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Abstract

Background: G-protein coupled receptors (GPCRs) are ancient, ubiquitous, constitute the largest family of
transducing cell surface proteins, and are integral to cell communication via an array of ligands/neuropeptides. Molt
inhibiting hormone (MIH) is a key neuropeptide that controls growth and reproduction in crustaceans by regulating
the molt cycle. It inhibits ecdysone biosynthesis by a pair of endocrine glands (Y-organs; YOs) through binding a
yet uncharacterized GPCR, which triggers a signalling cascade, leading to inhibition of the ecdysis sequence. When
MIH release stops, ecdysone is synthesized and released to the hemolymph. A peak in ecdysone ftiter is followed by
a molting event. A transcriptome of the blackback land crab Gecarcinus lateralis YOs across molt was utilized in this
study to curate the list of GPCRs and their expression in order to better assess which GPCRs are involved in the
molt process.

Results: Ninety-nine G. lateralis putative GPCRs were obtained by screening the YO transcriptome against the Pfam
database. Phylogenetic analysis classified 49 as class A (Rhodopsin-like receptor), 35 as class B (Secretin receptor),
and 9 as class C (metabotropic glutamate). Further phylogenetic analysis of class A GPCRs identified neuropeptide
GPCRs, including those for Allatostatin A, Allatostatin B, Bursicon, CCHamide, FMRFamide, Proctolin, Corazonin,
Relaxin, and the biogenic amine Serotonin. Three GPCRs clustered with recently identified putative CHH receptors
(CHHRs), and differential expression over the molt cycle suggests that they are associated with ecdysteroidogenesis
regulation. Two putative Corazonin receptors showed much higher expression in the YOs compared with all other
GPCRs, suggesting an important role in molt regulation.

Conclusions: Molting requires an orchestrated regulation of YO ecdysteroid synthesis by multiple neuropeptides. In
this study, we curated a comprehensive list of GPCRs expressed in the YO and followed their expression across the
molt cycle. Three putative CHH receptors were identified and could include an MIH receptor whose activation
negatively regulates molting. Orthologs of receptors that were found to be involved in molt regulation in insects
were also identified, including LGR3 and Corazonin receptor, the latter of which was expressed at much higher
level than all other receptors, suggesting a key role in YO regulation.
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Background

Crustaceans are a diverse subphylum of arthropods com-
prising of close to 67,000 species, classified into six clas-
ses, which together with their derived insects, comprise
the pancrustacea superphylum clade [1]. Malacostraca is
the most diverse and species rich class of crustaceans,
including the decapod crustaceans, which comprise the
more familiar groups of species, such as crabs, cray-
fishes, lobsters, and shrimps. Crustaceans are adapted to
a wide range of conditions, which explains their wide
distribution across many ecological niches. Apart from
their ecological significance, decapod crustaceans are
highly prized in fisheries and aquaculture. In 2015,
nearly 7.4 billion tonnes of crustaceans were cultured
worldwide, with nearly 90% of total production attrib-
uted to coastal regions of Asian countries [2]. Addition-
ally, decapod crustaceans are listed among the worst
invasive species globally [3-5]. This great importance
necessitates a better understanding of key biological pro-
cesses of crustaceans in order to address key bottlenecks
in the fishery and aquaculture industries to enable it to
meet the ever-growing demand in quality protein [6], as
well as to devise species-specific treatments for invasive
species. One potential application is monosex biotech-
nology to minimize the species’ invasive potential [7].
Growth control is another area of active research.

In crustaceans, like other arthropods, locomotion is fa-
cilitated by a rigid exoskeleton. Chitin, the second most
abundant carbohydrate in nature following cellulose, is
the major component of the exoskeleton, providing a
scaffold for cuticular proteins that form links between
the chitin fibers, as well as stabilize deposition of min-
erals that harden the cuticle. The skeletal muscles attach
internally to the exoskeleton and contract to enable limb
movements [8]. In some crustacean species, such as
crabs, the rigid, highly calcified exoskeleton, provides
protection against predators [9]. Unlike holometabolous
insects (where following larval development there is a
complete metamorphic transition through from pupae
to adult, for example: flies, mosquitos etc.), crustaceans
continually grow after they metamorphose into the ju-
venile stage. In order to grow and develop following
metamorphosis, they must shed their old exoskeleton
and produce a new larger one. In this process termed
molting (or ecdysis) crustaceans synchronously form a
new flexible exoskeleton under the existing one, absorb
the minerals from the old exoskeleton, and then emerge
from the old exoskeleton and harden the new one [10].
An advantage of continual growth is that crustaceans
can increase in size and also regenerate lost limbs.

