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Abstract

Background: Optimum flowering time is a key agronomic trait in Brassica napus. To investigate the genetic
architecture and genetic regulation of flowering time in this important crop, we conducted quantitative trait loci
(QTL) analysis of flowering time in a recombinant inbred line (RIL) population, including lines with extreme
differences in flowering time, in six environments, along with RNA-Seq analysis.

Results: We detected 27 QTLs distributed on eight chromosomes among six environments, including one major
QTL on chromosome C02 that explained 11-25% of the phenotypic variation and was stably detected in all six
environments. RNA-Seq analysis revealed 105 flowering time-related differentially expressed genes (DEGs) that play
roles in the circadian clock/photoperiod, autonomous pathway, and hormone and vernalization pathways. We
focused on DEGs related to the regulation of flowering time, especially DEGs in QTL regions.

Conclusions: We identified 45 flowering time-related genes in these QTL regions, eight of which are DEGs,
including key flowering time genes PSEUDO RESPONSE REGULATOR 7 (PRR7) and FY (located in a major QTL region
on C02). These findings provide insights into the genetic architecture of flowering time in B. napus.
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Background

In flowering plants, the transition from the vegetative
stage to the reproductive stage helps to ensure repro-
ductive success, including successful seed production
[1]. This trait is especially important in crop plants, as it
can determine crop cultivation ranges and ensure high
productivity. Thus, flowering time is a vital trait that is a
target of selection during crop breeding. Flowering time
is sensitive to various environmental signals (such as day
length and temperature) and endogenous signals (e.g.,
developmental stage and age) [2, 3]. To date, much is
known about candidate genes controlling flowering time
in Arabidopsis thaliana. More than 300 flowering time
genes have been identified, and several key regulators
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that function in pathways that control flowering time
have been detected [4, 5]. Six major pathways control
flowering time in Arabidopsis: vernalization, the
photoperiod/circadian  clock, and the ambient
temperature, gibberellin, autonomous, and endogen-
ous pathways [1, 4, 6-8]. In Arabidopsis, FLOWER-
ING LOCUS C (FLC) and FRIGIDA (FRI) are key
genes in the vernalization response, whereas CON-
STANS (CO) functions in the response to photoperiod
[9, 10]. FLOWERING LOCUS T (FT) encodes a mobile
signal long described as “florigen”, which functions as a
central floral integrator in the control of flowering [11].
Oilseed rape (Brassica napus L., also known as rape-
seed or canola) is one of the most important oil crops
worldwide. Many important and complex agronomic
traits such as yield [12], plant height [13], oil content
[14], seed weight [15], and flowering time [16] have been
mapped in this crop. Flowering time in rapeseed not
only has a crucial impact on yield, but it also influences
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the sowing time of other rotation crops [16]. Quantita-
tive trait locus (QTL) analysis and genome-wide associ-
ated mapping (GWAS) have been used to identify
candidate flowering time genes in oilseed rape. Many
QTLs related to flowering time have been identified in
this crop. For example, one major QTL was identified
that explains 50% of the total phenotypic variation for
flowering time in B. mapus. This QTL is related to
VFN2, a major vernalization-responsive flowering time
gene in Arabidopsis [17]. Raman et al. (2013) performed
QTL analysis for flowering time using a doubled haploid
(DH) population [18]. Liu et al. (2016) identified 22
QTLs (including four major QTLs) for flowering time in
B. napus using a DH population [19]. GWAS was also
recently used to screen for candidate flowering time
genes in B. napus. Xu et al. (2016) identified 41 SNPs
associated with flowering time using GWAS of 523 B.
napus cultivars [20]. Raman et al. (2016) obtained 69
SNP markers associated with flowering time using
GWAS approaches and detected several candidate
flowering time genes, such as FT, FRUITFUL, FLC,
CO, FRI, and PHYTOCHROME B, within 20 Kb re-
gions [21]. QTLs or genes have also been identified
in other Brassica crops, such as B. rapa [22, 23] and
B. oleracea [24].

Although much effort has focused on investigating
flowering time, stable QTLs for this trait have not yet
been identified, and global transcriptome analysis of dif-
ferent rapeseed genotypes has not yet been performed.
Therefore, in this study, we performed joint QTL
mapping and RNA-Seq analysis to uncover the genetic
architecture of flowering time in B. napus.

Materials and methods

Plant materials and growth conditions

A recombinant inbred line (RIL) population consisting
of 172 lines was constructed from a cross between
GHO6 (female parent, late flowering, semi-winter) and
P174 (male parent, early flowering, semi-winter). The
GHO6 x P174 RIL population was previously used to
map seed fiber content in oilseed rape [25]. The popula-
tion was obtained from Chongqing Engineering
Research Center for Rapeseed,Southwest University.

