi-
mum across the elements in row i and column i′. Figure 1
shows, for instance, that the element of Z at tissue 3 in
E1 and tissue 2 in E2 is the maximum in row 3 and col-
umn 3 of Z. As the network structure of tissue 3 in E1 is
paired with that of tissue 2 in E2, network connections in
tissue 3 have not been reliably reproduced between exper-
iments. By contrast, all the structures at tissues 1, 2, 4

and 5 are correctly paired between experiments, as the
corresponding diagonal terms are their row and column
maxima and, therefore, their differences are reproduced
between experiments.
We define a measure λ on the preservation matrix that

tells us how diagonal Z is. In general, we assume that the
units’ observations corresponding to row i can be paired
by similarity with those in column j′ if the preservation
statistic zij′ is maximum across row i and column i′. Note
that, as a consequence, Z is non-symmetric. We then
define λ as the expected fraction of correct condition
pairings between experiments (R), given by

λ = E[R]= 1
k

∑

i
pii (1)

σ 2 = Var[R]= 1
k2

∑

i
pii(1 − pii) (2)

where pii is the probability that the diagonal term zii′
is maximum within its row and column elements. λ

measures the fraction of conditions that can be reli-
ably distinguished by structural changes, taking into
account a probability for random pairing. We mod-
eled pii assuming independence among the similarities
of observations between conditions, and normality in
the preservation statistic (see “Materials and methods”
section). As an agreement measure, we derived its
reliability properties and compare it with a classical
measure of inter-study agreement, Cohen’s κ . We then
applied it to determine which of 287 KEGG pathways pre-
sented higher rates of correct condition pairing across
four brain regions between two independent transcrip-
tomic studies.

Comparison between λ and Cohen’s κ in simulation studies
We studied the properties of λ with extensive simulations.
While λ is applicable tomore general situations than those
covered by Cohen’s κ , we compared the performance of
λ with κ in simulated cases where both measures can be
used. We simulated numerous agreement tables between
studies, in which 500 units were classified by both stud-
ies into numerous categories/conditions, under different
scenarios. From the cross-tabulation table of agreement,
see expression 14 in “Materials and methods” section,
we computed κ : the inter-study reliability of classification
that accounts for random agreement. From the corre-
sponding preservation matrix obtained from Eqs. 17 and
18 in “Materials and methods” section, we computed λ:
the fraction of conditions that can be correctly distin-
guished between experiments. We also computed P0: the
proportion of units correctly classified between experi-
ments; and r: the observed fraction of conditions that are
correctly paired between experiments.
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We recreated the reproducibility assessment between
two raters/experiments across varying number of condi-
tions/tissues k = (5, 7, 15), where three types of cross-
tabulation tables between raters across conditions were
allowed (expression 14 in “Materials andmethods” section).
Those were tables with: 1) marginal equiprobabilities 1/k
of both experiments across all tissues (scenario 1), 2)
marginal probabilities ∼1/j for tissue j (scenario 2) and 3)
marginal probabilities∼1/j2 (scenario 3), where j = 1, ...k.
Simulation scenarios 2 and 3 were designed to test situ-
ations where agreement between studies tend to concen-
trate around one tissue j = 1. We performed 10,000 sim
ulations per number of conditions and scenario. Simulations
were extracted from the permutation of 50 diagonal
cross-tabulation tables (perfect agreement) and 50 cross-
tabulation tables with null diagonals (perfect disagree-
ment). Conditions across subjects were permuted a total
of 30,000 for each table, preserving their marginal fre-
quencies, given by each simulated scenario. Every 30 per-
mutations, agreementmeasures were computed obtaining
a total of 5000 values for perfect agreement (Fig. 2) and
5000 for perfect disagreement. Simulations thus covered
the entire interval between perfect agreement (P0 = 1)
and null agreement (P0 = 0). See Additional file 1:

Table S1 and “Materials and methods” section for further
details.
Simulations showed that when null agreement is

expected (P0 = 0) λ is 0, while λ is 1 for full agree-
ment (P0 = 1). Consistently with this, we observed that
λ increased monotonically with κ for all the simulation
scenarios, see Additional file 2: Figure S1. The functional
dependence was highly stable under different scenarios,
revealing, as expected, high λ agreement for fair values
of κ (0.2, 0.4), given that the latter is a measure of exact
agreement rather than discriminative agreement. There-
fore, the agreement measured by λ is consistently higher
than the agreement measured by κ . We also observed that
for low values, λ tends to zero when κ takes small negative
values, a situation already described in Cohen’s work [9].
For a given κ , we observed a sizable range of λ values, in
particular, as tissues become less equiprobable (scenario 3).
We noted that if the number of tissues is small (k = 5)
and the marginal distribution greatly concentrates around
one single tissue (j = 1 for scenario 3), then λ tends to 1/k
(0.2) because the experiments can clearly distinguish that
tissue from the rest. In this case, κ tends to zero.
We then studied the relationship between the agree-