The molt cycle involves well-defined stages including
intermolt, premolt, ecdysis, and postmolt. The longest
stage is intermolt, when the animal accumulates organic
compounds and stores the energy required for
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reproduction and molting. In premolt, the epidermal
layer enlarges and starts to separate from the old exo-
skeleton. It then synthesizes the outer layers of the new
exoskeleton, while degrading the inner layers of the old
exoskeleton. Ecdysis then takes place, by which the ani-
mal emerges from its old exoskeleton. The postmolt
stage begins by the rapid uptake of water and minerals
(and in some species, minerals are also retrieved from
internal storages that dynamically fill prior to ecdysis as
pouches outside the stomach, called gastrolithes) and
harden the new exoskeleton to complete the molt cycle.
During this stage, the animals start to consume food
[11]. Molting in arthropods is triggered by a peak in the
hemolymph level of derivatives of the steroid hormone
ecdysone, which is synthesized in a pair of endocrine
glands, known as the Y-organs (YOs), located bilaterally
in the cephalothorax. The YOs ecdysteroid production
capacity varies over the molt cycle; it is highest in pre-
molt and lowest in postmolt (see review [10]).

In decapod crustaceans, ecdysone is secreted from the
YOs into the hemolymph and is carried to target tissues,
where it is hydroxylated into the active molt hormone:
20-hydroxyecdysone (20HE) [12-16]. 20HE binds to the
ecdysteroid receptor, which then initiates a signaling cas-
cade of transcription factors that alter the molecular
program for molting and metamorphosis [17-20]. The
synthesis of ecdysteroids by the YO is inhibited by a
neuropeptide known as the molt-inhibiting hormone
(MIH), produced predominantly by the X-organ (XO)
[21, 22]. The XOs are located bilaterally in the eyestalks
and are responsible for producing a suite of endocrine
factors conveyed to the nearby sinus gland (SG) for stor-
age and regulated release to the hemolymph. These fac-
tors include MIH, crustacean hyperglycemic hormone
(CHH), vitellogenesis-inhibiting hormone (VIH), man-
dibular organ-inhibiting hormone (MOIH), and ion
transport peptide (ITP) [23]. From a practical point of
view, most of the decapod crustaceans produced through
aquaculture in farms globally require removal of the eye-
stalks of broodstock females in order to induce spawn-
ing in captivity [24—26]. A better understanding of the
mechanism which regulates each process can lead to
specific treatments that avoid the use of such an extreme
and labor-intensive method.

Our model organism is arguably the most well stud-
ied decapod crustacean in the context of molting.
One of the earliest scientific studies on Gecarci-
nus lateralis was published in 1952 by Bliss and
Welsh [27], describing the XO-SG ultrastructure. Ex-
perimental studies by Skinner and later by Chang and
Mykles have contributed to a better understanding of
the hormonal regulation of molting [10, 11], as well
as the development of tools to investigate the molting
process. YO assays [28-30] and transcriptomics [31—
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34] have been used to investigate the signaling path-
ways controlling YO ecdysteroidogenesis. However,
one mystery remains, which is the identity of the
MIH receptor. Although CHH and MIH share a simi-
lar function of inhibiting ecdysteridogenesis by the
YO, the signaling pathways of these two neuropep-
tides are distinct. A membrane guanylyl cyclase
(GC-1I) is considered as the receptor activated by
CHH, resulting in immediate increase of the intracel-
lular messenger guanosine 3', 5' cyclic monophosphate
(cGMP) level. As proposed, an unidentified receptor
activated by MIH temporarily increases the cAMP
level followed by upregulation of cGMP (see [10, 35]
for reviews). This suggests that the MIH receptor is
not a GC-IL. In 2009, Zmora et al. performed binding
assays using radio-labeled MIH with YO membranes
collected from blue crab juveniles in intermolt stage
and hepatopancreas membrane of mature vitellogenic
females. MIH was found to bind to both YO and hep-
atopancreas membranes, but with far higher affinity
to the YO, suggesting that the main binding site of
MIH is the YO membrane [36].