The flowering time trait was evaluated in six environ-
ments (the temperature data in each environment was
shown in Additional file 1: Table S1), including Giessen
(E8.76/N50.56), Germany in 2009 (09Gi) and Beibei
(E106.26/N29.82), Chongqing, China in 2012-2016
(12Cq, 13Cq, 14Cq, 15Cq, and 16Cq, respectively). In
Giessen, the seeds were sown directly in the spring of
2009. In Chonggqing, seeds from the RILs and the paren-
tal lines were sown in nursery beds on September 18,
2012, 2013, 2014, 2015, and 2016 and transplanted to
the field one month later. Each line of the RIL
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population was grown in a 4.5 m> (1.5 x 3) plot with 80—
90 plants (in Giessen environment) or 50—60 plants (in
Chongqing environment). Flowering time data were
recorded for each line from the sowing day to the day
when 50% of the plants showed the first blooming floret.

Genetic and QTL mapping

A high-density SNP genetic map was constructed using
the Brassica 60 K BeadChip Array [25]. A genetic map
containing 2795 SNP markers with a mean distance of
0.66 cM between adjacent SNP markers was used for
QTL mapping.

Windows QTL Cartographer version 2.5 with default
settings was used to detect QTLs for flowering time via
the composite interval mapping method [26]. The
logarithm of the odds (LOD) threshold for detecting a
significant QTL was established by permutation analysis
with 1000 permutations. The linkage map and QTL
position was generated using MapChart software [27].

To screen candidate genes in QTL regions, following
procedures were conducted: (1) 1-LOD likelihood inter-
vals surrounding the peak of the QTL likelihood plot
were regarded as the QTL interval; (2) Ten SNPs located
within and at each end of each interval were considered,
selecting the SNP with either the largest or smallest
physical distance at each end to maximize the physical
size of the region, based on previously published
physical locations of each SNP [28]; (3), Genes located
in the intervals were selected as candidate genes based
on published annotation of the B. napus genome [29].

RNA isolation and transcriptome sequencing

Five early-flowering lines (marked “E”) and five
late-flowering lines (marked “L”) were selected from the
RIL population based on the flowering time in six envi-
ronments. To detect candidate genes involved in regulat-
ing the days to flowering, shoot tissues (S) and leaves (L)
were collected from both E and L lines at 10 o’clock am
in the vegetative stage at 20 weeks after germination in
16Cq environment. For both the E and L lines, shoot tis-
sues (ES and LS) or leaves (EL and LL) from five lines
were pooled, immediately frozen in liquid nitrogen, and
stored at — 80 °C until use.

Total RNA was isolated from each sample using a
Plant RNA Mini Kit (Tiangen, Inc., China) according to
the manufacturer’s protocol. Four ¢cDNA libraries were
constructed and RNA-Seq was performed on an Illumina
HiSeq 2500 platform by Novogene Bioinformatics
Technology Co. Ltd. (Beijing, China) according to the
manufacturer’s instructions. Moreover, these paired end
sequencing reads were immediately uploaded to NCBI
with accession number SRP108958.
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RNA sequencing data analysis

High-quality reads were obtained after the adapter
sequences and low quality sequences were filtered out
from the raw data using the NGS QC toolkit [30]. The
clean reads were mapped to the B. napus genome
(http://www.genoscope.cns.fr/brassicanapus/data/) using
TopHat v2.0.11. Unique reads were further analyzed and
gene expression levels were calculated using Cufflinks
v2.2.0 [31]. Gene expression levels were estimated by
the FPKM (fragments per kilobase of exon per
million mapped fragments) method, and DEGs were
identified using the criteria FDR<0.01 and |log,
(FPKM ¢qr1y/ FPKM ja¢e)| 2 1.

To further investigate the potential functions of the
DEGs, KEGG enrichment analysis was performed using
the KOBAS2.0 website (http://kobas.cbipku.edu.cn/
home.do).

Identification of B. napus homologs of flowering
time-related genes

To discover flowering time genes in B. napus, 306
flowering-time related (FTR) genes in A. thaliana were
downloaded from the Flowering Interactive Database
(http://www.phytosystems.ulg.ac.be/florid/). = Homologs
of these genes in B. napus were identified by BLASTN
analysis against the B. napus reference genome. Top hits
with E-values <1E~?° and identity >80% were used to
screen for the corresponding homologous genes.

gRT-PCR confirmation of RNA-Seq data

To confirm the RNA-Seq data and the DEGs identified
in the early- and late-flowering lines, 47 genes were
subjected to qRT-PCR analysis. One microgram of total
RNA per sample (the same samples used for RNA-seq)
was used to synthesize cDNA using the M-MuLV RT kit
(Takara Biotechnology, Japan) according to the manufac-
turer’s instructions (TransGen, China). The qPCR was
performed as described previously [32]. BuACTIN7 and
BnlIBC21 were used as internal controls, and the 2744
method was used to evaluate relative gene expression
levels. The gene-specific primers are shown in
Additional file 2: Table S2. Each PCR was performed
with three technical replicates.