ment measures that account for random agreement with

Fig. 2 Simulation scheme for reliability measures under one of the proposed scenarios (scenario 2). In the figure, four conditions/tissues are
considered (A, B, C,D) in which two raters (1, 2) measure 500 subjects. The cross-tabulation tables between raters are shown, all with marginal
frequencies across raters given by ∼1/j (j = 1, 2, 3, 4 and A = 1, B = 2, C = 3,D = 4), corresponding to the simulation scenario number 2 described
in “Materials and methods” section. Initially, all 500 individuals are correctly classified between raters. 3000 permutations are performed, such that
the marginals frequencies are conserved. Every 30 permutations reliability measures (P0, κ , λ and r) are computed. The process is repeated 50 times.
A second simulation is performed from an initial cross-tabulation of perfect disagreement, where diagonal terms are all 0. A total of 10,000 values of
each measure are then obtained for simulations that cover the whole reliability interval (0,1) under each scenario
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those that do not. In our simulations, we confirmed that
κ is lower than the proportion of agreement P0 (Fig. 3);
which illustrates the initial motivation for κ ’s definition as
a measure that corrects for random agreement [9]. Simi-
larly, r, the observed fraction of times the diagonal terms
in the preservation matrix are row and column maxima
(Eq. 20 “Materials and methods” section), is higher than λ,
a distributional estimate of such fraction. Note also that r,
as a realization of the random variable R, is discontinuous
with k+1 possible values, while λ is a continuous variable
ranging from 0 to 1.
We additionally studied the variance σ of the fraction R,

for which r is a realization and λ its expected value. We
observed that σ decreased with the number of tissues and
with departure from marginal equiprobability (Additional
file 3: Figure S2). We observed that for a given λ, multi-
ple values of σ are allowed (Additional file 4: Figure S3).
However, the mean of κ , for a single draw of the binomial
process in Eq. (16), is a function of its variance. In partic-
ular, κ ’s variance is minimum at extreme values (0,1) and
is inversely proportional to the number of subjects [16].
In contrast, we observed that σ decreases towards zero
for a range of values of λ. This occurs when λ tends to r,
that is, when the probabilities that the diagonal terms of
the preservation matrix are maxima tend either to zero or
to one, see Eq. (13) in “Materials and methods” section.
We also computed the variability of λ from the 5% con-
fidence intervals (CI) obtained from bootstrapping the
units observations in the cross-tabulation tables. For sim-
ulations corresponding to 5 equiprobable conditions and
varying number of subjects, we observed that the length
of λ’s CI was proportional to σ and independent of the
number of subjects (Additional file 5: Figure S4).
Overall, these observations show that the fraction of tis-

sues for which network changes are reproducible can be

determined with high precision, low σ and therefore small
CIs for λ. From a practical point of view, low or moderate
values of λ can be used to select the tissues for which the
network changes can be reliably measured, and are likely
tissue-specific. Consider, for instance, a situation where
the structure of a gene pathway is inferred in 50 differ-
ent tissues. If we expect that the network is biologically
functional in only 5 of the tissues, then λ will be at most
0.1. In addition, low σ will also indicate that the network
structure in 90% of tissues could be discarded on grounds
of measurement reliability. By contrast, κ is maximally
informative only as it tends to 1, that is when all the con-
ditions are distinguishable and the preservation matrix is
fully diagonal.
We finally performed a power test for λ, where we simu-

lated a true agreement scenario in which 3/5 tissues could
be reliably paired across two studies. We simulated a true
scenario using a multivariate distribution for 10 random
variables corresponding to 5 networks per experiment; 3
networks between experiments correlated with strength
of 0.5 while all other possible network correlations, across
tissues and studies, varied from 0 to 0.5.We also varied the
number of genesN in the network (10, 20, 40) correspond-
ing to N(N − 1)/2 non-redundant connections (45, 190,
780). We observed that λ had sufficient power (> 80%)
to detect true agreement when the difference between
matching tissue correlations and background correlations
is 0.05 for 40 gene networks or 0.2 for networks consisting
of 10 genes (Additional file 6: Figure S5).