G-protein coupled receptors (GPCRs) are ancient, ubiqui-
tous, constitute the largest gene family of transducing cell
surface proteins, and are integral to cell communication
[37-39]. All members of the GPCR gene family contain a
domain of seven transmembrane a-helices with three extra-
cellular loops and three intracellular loops [40]. The GPCR
gene family is subdivided into three main classes depending
on the pharmacological nature of their ligands and sequence
similarity [41]. These are rhodopsin-like receptors (class A),
secretin-like receptors (class B), and metabotropic-glutama-
te-receptor-like (class C), which represent about 89%, 7%,
and 4%, respectively [42], of the known GPCRs [42]. In in-
sects, most of the neuropeptide-activated receptors are pre-
dominantly rhodopsin-like receptors and some are
secretin-like receptors [43]. GPCR sequences within these
families can share less than 25% identity between species
[44], making it difficult to annotate newly identified candi-
date receptors. More than 1,000 GPCRs have been charac-
terized in Caenorhabditis elegans [45], while the number of
GPCRs is over 200 in Drosophila melanogaster [46], adding
another level of complexity presented by the vast variation of
GPCR number across ecdysozoans. In crustaceans, there are
many efforts to deorphanize neuropeptide receptors, but
there are only a few species where a comprehensive list of
GPCRs have been identified. Recently, advances in sequen-
cing technologies have facilitated transcriptome-based anno-
tation. In 2014, Nagai et al. characterized two GPCRs,
BNGR-A2 and A34, as ITP receptors, and A24 as an
ITP-like receptor (member of CHHR family) in the silk-
month Bombyx mori, using in vitro binding assays with ITP
peptides and 30 GPCRs [47]. Using these ITP and ITP-like
receptors from B. mori as references for phylogenetic study,

Page 3 of 20

Veenstra identified one contig (Pc-GPCRAY) as an ITP-like
receptor based on clustering with BNGR-A24 and three re-
ceptors as putative ITP receptors (Pc-GPCRA52,
Pc-GPCRA53, Pc-GPCRA63) in the red swamp crayfish Pro-
cambarus clarkii, based on clustering with BNGR-A34 [48].
A recent study in the eastern spiny lobster Sagmariasus ver-
reauxi has also proposed two putative ITP receptors based
on phylogenetic alignment to BNGR-A34 and Pc-GPCRA53
[49]. These studies, together with the high similarity shown
between insect and decapod neuropeptidomes [50, 51], make
it possible to predict the receptors for decapod neuropep-
tides based on those deorphanized in insects. This study cu-
rated a comprehensive list of GPCRs in the G. lateralis YO
transcriptome across the molt cycle.

Results and discussion

GPCRs play a central role in cell signaling as receptors
for several transmitters, mediators, hormones, and neu-
ropeptides. In crustaceans, most of the neuropeptides
with known receptors act through GPCRs. Although
many dozens of neuropeptides have been identified in
hundreds of crustacean species over the last decade [48,
52, 53], information about their receptors (GPCRs) in
terms of sequence, structure, and function, is very lim-
ited. Recent studies on decapod crustaceans formed a
foundation for the future discovery of GPCRs. In 2015,
Veenstra mined publically-available databases of P. clar-
kii and found several neuropeptide receptors, including
those for Ast C, LGR, PDF, DH31, and DH44 [48]. In
2016, Buckley et al computationally identified 86
GPCRs in the eastern spiny lobster S. verreauxi, includ-
ing important neuropeptide receptors [49]. In this study,
transcriptomic analysis identified 99 GPCRs in the
G. lateralis YO. Of these, 71 were annotated either by
phylogenetic or domain analysis, which include Ast re-
ceptor, Crz receptor, CHHamide receptor, and FMRFa-
mide receptor. These outcomes are comparable to
previous studies in Decapoda [48, 49]. N-glycosylation
motif arrangement analysis of selected receptors was
used to confirm the annotation.