Results

Analysis of flowering time in six environments

We analyzed flowering time traits in a population of 172
RILs. The flowering time values of the two parental
lines, as well as the mean, maximum, and minimum
values of the RIL population for flowering time in six
environments, were summarized in Table 1. The trans-
gressive segregation of flowering time traits in all six en-
vironments was shown in Fig. 1. We detected a great
difference between the two parental lines and within the
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RIL populations. The correlation coefficients of flower-
ing time among the six environments are shown in
Additional file 3: Table S3. Our results indicate that
flowering time is positively and significantly correlated
among the six environments (r? = 0.255-0.766, P < 0.01).
The correlation between the German and the Chinese
locations (r*<0.4) are lower than among the Chinese
environments (r?>0.6) because of the great difference
between German environment and Chinese environment.

Mapping of QTLs for flowering time in six environments
We detected 27 QTLs distributed on eight chromosomes
in the six environments, with 5.2-25.1% phenotypic vari-
ation (PV) and additive effects ranging from - 2.83 to 3.64
(Table 3). Among these QTLs, 1-8 QTLs were detected
on eight chromosomes and 3-6 QTLs were identified in
each environment (Figs. 2 and 3, Table 2). The values of
the additive effects of QTLs on A05, A06, A07, and C04
were negative, whereas those of QTLs on A02, A0S, A10,
and CO02 were positive, indicating that the genetic
background of the female parent causes later flowering
and that of the male parent causes earlier flowering. By
aligning SNP markers in these regions, we identified the
physical locations of these QTL regions in the B. napus
genome, leading to the detection of 3436 genes (Table 3,
Additional file 4: Table S4).

lllumina sequencing and global analysis of gene expression
To gain insights into the transcriptomic changes in the
early- and late-flowering lines, we performed RNA-Seq
analysis of four samples, representing leaf and shoot tis-
sues from early- and late-flowering lines. After removing
0.82-1.41% of the sequences, including low-quality reads
and adapter sequences, 29.87 Gb of clean data were
obtained and used for quantitative analysis of gene ex-
pression. We mapped these clean reads to the reference
B. napus genome using TopHat software; 69.75-71.62%
of the clean reads were mapped to the genome, includ-
ing 62.16-65.46% and 5.54—8.43% uniquely mapped and
multi-mapped reads, respectively, while the remaining
reads (28.38—-30.25%) were unmapped (Table 4).

Using FPKM analysis, 58,266 genes with values of
FPKM=>0.1 were identified in the four libraries. Addition-
ally, 19.08-19.97% of the genes in the four libraries had
very low expression levels (FPKM< 1.0), 20.08-20.23%
had low expression levels (1.0 <FPKM<3.0), 37.60—
38.79% had moderate expression levels (3.0 < FPKM<
15.0), 15.54—16.15% had high expression levels (15.0 <
FPKMc< 60.0), and 5.81-6.76% had very high expression
levels (FPKM=>60.0) (Fig. 4a). The distribution of
expressed genes in the four libraries is shown in Fig. 4b
44,225 (76.0%) genes were expressed in all four libraries,
and 613-1250 genes were uniquely expressed in one of
the four libraries (Fig. 4b).
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Table 1 Phenotypic variation in flowering time in the RILs and their parents

Environment Parents RIL population
GHO06 P174 Minimum Maximum Mean Std. Deviation

GIO9FT 88 82 78 92 83.76 2555
Cql12FT 175 168 165 177 17013 2.775
Cql13FT 155 145 142 158 149.81 4173
Cq14FT 165 150 142 167 156.01 6.014
Cql15FT 161 142 134 178 153.80 7.968
CqleFT 146 134 130 158 142.74 6.299

09Gi Germany in 2009, 12Cqg Chongging in 2012, 13Cq Chonggqing in 2013, 74Cq Chongging in 2014, 15Cq Chongging in 2015, 16Cq Chongqing in 2016

Transcriptome differences between early- and
late-flowering lines

To identify important genes responsible for flowering time
variation, we selected 5498 and 3671 significant DEGs
based on the criteria |log, (FPKM ¢q1y/FPKM e)| 2 0.58
and FDR £0.01 in leaf and shoot tissues, respectively. Of
the 5498 DEGs in leaves, 2707 (49.2%) genes were down-
regulated and 2791 (50.8%) were upregulated. A total of
3671 DEGs, including 1673 (45.6%) downregulated genes
and 1998 (54.4%) upregulated genes, were detected in
shoot tissues (Fig. 4c). In addition, 1697 DEGs were

common to both leaf and shoot tissues, whereas 3801 and
1974 DEGs were specific to leaf and shoot tissue, respect-
ively (Fig. 4d). Moreover, the fold changes in the expres-
sion (up- or downregulation) of most DEGs in both leaf
and shoot tissues were approximately 2—8 (Fig. 4e). We
constructed a heatmap of the expression patterns of
these DEGs in the four samples using MeV4.9 soft-
ware (Fig. 4f).