KEGG pathways
The Kyoto encyclopedia of genes and genomes (KEGG)
offers a list of experimentally characterized biochemichal
pathways. We computed λ between two independent
transcriptomic studies, GTEx (RNA-sequencing) and

a b

Fig. 3 Comparison between agreement measures that correct for random agreement with those that do not. a Cohen’s κ is compared with P0 (the
total fraction of agreement). b λ is compared with r (the observed fraction of diagonal elements that in the preservation matrix are their row and
column maxima)
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BRAINEAC (microarray), that measured gene expres-
sion levels with different technologies in the cerebellum,
frontal cortex, hippocampus and putamen.
For each of the 287 KEGG pathways, we selected the

commonly annotated genes in each study. We computed
the co-expression networks, where genes were hubs and
the correlations between the expression levels were edges
between hubs. We then derived the pathways’ adjacency
matrices from the absolute value of the gene-pair corre-
lations in each tissue. As a pairwise preservation statistic,
we used the adjacency correlation (cor.cor) that quanti-
fies how similar the connectivity is between two network
structures [4], see “Materials and methods” section. We
then computed the preservation matrices of network con-
nectivities for each pathway. As a result, we obtained a
λ per pathway. Table 1 shows the pathways with the top
λ values (> 0.5). While no pathway correctly matched
its structure between studies across all four tissues, we
observed seven pathways (2%) with agreement between
(0.5, 0.75); those are pathways that correctly paired their
structures across two to three tissues between studies.
Remarkably, five of these pathways are directly linked
with signaling processes specific to brain, suggesting that
the differences between network structures across brain
regions may be tissue-specific. We further observed that
in the complete list of all KEGG pathways (Additional
file 8: Table S2), brain pathways were highly ranked by λ.
In the top-ranked pathways, we also observedMicroRNAs
in cancer and adrenergic signaling in cardiomyocytes.
While these are not brain-specific pathways, numerous
MicroRNAs have been shown to express in brain [17] and
adrenergic signaling plays an important role in long-term
potentiation in hippocampus [18]. We also computed the
bootstrap 5% CI of λ and estimated σ for each pathway.
We observed a linear relationship between the length of
the interval and σ , confirming our previous observation
(Additional file 5: Figure S4) that the variability of λ is a
function of σ and independent of the number of genes in
the pathways; see Additional file 7: Figure S6).

Table 1 Agreement measure λ > 0.5 between BRAINEAC and
GTEx across 4 brain regions in 287 KEGG pathways

λ CI: 2.5% CI: 97.5% σ Ref Description

0.68 0.72 0.75 0.02 hsa05033 Nicotine addiction

0.67 0.61 0.88 0.04 hsa04720 Long-term potentiation

0.58 0.61 0.77 0.04 hsa05206 MicroRNAs in cancer

0.55 0.50 0.59 0.01 hsa04080 Neuroactive ligand-receptor
interaction

0.53 0.42 0.69 0.03 hsa04020 Calcium signaling pathway

0.52 0.45 0.65 0.03 hsa04261 Adrenergic signaling in
cardiomyocytes

0.51 0.49 0.62 0.02 hsa04912 GnRH signaling pathway

Figure 4 illustrates the structure of the strongest edges,
across tissues and studies, of the nicotine addiction path-
way, which was the top hit with λ = 0.67 and σ 2 = 0.02.
We observed that the structure of the network was pre-
served between studies in which, for instance, GABRB3
was an important hub across tissues and studies while
some genes like GABRR2 and CHRNA6 were consistently
unlinked from the network. While some reliable differ-
ences between tissues can be noticed, the preservation
matrix in Fig. 5 clearly shows that the frontal cortex, the
hippocampus and the putamen can be correctly paired
between studies, while the cerebellum cannot. The lower
value of λ = 0.67 from the observed R = 0.75 is due
to the variability of the preservation values and, perhaps,
to the closeness in structure between the hippocampus and
the frontal cortex.
We also computed benchmark-λ as a measure of

benchmarking the pathway’s structures obtained from
BRAINEAC against GTEx, (Table 2 and Additional file 8:
Table S3). Benchmark-λ corresponded to the expected
value of tissues from BRAINEAC that were correctly
paired to those in GTEx, given by the maximum over
rows of the preservation matrix at a given column (see
“Materials and methods” section). We observed higher
values of benchmark-λ, and in particular, 20 pathways
with benchmark-λ > 0.7, 15 of which were brain-related.
Seven of those pathways are involved in synaptic signaling
(glutamatergic, cholinergic, GABAergic and dopaminer-
gic synapse, and long-term potentiation, retrograde endo-
cannabinoid and calcium signaling pathways), and four
in addiction processes (nicotine, morphine, amphetamine
and alcohol).