In silico transcriptomic analysis identified 299 se-
quences with seven TM (Table 1). Ninety-nine of the
299 sequences, have the seven TM domain characteristic
of GPCRs. Among them, 49 proteins were identified as
Rhodopsin-like receptors (designated as GeclatGP-
CR_A1 to 45). Phylogenetic analysis and blast search
using annotated GPCRs from other arthropods enabled
annotation of 37 Rhodopsin-like receptors (class A
GPCRs; Additional files 1, 2 and Table 2). Thirty-five
GPCRs were classified as secretin-like (class B) GPCRs.
Of the 35 class B receptors, one was annotated as diur-
etic hormone 44 (DH44) receptor, one diuretic hormone
31 (DH31) receptor, one parathyroid hormone (PTH) re-
ceptor, and three were annotated as putative pigment
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Table 1 The numbers of sequences comprising each of the Pfam accessions
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Domain name

Pfam accession

Description of domain

Number of unique predicted
peptide sequences

7tm_1 PF00001.16 7 transmembrane receptor (rhodopsin family) 108
7tm_2 PF00002.19 7 transmembrane receptor (Secretin family) 54
7tm_3 PF00003.17 7 transmembrane sweet-taste receptor of 3 GCPR 17
7tm_7 PF08395.7 7tm Chemosensory receptor 1
7TM_GPCR_Srsx PF103204 Serpentine type 7TM GPCR chemoreceptor Srsx 31
7TM_GPCR_Srv PF103234 Serpentine type 7TM GPCR chemoreceptor Srv 11
7TM_GPCR_Srw PF103244 Serpentine type 7TM GPCR chemoreceptor Srw 15
7TM_GPCR_Srx PF103284 Serpentine type 7TM GPCR chemoreceptor Srx 16
ABC_tran PF00005.22 ABC transporter 159
ABC_tran_2 PF12848.2 ABC transporter 9
ABC_transp_aux PF09822.4 ABC-type uncharacterized transport system 1
Frizzled PFO1534.12 Frizzled/Smoothened family membrane region 10
Na_Ca_ex PF01699.19 Sodium/calcium exchanger protein 7
GpcrRhopsn4 PF101924 Rhodopsin-like GPCR transmembrane domain 4

dispersing factor (PDF) receptors. Nine class C and six
class F receptors were inferred based on BlastP results
and the Frizzled domain in class F.

A heat-map profile of GPCR expression was generated
based on reads mapping to the transcriptome database
using a normalized read count (RPKM) [32] in five dif-
ferent molt stages. The RPKM of most GPCRs showed
down-regulation at the postmolt stage (67% of the
GPCRs; Fig. 1).

It is noteworthy that one GPCR (A37) showed specific
expression at the postmolt stage, and one putative cora-
zonin receptor (A6) was not expressed in the intermolt
and early premolt stages, but was expressed in the mid
and late premolt stages with higher expression in the
postmolt stage. All three predicted CHHRs (A9, Al0,
A12) were expressed throughout the molt cycle except
in the postmolt stage. GPCR families known to be in-
volved with molting in arthropods and those that show
differential expression in the present study are discussed
in further detail below.

Rhodopsin-like receptors (class A)

Allatostatin receptors

Allatostatins (ASTs) are pleiotropic neuropeptides that
function as inhibitors of juvenile hormone (JH) produc-
tion. JH is synthesized in the corpora allata in insects,
while its crustacean active analogous compound (the JH
precursor, methyl farnesoate; MF) is synthesized in the
mandibular organ [54]. JH/MF maintains the appropriate
stage and size and prevents metamorphosis [55]. Three
types of ASTs have been identified in insects and charac-
terized based on their conserved C-terminal sequences.
The first class is FGLamide (Ast A), first discovered in

cockroaches, which includes the conserved C-terminal
sequence F-G-Lamide (other cases Y/F-X-F-G-L/Iamide)
[56]. The second family of ASTs was isolated in crickets.
These are C-terminally amidated peptides with trypto-
phan in the second and ninth positions, and are desig-
nated as the W(X)6Wamide or B-type ASTs [57, 58].
The third family of ASTs was first isolated in 1991 from
the brain of the lepidopteran Manduca sexta [59]. It is a
single 15 amino acid peptide with the nonamidated
C-terminal pentapeptide P-I-S-C-F (Ast C). All three
classes of peptides have since been identified in crusta-
ceans [60-62].