Transcription factors (TFs) play crucial roles in many
biological processes, including flowering time regulation
[33]. In the current study, we identified 78 genes
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Table 2 Significant QTLs associated with flowering time in the RIL population

QTL names Trait Chromosome Position (cM) Additive LOD QTL region (cM) R’
qFTA02 Cq14FT A02 201 1.55 3.28 0-28 0.05
Cql15FT AO2 261 1.84 3.53 24-29 0.06
qFTAO5 GIO9FT AO5 93.01 —-0.59 4.02 92.7-938 0.07
qFTA06-1 Cql12FT A06 96.31 -0.95 6.10 94.5-96.5 0.12
Cql15FT A06 97.51 -2.83 763 96.5-101.7 0.10
Cql6FT A06 96.31 -1.85 411 95.5-96.5 0.07
gFTAO6-2 Cql12FT A06 105.81 -0.76 4.16 104.4-106.4 0.06
gFTA06-3 Cql5FT A06 109.21 -2.34 6.87 108.7-111.5 0.07
qFTAO7 GIO9FT AO7 87.31 -0.78 4.67 85.3-88.7 0.09
qFTA08-1 Cql13FT A08 1.31 1.16 433 04-6.1 0.07
Cql15FT AO8 131 2.99 848 06-44 0.14
Cql4FT A08 271 1.86 430 2-72 0.09
CqleFT A08 2.71 1.68 3.50 19-7.2 0.06
Cql13FT A08 761 1.00 3.09 7-87 0.05
qFTA08-2 Cql15FT A08 9.71 2.25 3.98 8.7-11.3 0.07
Cql14FT A08 12.51 1.90 5.52 104-13.5 0.1
Cql6FT AO8 1271 1.83 4.72 10.3-135 0.09
Cq12FT A10 2751 0.83 473 23.7-318 0.07
qFTC02-1 Cql12FT 02 4241 112 7.2 42.3-42.5 0.17
Cql15FT 02 4371 3.26 846 42.7-44.2 0.16
GIO9FT Co2 4371 087 482 42.5-44.2 0.11
Cql6FT C02 43.71 2.16 565 43.5-44.2 0.12
qFTC02-2 Cql13FT 02 46.21 2.06 11.70 44.8-47.1 0.21
Cql4FT C02 49.11 364 891 45.9-50.7 0.19
Cql12FT 02 4811 143 13.30 45.7-50.7 0.25
GIO9FT C02 50.11 1.14 857 45.8-50.7 0.19
qFTCO4 GIO9FT Co4 12791 -068 6.23 127.2-129 0.09

09Gi Germany in 2009, 72Cq Chongging in 2012, 13Cq Chongqing in 2013, 74Cq Chongqing in 2014, 15Cq Chongqing in 2015, 76Cq Chongqing in 2016. Stable

QTL were represented bold

encoding TFs among the common DEGs in leaf and
shoot tissues. These genes were divided into 29 TF fam-
ilies, including ERF, NAC, bHLH, bZIP, and C3H, genes,
with the same expression patterns detected in both
leaves and shoots (Fig. 5a). Plant hormones also help

Table 3 Number of FTR genes in QTL regions

regulate flowering time [1]. In this study, 116
hormone-related genes were identified from among
the common DEGs in leaf and shoot tissues (Fig. 5b).
The top three such genes were related to abscisic acid
(33), auxin (27), and ethylene (24).

Name QTL regions Gd. (cM) PI. (bp) No. of genes No. of FTR genes
QTL-A02 SNP3549A02-SNP3440A02 0-3.2 A02: 19650440-20,741,204 148 0

QTL-A06 SNP13822A06-SNP13882A06 92.398-96.47 A06: 7212328-21,686,640 1909 33

QTL-A07 SNP16177A07-SNP16216A07 85.8-88.7 A07: 19645576-19,981,239 55 0

QTL-A08 SNP18612A08-SNP18586A08 0.408-4.458 A08: 18395488-18,767,730 89 2

QTL-A10 SNP22584A10-SNP22402A10 23.7-31.736 A10: 13337887-14,487,871 255 3

QTL-C02 SNP35881C02-SNP25258C02 44.191-50.702 CO2: 15599-5,545,697 980 7

In total, 3436 genes were detected in QTL regions, including 45 FTR genes. No FTR genes were detected in QTL regions on chromosome A02 or A07
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Table 4 Summary of read numbers from the RNA-Seq data for the four samples

Sample ID Total Reads Mapped Reads Unique Mapped Reads Multiple Mapped Reads Unmapped Reads