Transcriptome-wide gene network
We inferred the transcriptome-wide co-expression net-
work for 9071 genes across the GTEx and BRAINEAC
studies in the four brain tissues. The network was fully
characterized by 8.2 × 107 gene-pair correlations. We
observed λ = 0.5 for the transcriptome-wide network
across all four tissues. Figure 5 illustrates the preservation
matrix between studies across tissues. We observed that
all the preservation statistics in the matrix were similar in
size, between 0.38 and 0.49, and that the cerebellum and
frontal cortex diagonals were correctly paired between
studies. We noted that the diagonal terms at the hip-
pocampus and putamen were the second maxima after
their correlations with the frontal cortex in GTEx. There-
fore, the transcriptome-wide networks cannot clearly dis-
entangle the frontal cortex from the hippocampus and
putamen, suggesting that a large amount of the 8.2 × 107
gene-pair correlations may not be brain-region specific.
We finally benchmarked the transcriptome-wide net-

work obtained in BRAINEAC against GTEx across the
four brain regions. In this case, we confirmed that all
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Fig. 4 Co-expression structure of the nicotine addiction pathway in the cerebellum (CRB), frontal cortex (FCTX), hippocampus (HIPP) and putamen
(PUTM) across the GTEx and BRAINEAC studies. The figure illustrates the strongest correlations between genes only (greater than the last decile)

diagonal terms were their column maxima (see Fig. 5)
and therefore benchmark-λ = 1. These results show
that the transcriptome-wide network can correctly pair
BRAINEAC tissues with those of GTEx. As the bench-
marking only takes into account the variability between
tissues of GTEx and not BRAINEAC, the observation:
benchmark-λ = 1, is consistent with the consideration
that RNA-sequencing (GTEx) may provide better charac-
terization of the transcriptome than microarray technol-
ogy (BRAINEAC) [19].

Discussion
We proposed a new measure, λ, of agreement between
studies. The motivation of the measure is the assessment

of agreement between studies that measure the effects
of varying conditions on a set of units (subjects, co-
expression pairs, etc). We showed that the measure con-
formed to the properties of agreement measures and used
simulations to compare it with Cohen’s κ . Our results
illustrate the large potential of λ, in particular, for studying
the changes in gene-network structure across numerous
tissues. The measure is particularly useful to determine
the fraction of tissues for which network structures can
be reliably distinguished, and thus informs on the ratio of
structural changes that may be tissue-specific.
In our application to co-expression networks in brain,

we observed that the structure of a number of brain-
related pathways could be reliably matched by tissue

Fig. 5 Preservation matrices for the nicotine addiction pathway and the transcriptome-wide network. The elements in the preservation matrices are
Fisher’s Z-transformed correlations of the co-expression relationships among genes between studies
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Table 2 Agreement measure λ > 0.7 for the benchmarking of
BRAINEAC against GTEx across 4 brain regions in 287 KEGG
pathways

λ CI: 2.5% CI: 97.5% σ Ref Description

0.97 0.99 1.00 0.01 hsa04724 Glutamatergic
synapse

0.95 0.97 1.00 0.01 hsa05033 Nicotine addiction

0.94 0.93 1.00 0.01 hsa04360 Axon guidance

0.91 0.93 1.00 0.02 hsa05414 Dilated
cardiomyopathy

0.89 0.97 1.00 0.02 hsa04931 Insulin resistance

0.84 0.88 0.99 0.03 hsa04725 Cholinergic
synapse

0.84 0.82 0.97 0.02 hsa05032 Morphine
addiction

0.82 0.78 0.93 0.02 hsa04720 Long-term
potentiation

0.82 0.76 0.89 0.02 hsa05031 Amphetamine
addiction

0.81 0.76 0.95 0.02 hsa04912 GnRH signaling
pathway

0.79 0.70 0.91 0.03 hsa04261 Adrenergic
signaling in
cardiomyocytes

0.76 0.75 0.78 0.01 hsa04727 GABAergic
synapse

0.75 0.75 0.75 0.00 hsa04080 Neuroactive
ligand-receptor
interaction

0.75 0.75 0.75 0.00 hsa04723 Retrograde
endocannabinoid
signaling

0.74 0.75 0.75 0.00 hsa04020 Calcium signaling
pathway

0.74 0.73 0.76 0.01 hsa04728 Dopaminergic
synapse

0.74 0.76 0.90 0.03 hsa05206 MicroRNAs in
cancer

0.73 0.75 0.76 0.01 hsa04015 Rap1 signaling
pathway

0.71 0.67 0.95 0.04 hsa04971 Gastric acid
secretion

0.71 0.68 0.80 0.02 hsa05034 Alcoholism

across GTEx and BRAINEAC. We observed that the
nicotine addiction pathway presented the highest λ in
which the frontal cortex, the hippocampus and the
putamen were reliably distinguished. Interestingly the
cerebellum, with a limited role in addiction, could not
be reliably distinguished. Benchmarking of BRAINEAC
against GTEx, confirmed that the differences in the nico-
tine pathway structure across relevant brain regions were
highly reliable, as were those in glutamatergic, choliner-
gic, GABAergic, dopaminergic synapse pathways, whose
complex interactions are critical to nicotine addiction