Ast A regulates metabolism, feeding homeostasis, and en-
ergy mobilization by controlling release of glucagon-related
adipokinetic hormone (AKH) and Drosophila insulin-like
peptides (DILPs) [63]. One putative Ast A receptor
(AstA_R; GI-GPCRA1) was identified through phylogenetic
analysis. G. lateralis Ast A receptor (AstA_R) contains
three N-glycosylation motifs at the N-terminus and two
N-glycosylation motifs at the C-terminus, while P. clakii
AstA_R has three N-glycosylation motifs at the N-terminus
and one at the C-terminus (Fig. 2a). In G.lateralis, the
AstA_R was up-regulated during intermolt and premolt
stages, and was not expressed at the postmolt stage, which
is consistent with the role of Ast A in regulating metabol-
ism and energy.

Ast B is known for its myoinhibitory role and is there-
fore also referred to as myoinhibitory peptide (MIP)
[64]. In D. melanogaster, Ast B (also called sex peptide
in insects) blocks the receptivity of copulated females
and increases food uptake after copulation [65]. Ast B is
also known as a signaling molecule for settlement behav-
ior in Platynereis larvae [66]. One putative Ast B
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Table 2 List of GPCR class A (Rhodopsin-like receptor)

D Predicted function Predicted ligand
GI_GPCR_A1 Allatostatin A receptor Allatostatin A
GI_GPCR_A2 TRH receptor TRH
GI_GPCR_A3 ETH receptor ETH
GI_GPCR_A4 GPA2/GPB5 receptor GPA2/GPB5
GI_GPCR_A4b GPA2/GPB5 receptor GPA2/GPB5
GI_GPCR_A5 Allatostatin B receptor Allatostatin B
GI_GPCR_A5b Allatostatin C receptor Allatostatin C
GI_GPCR_A6 Corazonin receptor Corazonin
GI_GPCR_A7 Corazonin receptor Corazonin
GI_GPCR_A8 CCHamide receptor CCHamide
GI_GPCR_A8b CCHamide receptor CCHamide
GI_GPCR_A9 CHH-like receptor CHH family
GI_GPCR_A10 CHH-like receptor CHH family
Gl_GPCR_A11 FMRFamide receptor FMRFamide
GI_GPCR_A12 CHH-like receptor CHH family
GI_GPCR_A13 Proctolin receptor Proctolin
Gl_GPCR_A14 LGR-C1 receptor Unknown
GI_GPCR_A14b LGR-C2 receptor Unknown
GI_GPCR_A15 Unknown receptor Unknown
Gl_GPCR_A16 HPR1 receptor Unknown
GI_GPCR_A17 HPR1 receptor Unknown
GI_GPCR_A18 HPR1 receptor Unknown
GI_GPCR_A19 Bursicon receptor Bursicon
GI_GPCR_A20 Unknown receptor Unknown
GI_GPCR_A21 TIE receptor Unknown
GI_GPCR_A22 Unknown receptor Unknown
GI_GPCR_A23 Moody receptor Unknown
GI_GPCR_A24 Unknown receptor Unknown
GI_GPCR_A25 Unknown receptor Unknown
GI_GPCR_A26 sNPF receptor sNPF
GI_GPCR_A27 Unknown receptor Unknown
Gl_GPCR_A28 Unknown receptor Unknown
GI_GPCR_A29 Unknown receptor Unknown
GI_GPCR_A30 Serotonin receptor Serotonin
Gl_GPCR_A31 Unknown receptor Unknown
GI_GPCR_A32 Serotonin receptor Serotonin
GI_GPCR_A33 Adenosine receptor Adenosine
GI_GPCR_A34 Octopamine receptor Octopamine
GI_GPCR_A35 Prostaglandin receptor Prostaglandin
GI_GPCR_A36 Prostaglandin receptor Prostaglandin
GI_GPCR_A37 Prostaglandin receptor Prostaglandin
GI_GPCR_A38 Prostaglandin receptor Prostaglandin
GI_GPCR_A39 Peropsin receptor Peropsin
GI_GPCR_A40 FMRFamide receptor FMRFamide
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Table 2 List of GPCR class A (Rhodopsin-like receptor)