EL 50,590,768 35,840,072 (70.84%) 31,573,071 (62.41%) 4,267,001 (8.43%) 14,750,696 (29.16%)
LL 46,020,194 32,432,370 (70.47%) 28,605,892 (62.16%) 3,826,478 (8.31%) 13,588,824 (29.53%)
ES 51,678,990 36,044,431 (69.75%) 33,179,361 (64.20%) 2,865,070 (5.54%) 15,634,559 (30.25%)
LS 51,644,744 36,989,817 (71.62%) 33,808,757 (65.46%) 3,181,060 (6.16%) 14,654,927 (28.38%)

EL leaves of early-flowering bulks, LL leaves of late-flowering bulks, ES shoots of late-flowering bulks, LS shoots of late-flowering bulks

Functional classification of common DEGs involved in
flowering time pathways

To further explore the roles of the common DEGs
identified in both leaf and shoot tissues, 99 important
biological pathways in B. napus were identified in the
KEGG pathway database (Additional file 5: Table S5).
Among these significant pathways, ribosome, biosyn-
thesis of amino acids, carbon metabolism, oxidative
phosphorylation, and ubiquitin-mediated proteolysis
were the most highly represented pathways to which

transduction were also identified in this

(Additional file 5: Table S5).

study

Expression analysis of homologous genes influencing
flowering time in Arabidopsis

We identified 1172 homologs of FTR genes in the B.
napus genome using BLASTN analysis (Additional file 6:
Table S6). The B. napus FTR genes were classified into
nine flowering-related pathways (number of genes shown
in parentheses): aging (43), ambient temperature (25),

common DEGs were assigned. Important pathways
including RNA transport and plant hormone signal

circadian clock/photoperiod (401), flower development
and meristem identity (58), flowering time integrator (38),
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autonomous (454), hormones (98), vernalization (67), and
sugar pathways (46). Many genes are involved in more
than one pathways (Additional file 6: Table S6).

To identify DEGs related to the flowering pathway, we
screened DEGs between two bulks with extreme differ-
ences in flowering time among these putative FTR
genes. In total, 105 flowering time genes were identified
as DEGs using the criteria: |log2 fold change|>0.58
(|fold change| > 1.5), FDR < 0.05 (later-flowering lines as
a control) (Additional file 7: Table S7). Of these, 60 and
72 DEGs were identified in leaf and shoot tissues,
respectively. Furthermore, 19 upregulated and eight
downregulated DEGs were commonly identified both in
leaf and shoot tissues (Fig. 6). The differentially
expressed FTR genes mainly belong to the autonomous
(27), circadian clock/photoperiod (38), and flower
development and meristem identity pathways (14).
BnaC02g04790D, a homolog of FY located in a major
QTL on chromosome C02, plays crucial roles in the au-
tonomous pathway. Genes including FVE, UBIQUITIN
CARRIER PROTEIN 1 (UBC1), UBIQUITIN-SPECIFIC
PROTEASE 13 (UBP13), and LSDI1-LIKE 2 (LDL2) were
also detected, as well as an upregulated gene in the
circadian clock/photoperiod pathway, BnaC02¢03470D,
encoding PRR7 (which promotes flowering). Several
other important circadian clock/photoperiod pathway

genes were also detected, such as PRR3, PRRY, TIME
FOR COFFEE (TIC), TIMING OF CAB EXPRESSION 1
(TOC1), LATE ELONGATED HYPOCOTYL (LHY),
CYCLING DOF FACTOR (CDF), and CONSTANS-LIKE
5 (COL3). Key genes in the flower development and
meristem identity pathways were detected, including
AGAMOUS-LIKE 14 (AGL14), APETALA 1/2 (AP1/2),

171
16T

Leaf

Fig. 6 Venn diagram comparing the number of DEGs in leaf and
shoot tissues between early- and late-flowering bulks. Blue and red
arrows indicate downregulation and upregulation, respectively.
Numbers indicate genes differentially expressed in early-flowering
bulks compared to late-flowering bulks

Shoot
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and LFY. Many crucial genes in other pathways, such as
the aging (TOEI), ambient temperature (AGL3I),
hormone (GA2o0xI), sugar (SUS4), and vernalization
pathways (FLC and VIN3), as well as flowering time inte-
grator genes (FLC, SOCI1, and FT) were also identified
(Additional file 7: Table S7).