[20]. The reliability of other addiction pathways (mor-
phine, amphetamine and alcohol) supports these findings
and indicates that structural changes of those pathways
in regions with dopamine projections, which are essential
in addiction processes (frontal cortex, hippocampus and
putamen), are likely tissue-specific [21].
The agreement measure λ is based on the preservation

matrix between tissues. Langfelder and colleagues thor-
oughly studied a number of pair-wise preservation statis-
tics of Cholesterol Biosynthetic Process network across
sex and tissue differences in mice [4]. Their approach
to assessing the reproducibility of the data was to test
the preservation of network structure against a reference
set of conditions (female/liver), allowing them to identify
the condition (male/liver) for which structures are most
similar. However, their data show, more generally, that
sex changes are much smaller than tissue changes and,
therefore, that differences in network structures can reli-
ably pair tissues between sex changes. In this case, the
inter-study reliability for changes in the network structure
across a range of tissues is clearly high, as it would be sum-
marized by a by high λ. While a pair-wise preservation
statistic assesses the reliability of a network’s structure
between two conditions [4], the preservation matrix reg-
isters all pair-wise changes of the structure among numer-
ous conditions. λ is a measure on the preservation matrix
that allows the assessment of agreement between stud-
ies to reliably discriminate between conditions, measuring
the probability that the diagonal terms of the matrix are
their row and column maxima.
We are unaware of similar measures of agreement

on akin preservation matrices that test the changes in
the structure of a network across tissues. Other func-
tions of the preservation matrix could also be investi-
gated. We observed, in particular, that λ is a measure of
inter-observer agreement that is consistently higher than
Cohen’s κ . Perfect agreement for κ is exclusively given by
diagonal tables, while perfect agreement for λ is given by
maxima diagonal terms in tables where their elements,
irrespective of their magnitude, are estimated with suffi-
cient low variability. λ does not test the level of pair-wise
preservation but the extent to which structural patterns
are correctly classified by conditions. This is an impor-
tant difference between the measures, which allows λ to
be used in more general situations where the elements
of cross-tabulated tables between raters/studies are infer-
ences. In particular, we observed that λ is informative for
intermediate values, as it can be used to select the frac-
tion of tissues where network changes are reproducible
and likely to be tissue-specific.
Currently, the validity of a gene or protein network

derived from high-throughput data is often benchmarked
against networks derived from current knowledge of
specific interactions, given by curated pathways, specific
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experiments or even text mining of published articles
[22]. This type of confirmatory analysis extracts networks
that are a mixture of interactions that have been indi-
vidually reported on different tissues. Therefore, while
validity is investigated, in terms of consistency with pre-
vious knowledge, reproducibility of network structure in
an independent confirmatory study is not being assessed.
We observed important preservation of network patterns
between two equivalent, independent studies, based on
different technologies (RNA-seq andmicroarray), analysis
methods and subjects. As such, our results fully test inter-
observer reproducibility and provide support that inferred
network structures are biological entities independent of
numerous sources of variability and heterogeneity in the
studies. Previous work has tested the agreement of tran-
scription measurements between RNA-sequencing andm
icroarray experiments on the same subject samples ([23, 24]).
These are important studies to validate experimental tech-
niques. However, fully testing inter-observer reproducibil-
ity of network inferences, as we have done, must be based
on independent confirmatory experiments on different
population samples, experiments and analyses. Finally,
recent efforts have been made to assess Bayesian network
reproducibility, where intra-study preservation statistics
have been proposed [25]. While there is still a need to
apply those metrics to assess inter-study reproducibility, n
ote that λ will also be applicable in such a case.

Conclusions
Wepropose a novel inter-studymeasure of agreement λ to
determine the fraction of conditions for which structural
changes in a set of observations may be deemed reliable.
The measure revealed that changes in the co-expression
structure of addiction-related pathways can correctly dis-
tinguish the frontal cortex, hippocampus and putamen
but not cerebellum between studies. Reliable tissue dif-
ferences in network structure can help to identify tissue-
specific pathway-biology and increase the reproducibility
of network inferences. More generally, our agreement
measure can be used in a set of independent studies that
measure how the same group of units changes across
numerous conditions.

Materials andmethods
We propose an inter-study measure of agreement to dis-
criminate conditions. While the measure can be applied
to different research studies, such as those with factorial
designs, we illustrate how its need arises from an exam-
ple in current functional genomic research. We consider
two studies that measure the same units (subjects, gene-
pair correlations, etc.) across multiple conditions. We aim
to construct a measure that informs on the fraction of
conditions that can be reliably distinguished by structural
changes in the observations.