(Continued)

D Predicted function Predicted ligand
GI_GPCR_A41 Unknown receptor Unknown
GI_GPCR_A42 Unknown receptor Unknown
GI_GPCR_A43 Unknown receptor Unknown
GI_GPCR_A44 HPR1 receptor Unknown
GI_GPCR_A45 CCAP receptor CCAP

receptor (AstB_R; GI-GPCRA5) was identified, which
clustered with AstB_R identified in P. clarkii (Fig. 2b).
GI-GPCRAS5 showed the same RPKM expression trend
as most other receptors, with the highest level in the
intermolt stage and gradually decreasing in expression
in premolt stages, with no expression at the postmolt
stage (Fig. 3). This expression pattern is opposite to
that found in holometabolous insects [11] (also based
on expression data in D. melanogaster as found in Fly-
base; Sex peptide receptor (CG16752, FBgn0029768)),
where AstB_R expression increases towards the molt
and persists in the postmolt, when the animal is not
feeding, suggesting a different role for Ast B in crusta-
ceans. Another plausible explanation is that in this
study we focused on the expression of AstB_R in the
YOs, the crustacean analog of the prothoracic gland
(PGQ) in insects, while the AstB_R temporal expression
pattern in insects was examined in whole animals.

Ast C or PISCF-type Ast was originally described as
an unknown neuropeptide in M. sexta [67]. Its analog
was then identified in several insect species, e.g. D. mel-
anogaster [68], Tribolium castaneum [69], and later in
the decapods P. clarkii [48] and S. vereauxi [49]. Ast C
inhibits JH biosynthesis in M. sexta, Helicoverpa zea and
Aedes aegypti [70]. It also functions as an immunosup-
pressive factor that prevents immunopathology or re-
duces unnecessary metabolic costs following microbial
exposure [71]. One putative Ast C receptor (AstC_R;
Gl_GPCRAS5D) was predicted through phylogenetic ana-
lysis (Fig. 4). The RPKM expression of Gl-GPCRA5b
remained at a low level throughout the molt cycle, and
could not be detected at early premolt, mid premolt, and
postmolt stages.

Corazonin receptors

Corazonin (Crz) was initially discovered as a strong car-
dioaccelerator in the American cockroach Periplaneta
americana [72] and later in other insect species [73]. It
is also found in decapod crustaceans [74-76]. Crz has
various functions in different species. In locusts, Crz
participates in the pigmentation process [77], while it is
also recognized as a cardioaccelerator in the American
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Fig. 1 Gene expression (RPKM) heat map of GPCRs in different molt stages. Clustered by gene expression profile in a transcriptome dataset based
on 5 different stages. Scores are coloured on a log2 scale with the red maximum and white minimum. Putative GPCR receptors are predicted

based on a phylogenetic study and domain analysis
A

Frizzled receptor
Frizzled receptor
Frizzled receptor
Frizzled receptor
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cockroach [78]. In addition, Crz indirectly affects ecdysis
in M. sexta [79], serving as an ecdysis initiator [80].
Although Crz receptors are well conserved in amino
acid sequence across species, a number of isoforms have
been discovered in insects, crustaceans, and ticks [78].
Two putative Crz receptors were predicted in our
study. GI-GPCRA6 and GI-GPCRA?7 are clustered into
the Crz receptor clade, sharing similar amino acid distri-
bution in the seven TM domain with three
N-glycosylation motifs at the N-terminus and one
N-glycosylation motif at the C-terminus (Fig. 5a). Motif
analysis indicates that both Crz receptors have identical
amino acid sequences in the transmembrane domain,
and a pairwise alignment shows high similarity in their