Screening for candidate flowering time genes by
integrating QTL mapping and RNA sequencing data

As mentioned above, we detected 3436 genes in QTL
regions and determined their expression levels via
RNA-Seq (Additional file 8: Table S8). Of these genes,
45 are FTR genes in oilseed rape (Fig. 7). Based on the
criteria |log2 fold change| = 1.0, FDR < 0.01 (later-flower-
ing lines as a control), 471 genes were differentially
expressed between the early- and late-flowering lines
(Additional file 9: Table S9). Of these, seven flowering
time-related genes were also detected (Table 5).
BnaA06g24000D, an ortholog of AGL31 that functions
in the ambient temperature pathway, was upregulated
in leaves but downregulated in shoot tissues.
BnaC02g03470D, located in a major QTL region and
encoding PRR7, plays key roles in the circadian clock
pathway and was upregulated in both leaf and shoot tis-
sues. Three autonomous pathway genes, BnaC02g04790D,
BnaA06g29740D, and BnaC02g01940D, encoding protein
transducin/WD40 repeat-like superfamily protein (FY),
arginine methyltransferase 4A (PRMT4A), and ubiquitin-
specific protease 13 (UBP13), respectively, were differen-
tially expressed between the early- and late-flowering
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lines. These two genes function in chromatin modifi-
cation and protein stability control, respectively. Of
the photoperiod pathway genes, BnaA06g16420D and
BnaA06g30130D, BnaA06g16420D was downregulated
in leaves, whereas BnaA06¢g30130D was upregulated
in leaves, with no mRNA detected in shoot tissues
(Table 5).

Verification of transcriptome sequencing data

To confirm the transcriptome data and to explore
selected FTR genes that were differentially expressed be-
tween the early- and late-flowering bulks, we subjected
47 randomly selected genes to qRT-PCR analysis, includ-
ing TF genes, hormone-related genes, and candidate
genes in QTL regions (PRR7 and FY) (Additional file 2:
Table S2). We detected high correlations (R*=0.853
and 0.861 in leaf and shoot tissues, respectively)
between the qRT-PCR and RNA-Seq data (Fig. 8 and
Additional file 10: Figure S1), suggesting that the
RNA-Seq data are reliable.

Discussion

Like many other important traits, flowering time is con-
ditioned by the interaction of genes, endogenous signals,
and environmental factors [2, 5]. In the present study,
we investigated the variation in flowering time among
an RIL population in six environments and in leaf and
shoot tissues from early- and late-flowering lines via

RNA-Seq analysis.
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Table 5 Seven differentially expressed FTR genes in QTL regions
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Gene ID TAIR ID Gene L-log2 Fold S-log2 Fold Regulator  Pathway Conditions
change change

BnaA06g30130D AT5G48560 CIB2 1.310 - Pos. Circadian Clock/ LD [no data under
Photoperiod SD]

BnaA06g16420D AT5G63470 NF-YC4 -1.778 - Pos. Circadian Clock/ LD only
Photoperiod

BnaA06g29740D AT5G49020 PRMT4A —2.060 - Pos. Autonomous pathway SD and LD

BnaA06g24000D AT5G65050 MAF2, AGL31 - -2916 Neg. Ambient temperature SD and LD

BnaC02g04790D AT5G13480 FY 1.338 2312 Pos. Autonomous pathway SD and LD

BnaC02g03470D AT5G02810 PRR7 2471 3.165 Pos. Circadian Clock/ LD only
Photoperiod

BnaC02g01940D AT5G06600 UBP13 0.734 1.198 Neg. Autonomous pathway SD and LD

L-log2 Fold change: fold changes in leaves early- and late-flowering bulks; S-log2 Fold change: fold changes in shoots between early- and late-flowering bulks;

SD short-day conditions, LD long-day conditions, Pos. positive, Neg. negative

In the current study, 23 significant QTLs were iden-
tified under at least two conditions (Fig. 3; Table 2), sug-
gesting that these are stable QTLs in our RIL population.
Four QTLs located on chromosome A02, A05, A10, and
C04 were identified under only one condition, suggesting
that these QTLs are environment-specific. Flowering time
QTLs located on chromosome A02, A03, A10, C02, and
C03 were previously identified in B. napus and B. rapa
populations [17, 34—37]. In addition, all of these regions
are homologous with the top of chromosome 5 in Arabi-
dopsis [38], a region harboring many flowering time genes
such as FLC [39], CO [40], LFY [41], and FY [42]. In B.
napus, nine homologs of FLC genes were detected [43].
BnCOs were identified on chromosome A02, A10, and
C02, whereas BuFYs were only detected on A02 and A03
[44]. In the current study, flowering time QTLs were

log2 Fold change (RNA-seq)

-5 R¥(shoot)=0.861

T T T T T T
-5 -3 -1 1 3 5

log2 Fold change (RT-qPCR)
Fig. 8 qRT-PCR validation of the expression patterns of 47 randomly

selected DEGs identified by transcriptome sequencing. Red and green
lines indicate regression lines for leaves and shoots, respectively

detected on all of the abovementioned regions except A03
and C03, and additional QTLs were identified on chromo-
some A05, A06, A07, A08, and CO04. Finally, two
QTLs located on A06 were detected in three environ-
ments, and 33 flowering time genes (e.g., CO, PRRY,
and AGL31, Fig. 7) were identified in 7,212,328-
21,686,640 (92.39-96.47 cM).