The problem
Let us assume that we have two studies that measure the
expression of a set of genes in two different population
samples, in the same range of tissues and using different
experimental setups. For instance, one experiment may
use RNA-seq and the other a microarray technology. We
may be interested in inferring the co-expression relation-
ships between the genes across tissues and determine
whether the changes in the relationships are consistent
between experiments. The co-expression between two
genes in the network is given by their correlation over the
subjects’ gene expression levels. Figure 1 illustrates the sit-
uation where the co-expression between the genes of a
network is inferred for 6 tissues in two different studies.
Our aim is then to propose a measure that tells us the
fraction of tissues that can be reliably distinguished by the
network structure across studies. The measure will then
inform on the fraction of tissues for which the changes in
gene relationships may be tissue-specific.
A network A of m genes (nodes) can be represented

by a m × m adjacency matrix between genes, where the
entries are the edges linking a pair of nodes, see Fig. 1. We
are interested in gene-network modules, such as pathways
or gene-sets associated with a biological function. There
are numerous structural properties of networks that can
be used to test the preservation of a network between
two studies. Preservation statistics quantify given aspects
of within-network topology that are preserved between
studies, see Langfelder et al. for a review [4]. Given a
preservation statistics z, we aim to assess the inter-study
reliability of a network’s structure between studies E1 and
E2 across numerous conditions.
For studies that compute a network across different

conditions like tissues (i = 1, ...k), we want to assess
the preservation between studies of the network changes
across tissues. We thus form the preservation matrix Z
across conditions where the entries are pair-wise preser-
vation statistics z

(
Ai,A′

j

)
= zij′ of network A between

tissues i and j in E1 and E2, respectively. For three tissues
we thus have

Z =
⎛

⎝
z11′ z12′ z13′
z21′ z22′ z23′
z31′ z32′ z33′

⎞

⎠ (3)

Wewould then like to have ameasure of inter-study agree-
ment from Z, which can tell how diagonal Z is or, more
explicitly, the extent to which i can be correctly paired
with i′, for all i.

A solution
In Z, we can pair by similarity two network structures cor-
responding to condition i in E1 and condition j in E2 if
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the element zij′ is maximumwithin row i and column j. As
such, we are interested in measuring the extent to which
two structures can be paired when the conditions match
between studies, that is when j′ = i′. We then propose
to measure the probability that the diagonal terms in the
preservation matrix are their row and column maxima.
For Z in equation 3, we thus compute

• p11 = Pr(z11′ > z12′ , z13′ , z21′ , z31′),
• p22 = Pr(z22′ > z21′ , z23′ , z12′ , z32′) and
• p22 = Pr(z33′ > z31′ , z32′ , z13′ , z23′),

where pii is the probability that the network structures in
tissue i between studies are correctly paired by maximum
similarity. Taken the preservation statistic as a similar-
ity measure, we can assume that the similarity of one
structure (i) to another (i′) is independent of its simi-
larity to a third (j′). Therefore, the probabilities pii can
be computed as the product of the individual pair-wise
probabilities

pii =
k∏

j=1
Pr(zii′ > zij′) ∗ Pr(zii′ > zji′), (4)

where the first factor is the probability that zii′ is the max-
imum over row i of Z, and the the second factor is the
probability that zii′ is the maximum over column i′. We
can write down an explicit form for the pair-wise prob-
abilities, further assuming that the preservation statistic
distributes normally

zij′ ∼ N
(
μij′ , σ 2

ij′
)
. (5)

Following the independence of structural similarities
between experiments in different tissues, we then have
that the pair-wise probability Pr(zii′ > zij′) can be derived
from the suitable integration of the joint distribution of zii′
and zij′

Pr(zii′ > zij′)=
∫ ∞

−∞

∫ ∞

zij′
N

(
μii, σ 2

ii
)
N

(
μij′ , σ 2

ij′
)
dzii′dzij′ .

(6)

= 1
2

⎡

⎢⎣1 − erf

⎛

⎜⎝
1√
2

μij′ − μii√
σ 2
ij′ + σ 2

ii

⎞

⎟⎠

⎤

⎥⎦ . (7)

where erf is the error function [26]. Therefore, we have
that the probability that the diagonal term zii′ is the maxi-
mum in the row i is

k∏

j=1
Pr(zii′ > zij′) = 1

2

k∏

j=1

⎛

⎜⎝1 − erf

⎡

⎢⎣
1√
2

μij′ − μii√
σ 2
ij′ + σ 2

ii

⎤

⎥⎦

⎞

⎟⎠ .