sequences (72%). This suggests that both receptors are
closely-related isoforms. GPCRA6 (Crz_R1) and A7
(Crz_R2) showed much higher expression in the YO
(more than 10 times), compared with all other putative
GPCRs. The expression pattern of these two putative re-
ceptors showed different trends. Crz_R1 showed no ex-
pression in the intermolt and early premolt stages,
peaking at the postmolt stage. This expression suggests
a role of Crz_R1 in postmolt. This is consistent with
Alexander et al. (2017) who report that, in C. maenas,
Crz_R1 (C. maenas clustered to GI_GPCRAG6 (Fig.. 5a))
is highly expressed in the YO, but it has little effect
on ecdysteroid biosynthesis, except a modest stimulation
in early postmolt [76]. While Crz_R1 peaked in
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molt cycle (P < 0.05 and FDR < 0.05, highlighted in green in Additional file 2). Abbreviations: IM, intermolt stage; EP, early premolt stage; MP, mid
premolt stage; LP, late premolt stage; and PM, postmolt stage. Significance level is marked as: * = P < 5E%%; ** = p < 5E% #** = p < 5g 00

expression in the postmolt, Crz_R2 showed high expres-
sion in intermolt, peaked in early premolt, and decreased
towards the postmolt stage (Fig. 5b). Crz initiates
ecdysis-triggering hormone (ETH) production in ‘inka’
cells in insects. ETH, in turn, triggers a signal cascade
that leads to ecdysis. The elevated expression of the Crz
receptors in the YOs reflects the key role of Crz recep-
tors in molt regulation. Further studies are warranted to
clarify the function of Crz R2 in relation to the molt
cycle in crustaceans.

CCHamide receptor

CCHamide is an invertebrate neuropeptide that was ini-
tially designated as ‘synthetic peptide, CCM’ [81]. Roller
and colleagues assigned it with the new name CCHa-
mide (CCHa) based on two conserved cysteines and an
amidated histidine residue at the C terminus [82]. A
comprehensive study found two CCHamide neuropep-
tides (CCHamide-1, CCHamide-2) in eleven insect spe-
cies [53]. In D. melanogaster, CCHamide-2 is mainly
located in endocrine cells in the gut, where the cells
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terrestris, Cq = Culex quinquefasciatus, Cs= Callinectes sapidus, Dm= Drosophila melanogaster, Dp= Daphnia pulex, Es = Eriochier sinensis, Gl= Gecarcinus
lateralis, Ha = Homarus americanus, Haa = Hasarius adansoni, Lp = Limulus polyphemus, Lv = Litopenaeus vannamei, Mr = Macrobrachium rosenbergii, NI
= Nilaparvata lugens, Nv = Nephrops norvegicus, Ob = Ooceraea biroi, Pa = Periplaneta americana, Pc= Procambarus clarkia, Pm = Penaeus monodon, Px

= Plutella xylostella, Sm = Strigamia maritima, Sp = Scylla paramosain, Sv= Samariasus verreauxi, Tc= Tribolium castaneum, Tu= Tetranychus urticae

sense the quality of food and signal for the transport of
CCHamide-2 to the brain, where it binds to a
CCHamide-2 receptor and alters feeding behavior [83].
Two putative CCHamide receptors were identified
(CCH_RI1; GI-GPCRAS, and CHH_R2; GI-GPCRAS8D),
which were clustered with P. clarkii CCHamide receptor
in the phylogenetic analysis (Fig. 6a). CCH_R2 contained
a partial sequence with an incomplete 7-TM domain.
Comparison of the 7-TM domain distribution across the
membrane between CCH_R1 and CCH_R2 showed one
N-glycosylation motif in common at the second extra-
cellular loop of both CCHRs. CCH_R1 showed high ex-
pression in all four molt stages except postmolt (Fig. 3).
The rapid increase from the intermolt stage to early pre-
molt stage, followed by a drop in expression at the mid

and late premolt stages, and no expression at the post-
molt stage also implicates CCHamide receptor in early
premolt. CCH_R2 was expressed at low levels from the
intermolt to late premolt stage, and peaked in expression
at the postmolt stage (Fig. 3). The SEM of RPKM ex-
pression at postmolt stage of CCH_R2 was relatively
high because of high variation between replicates. The
great difference in RPKM expression between postmolt
stage to other stages suggests an important role in the
postmolt stage.