Differential expression of FTR genes regulates flowering
time in two contrasting bulks of RILs

In the present study, we detected important genes in-
volved in flowering time and explored the mechanisms
that regulate the flowering pathway in oilseed rape using
RNA-Seq technology. We subjected leaf and shoot
tissues from early- and late-flowering time lines at the
vegetative stage to RNA-Seq analysis. We performed
BLASTN analysis against the B. napus genome using
306 sequences of known FTR genes in Arabidopsis. We
identified 1172 rapeseed FTR genes, 105 of which were
differentially expressed between two contrasting bulks of
RILs. Most of genes encoding negative regulators of
flowering, such as BnFLC, BuLHY, and BuTIC, were
downregulated in the early- versus late-flowering lines,
with 35 of 51 negative regulatory genes downregulated.
In addition, 22 out of 46 genes encoding positive regula-
tors of flowering were upregulated in the early- versus
late-flowering lines. The expression patterns of these
genes were correlated with the corresponding pheno-
types. However, there were some exceptions. For
example, BnaC03g05900D and BnaA02¢g01670D, two
orthologous genes of FY, were downregulated in
early-flowering plants compared to late-flowering plants,
whereas another FY ortholog, BnaC02g04790D, was
upregulated in early-flowering plants and is located in a
major QTL region. These three genes are positive regu-
lators in the autonomous pathway, suggesting that this
pathway may be partially responsible for the differences
in flowering time between the two types of plants.
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CDF1 (CYCLING DOF FACTOR 1) negatively
regulates flowering time in Arabidopsis [45]. CDF1 sup-
presses the expression of CO, leading to the downregula-
tion of FT. The expression of FT is positively regulated
by GI (GIGANTEA) [46]. Overexpression of CDFI leads
to later flowering, whereas the downregulation of CDF1
(using RNAi technology) leads to early flowering under
LD conditions [45]. In the current study, we identified
BnaA08¢g19870D and BnaC03g42040D as orthologous
genes of CDF1. BnaA08g19870D was downregulated in
leaves, while BnaC03g42040D was upregulated both in
leaf and shoot tissues. These results suggest that the func-
tions of these genes differ from those in Arabidopsis.

Candidate genes involved in flowering time through four
major pathways

FT DEGs involved in four major flowering pathways, in-
cluding the circadian clock/photoperiod, autonomous,
hormone, and vernalization pathways were detected.
Photoperiod is an important environmental factor that
regulates flowering [47]. Genes in the circadian clock/
photoperiod pathway, including LHY, PRR, CIRCADIAN
CLOCK ASSOCIATED 1 (CCAI), CASEIN KINASE II
BETA SUBUNIT 4 (CKB4), CDF, COL, CALCIUM-DE-
PENDENT PROTEIN KINASE 33 (CPK33), AS, and GI
play critical roles as floral enhancers by regulating the
expression of CO [48, 49]. Although BnCOs were not
differentially expressed in the present study, most posi-
tive regulators in the circadian clock/photoperiod path-
way, such as PRR7, CPK33, and COLS were upregulated
in the early-flowering versus late-flowering lines,
whereas negative regulators such as LHY, CDFI, and
CDF2 were downregulated. We propose that the circa-
dian clock/photoperiod pathway is closely associated
with the differences in flowering time between two con-
trasting bulks of RILs. However, sampling time can sig-
nificantly influence gene expression involved in
clock-dependent processes. In this study, we sampled in
the morning, many genes such as CO and FT accumu-
lated in the evening could not identified as DEGs.

Like the circadian clock/photoperiod pathway, the ex-
pression of autonomous pathway-associated genes corre-
sponded with the differences in flowering time between
two contrasting bulks of RILs. Key genes involved in this
pathway, including FPA, FY, FLOWERING LOCUS D
(FLD), FLOWERING TIME CONTROL PROTEIN (FCA),
FVE, FLOWERING LOCUS KH DOMAIN (FLK), and
RELATIVE OF EARLY FLOWERING 6 (REF6), were pre-
viously characterized in Arabidopsis [50, 51]. All of the
proteins encoded by these genes promote flowering by
repressing FLC expression [52]. In the current study, we
identified 27 FT DEGs involved in the autonomous
pathway in oilseed rape, including FVE, LDL2, FY,
UBP13, EMFI, and AGL6. Notably, BnaC02g04790D, a
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homolog of FY located in the major QTL region on
chromosome C02, was upregulated in the early-flower-
ing versus late-flowering lines (Table 5).

The phytohormone gibberellin promotes flowering by
increasing the expression of SOCI [53]. Other critical
genes involved in the response to GA signaling include
GID1, GA, and DELLA [54]. In the current study, we
identified ten FT DEGs in B. napus, including eight
downregulated negative regulators of flowering. These
downregulated genes include two RGL3 genes encoding
DELLA proteins and five genes encoding GA2oxls,
which are involved in the catabolism of bioactive gibber-
ellins. Interestingly, the Arabidopsis ga2oxI single
mutant does not display an altered flowering-time
phenotype, but a quintuple ga2ox mutant, ga2ox1;2;3;4;6,
flowers early under both short-day (SD) and long-day
(LD) conditions [55].