(8)

The probability that the diagonal term zii′ is the maximum
in the column i follows a similar form.
Our agreement measure then follows from the fraction

R of diagonal terms in Z that are their row and column
maxima. The fraction R distributes as the fraction of suc-
cesses in k Bernoulli trials each of which has its own
probability pii; that is, as a Poisson binomial distribution
for the success fraction with mean and variance

λ = E[R]= 1
k

∑

i
pii (9)

σ 2 = Var[R]= 1
k2

∑

i
pii(1 − pii). (10)

The agreement measure λ is then the expected frac-
tion of conditions with the correct matching of network
structures between studies. In the case that E1 is the
benchmark for experiment E2, then one is interested in
testing whether the diagonal terms are themaxima of their
columns only, generalizing the concepts of sensitivity and
specificity. In this case λ can be computed by simply set-
ting Pr(zii > zji′) = 1 for j = 1, ...k. Note also that it is
straightforward to generalize the measure for more than
two studies by expanding the products in Eq. (4).

Reliability properties of λ
Suitable reliability measures satisfy three basic properties:
i) their values range from 0 to 1; ii) they tend to 0 when no
agreement is expected and tend to 1 when a full agreement
is expected and iii) they account for random agreement.
Regarding property i), λ clearly ranges from 0 to 1, as

it is given by the fraction between the sum of k proba-
bilities pii and k. To show properties ii) and iii), we look
at the explicit model for pii given by the substitution of
Eq. (7) in (4)

pii =
k∏

j=1

1
2

⎡

⎢⎣1 − erf

⎛

⎜⎝
1√
2

μij − μii√
σ 2
ij + σ 2

ii

⎞

⎟⎠

⎤

⎥⎦ ∗ 1
2

⎡

⎢⎣1 − erf

⎛

⎜⎝
1√
2

μji − μii√
σ 2
ji + σ 2

ii

⎞

⎟⎠

⎤

⎥⎦ .

(11)

erf(x) is the error function which, importantly, defines
the Heaviside step function in the limit: H(x) = 1/2 ∗
limt→0 erf(−x/t) [26]. Therefore, when {σii, σji, σij} → 0,
pii tends to

pii =
k∏

j=1
H(μii > μij) ∗ H(μii > μji) (12)

=
{
1, if μii > {μij,μji}∀j = 1...k
0, otherwise. (13)

That is, when there is no variability in zij, pii is 1 if zii′
is maximum across rows and columns and 0 otherwise.
Therefore, regarding property ii), null and perfect relia-
bilities are clearly expected with null variability. For such
cases all pii are either 0 or 1 according to Eq. (13). In the
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case of null reliability none of the μii is maximum, all pii
are 0 and λ = 0. Whereas, in the case of perfect reliabil-
ity all μii are maxima, all pii are 1 and λ = 1. Regarding
property iii), we can see that under null variability, λ tends
to the observed fraction of conditions r that are correctly
paired between experiments. The fraction r, which is a
realization of R, can be considered as a reliability measure
but does not account for random agreement. By contrast,
λ, as an expected value of R under a probability distribu-
tion, incorporates a variability that accounts for correct
random pairing.

Comparison betweenmeasures of agreement
Let us take two raters who observe l units in k categories.
Then, for instance, if k = 3 and categories are labeled a,
b and c, the cross-tabulation matrix of observaions takes a
similar form of expression (3),

a b c
a naa nab nac
b nba nbb nbc
c nca ncb ncc,

(14)

where ni,j is the number of units observed in cate-
gory i and j by the first and second rater respectively,
and

∑k
i,j=1 nij = l. Agreement is typically measured by

Cohen’s κ

κ =
∑k

i=1 P(i, i) − ∑k
i=1 P1(i)P2(i)

1 − ∑k
i=1 P1(i)P2(i)

, (15)

where P(i, i) = nii/l is the observed frequency of units
that were measured in category i by both raters and Pd(i)
is the frequency of units in i observed by rater d (d = 1, 2).
The sum P0 = ∑

i P(i, i) is the total fraction of agreement:
the proportion of observations that falls in the diagonal,
which does not account for random agreement. Cohen’s κ

measures the fraction of discordant observations expected
by chance that are actually observed in agreement.
While λ can be applied to a wider range of reliability

studies than κ , we compared the two measures in cases
where both of them can be computed. Note that a matrix
Z in Eq. (3) can be computed from the cross-tabulation
table in expression (14). Given that in row i, in expres-
sion (14), the number of observed units is ni = P1(i) ∗ l,
we can then assume that nij is one draw of a binomial
process

nij ∼ Binomial(ni, θij) (16)

where θ̂ij = nij/ni, and the mean and variance of the mean
are given by

μij = nij (17)
σ 2
ij = nij(1 − nij/ni), (18)

For for large ni the binomial distribution tends to a nor-
mal distribution. Therefore, the values in Eqs. 17 and 18
can be used in Eq. 7. With a similar computation for
the column elements, the measure λ can be obtained
for a table in the form (14) and compared with the
value of κ for varying values of the total fraction of
agreement P0.
As κ is an agreement measure that corrects P0 for ran-

dom agreement, we compared λ with the observed frac-
tion of diagonal elements that are their row and column
maxima r, explicitly given by

ri =
{
1, if nii = max

({
nij, nji

}
j

)

0, otherwise
(19)

r = 1
k

∑

i
ri. (20)

Simulations
We performed a series of simulations to study the proper-
ties of λwith respect to κ and r. Simulations were obtained
for three total number of conditions/tissues k = (5, 7, 15),
and three fifferent forms for the marginal frequencies
P1(i) and P2(i) (i = 1, ...k) across studies 1 and 2

• Scenario 1 (equiprobable): P1(i) = P2(i) = 1
k , ∀i

• Scenario 2: P1(i) = P2(i) = 1
i /

∑k
j=1

1
j• Scenario 3 (the least equiprobable):

P1(i) = P2(i) = 1
i2 /

∑k
j=1

1
j2

We set the number of observations to l = 500. For
each scenario, we simulated 50 cases of perfect agree-
ment tables (P0 = 1), i.e. diagonal matrices, and 50 cases
of perfect disagreement (P0 = 0); those are tables with
zeros on the diagonal terms except for the cell of maxi-
mum joint probability. For each case, we permuted a pair
of observations 3000 times, such that the originalmarginal
frequencies were conserved. After each set of 30 permu-
tations, we computed the four agreement measures. This
procedure allowed the assessment of 10,000 simulations,
in each scenario and tissue level, covering the whole agree-
ment interval of P0. The simulation scheme is shown in
Fig. 2 and further details are given in Additional file 1:
Table S1.
We used R.3.30 and the package psych to perform

calculations and compute Cohen’s κ .

Gene expression data
We downloaded expression data from the GTEx project
obtained from RNA-seq [27]. Reads per kilobase per mil-
lion mapped reads (RPKM) of version 6 were obtained
for all brain tissues. Covariates for each tissue were also
downloaded.
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We also downloaded the brain expression data of the
BRAINEAC project [28] obtained from winsorized val-
ues of exon array data (Affymetrix Human Exon 1.0 ST
array). Downloaded data had been previously normalized
and corrected for batch effects.
We identified four brain tissues common in both data-

sets and for which GTEx had covariates’ information.
Those were cerebellum (CRBL) with 125 individuals in
GTEx and 130 in BRAINEAC, frontal cortex (FCTX) with
108 and 135 individuals, (HIPP) hippocampus with 94 and
130 individuals, and putamen (PUTM) with 82 and 135
individuals, respectively.
Between the two studies, we mapped 9071 common

genes to compute all gene-pair correlations of expression
levels.

Co-expression networks
For each tissue in GTEx, we downloaded its correspond-
ing table of covariates. These included 20 variables, 3
of which are genome-wide principal components that
inform on ancestry, 15 surrogate transcriptomic variables
that inform on batch effects, one variable containing gen-
der and another platform. As expression levels for GTEx
are derived from count data, we performed Spearman’s
partial correlations of the expression levels between each
gene-pair, among 9071 genes. We used the par.cor
function of the ppcor R package to test the rank cor-
relations adjusting for covariates. A transcriptome-wide
adjacency matrix was constructed for each tissue, where
the entries, corresponding to the edges of the genome-
wide network, were the absolute value of all gene-pair
correlations.
For the BRAINEAC data, similar adjacency matrices per

tissue were obtained. In this case, however, the down-
loaded gene expression values had already been normal-
ized and corrected for batch effects. As gene expression
levels are close to normality, we performed a Pearson’s
correlation between all gene-pairs and used these values
to compute the adjacency matrices.
We computed λ to test the inter-study agreement of

the co-expression networks of 287 pathways, downloaded
from https://www.genome.jp/kegg/. For each pathway, we
extracted a total of eight adjacency matrices (4 tissues
× 2 studies) whose elements were the absolute value of
the expression correlations between all gene pairs within
the pathway. We computed the pathways’ vectorized adja-
cencymatrices, which are the vectors with non-redundant
components

vectorizeMatrix(A)

= (a2,1, a3,1, a3,2, a4,1, a4,2, a4,3, ..., an,1, am,m−1),
(21)

where m in the number of genes in the pathway A.
As a preservation statistic between studies, we used the
adjacency correlation (cor.cor in [4]), based on the

Pearson’s correlation between the vectorized matrices of
pathway A

cor.cor
(
Ai,A′

j

)

= cor
(
vectorizeMatrix(Ai), vectorizeMatrix

(
A′
j

))

(22)

between tissues i and j, across experiments E1 and E2,
respectively. The elements zij of the preservation matrix
Z for each pathway A were obtained by the Fisher’s Z-
transformation of cor.cor

(
Ai,A′

j

)
.
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