Like the autonomous pathways, many genes involved
in the vernalization pathway promote flowering by
repressing the expression of FLC [56], as FLC suppresses
flowering, with the help of its activator FRI [57]. Several
FLC orthologs have been isolated and characterized in B.
rapa [22, 58], orange [59], and B. napus [60]. In the
present study, we detected four FTR DEGs in B. napus
involved in the vernalization pathway, including VRNI
and VIN3, encoding two components of the PRC2 com-
plex, WDR5A, encoding a component of the COMPASS
complex, and AGLI9. In detail, VRNI and VIN3, encod-
ing positive regulators of flowering time in the
vernalization pathway, were upregulated in shoot tissues
and leaves, respectively. AGL19, encoding a positive
regulator of the vernalization pathway, was downregu-
lated in shoot tissues, whereas WDRS5A, encoding a
negative regulator of this pathway, was upregulated in B.
napus. These results suggest that the vernalization path-
way may not be the main factor influencing the variation
in flowering time investigated in our study.

In addition to FLC, other key floral integrators include
SOCI1, LFY, and FT [61]. In the current study, positive
regulatory genes SOCI and FT were upregulated in both
shoot tissues and leaves, while FLC and LFY were
upregulated only in leaf and shoot tissues, respectively.
Moreover, the key positive floral integrator gene, LHY,
was downregulated in shoot tissues. Together, our
RNA-Seq analysis identified candidate genes involved in
flowering time variance in B. napus.

Integration of QTL mapping and RNA-Seq results

As mentioned above, we identified 3436 genes in QTL
regions, including 45 flowering time genes. We com-
bined QTL mapping data with expression analysis of
these genes via RNA-Seq. Seven FTR genes were differ-
entially expressed in leaf or shoot tissues between two
contrasting bulks of RILs (Table 5). Positive regulatory
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genes BnaC02g04790D and BnaC02g03470D, which are
involved in the autonomous pathway and the circadian
clock/photoperiod, respectively, were upregulated in
both leaf and shoot tissues and are located in major
QTLs on chromosome C02. BnaC02g04790D encodes
an mRNA processing factor that regulates FCA expres-
sion. In addition, the expression of FLC is higher in fy
single mutants than in wild type, leading to a
late-flowering phenotype under both SD and LD condi-
tions. Overexpression of FY in fy complements the mu-
tant phenotype, leading to a normal flowering-time
phenotype [42, 62, 63]. BnaC02¢03470D encodes a com-
ponent of the circadian clock in the PRR family. Func-
tional analysis showed that the prr7 single mutant is late
flowering under LD conditions only [64, 65]. PRR7, a
transcriptional repressor of CCAI and LHY, is involved
in both positive and negative feedback loops of the
circadian clock, thereby influencing flowering time [66].
Another positive regulator of flowering time,
BnaA06¢g30130D (CIB2), which is involved in the circa-
dian clock/photoperiod pathway, was upregulated in B.
napus leaves in the current study. CIB2 is a bHLH TF
that positively regulates the expression of FT [67].
Indeed, overexpression of CIB2 leads to early flowering
under LD [68]. BnaA06g24000D encodes MADS
AFFECTING FLOWERING 2 (MAF2, also known as
AGAMOUS-LIKE 31 [AGL31]), a negative regulator in
the ambient temperature pathway. Overexpression of
MAF?2 leads to late flowering under both SD and LD
conditions, and the maf2 single mutant has an
early-flowering phenotype under SD and LD conditions
[69-72]. MAF2 suppresses flowering in response to
short cold periods [70]. BnaA06¢g16420D and
BnaA06¢29740D, encoding positive regulators of
flowering, were downregulated in leaves, whereas
BnaC02g01940D, encoding a negative regulator of
flowering, was upregulated in both leaf and shoot tis-
sues. Together, these findings highlight the complexity
of the regulatory mechanisms controlling flowering time
in rapeseed.

Conclusion

In this study, we detected 27 QTLs distributed on eight
chromosomes among six environments, including one
major QTL on chromosome C02 that explained 11-25%
of the phenotypic variation and was stably detected in
all six environments. RNA-Seq analysis revealed 105
flowering time-related differentially expressed genes
(DEGs) that play roles in the circadian clock/photo-
period, autonomous pathway, and hormone and
vernalization pathways. We focused on DEGs related to
the regulation of flowering time, especially DEGs in
QTL regions. We identified 45 flowering time-related
genes in these QTL regions, eight of which are DEGs,
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including key flowering time genes PSEUDO RESPONSE
REGULATOR 7 (PRR?7) and FY (located in a major QTL
region on C02). These findings provide insights into the
genetic architecture of flowering time in B. napus.
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