Crustacean cardioactive peptide receptors

Crustacean cardioactive peptide (CCAP) is produced in
the pericardial organ of the shore crab Carcinus maenas,
where it accelerates heart contraction [84]. It was later
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found in the pericardial organ of Homarus americanus
and Cancer productus [85, 86]. CCAP also plays a role
in stress response and biosynthesis adaptation in deca-
pod crustaceans [87]. In Macrobrachium nipponense,
CCAP is among six key neuropeptides found to be in-
volved in reproduction regulation [88]. Although the
specific name of CCAP applies to crustaceans, it also
stimulates the heartbeat in insect species, such as P.
americana, D. melanogaster, Baculum extradentatum,
and Locusta migratoria [89]. CCAP also functions in

ecdysis in several insect species. CCAP initiates the ec-
dysis motor program in M. sexta [90] and regulates tim-
ing of ecdysis behavior in D. melanogater [91]. One
putative CCAP receptor (CCAP_R) was identified that
clusters with P. clarkii CCAP_R in the phylogenetic tree
(Fig. 4). RPKM expression analysis showed a similar ex-
pression to that of other receptors, with low expression
at the intermolt stage and higher expression throughout
the premolt stages, followed by no expression at the
postmolt stage (Fig. 3).
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CHH/CHH-like receptor

MIH is a neuropeptide that controls molting in deca-
pod crustaceans. The identification of its receptor has
been the focus of crustacean endocrinological research
for decades. In 2014, Nagai et al. identified two putative
GPCRs, BNGR-A2 and A34, as ITP receptors, and A24
as an ITP-like receptor (member of CHHR family) in
the silk moth B. mori. This led to the identification of
CHH-like family receptors in crustaceans. Veenstra
identified three CHH-like receptors clustered with
BNGR-34 in P. clarkii, and two putative CHH-like re-
ceptors have also been found in S. verreauxi [46].

Three putative GPCRs (GI-GPCRA9, GI-GPCRA10,
Gl-GPCRA12) were identified as CHH-like receptors,
as these sequences clustered into the CHHR clade
(Fig. 7a). Further analysis of the transmembrane do-
mains of these three proteins with TMHMM indi-
cated that GI-GPCRA9 and GI-GPCRA10 contain a
complete 7-TM domain, while GI-GPCRA10 contains
6 transmembrane helices (data not shown). This
could be explained by incomplete recovery of the se-
quence from the assembled contigs. GI-GPCRA9 and
GIl-GPCRA10 were expressed in all molt stages, while
the expression of GI-GPCRA12 decreased in late pre-
molt and postmolt stages. Two CHHRs (Gl_GPCRA9
and GI_GPCRA12) were examined using RT-PCR
expressed in the YOs. Notably, both receptors were
expressed not only in YOs, but they were also
expressed in other tissues (Fig. 7b). Zmora et al. con-
ducted MIH binding assays in the blue swimmer crab
Callinectes sapidus [36]. This study showed that MIH
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bound predominantly to membranes extracted from
the YOs but to a lesser extent also to membranes ex-
tracted from the hepatopancreas [36]. Based on this
result, the spatial expression pattern of the putative
CHHRs identified in this study cannot determine
which receptor might be binding MIH and therefore
receptor activation assays are required.

Ecdysis-triggering hormone receptors

Ecdysteroids are responsible for initiating the molting
process, and are synthesised and released from the
PGs in insects or from the YOs in crustaceans [10].
In insects, ecdysteroids trigger the production of ETH
in ‘inka’ cells, a specialized group of endocrine cells
scattered across the epithelial cells of the insect tra-
cheae [92]. ETH production causes a surge in Eclo-
sion Hormone (EH) secretion, which leads to the
release of CCAP and upregulation of cGMP [93].
ETH travels to the central nervous system (CNS)
where it stimulates the sensitivity of the CNS to ETH
by promoting the expression of the ETH receptor
(ETHR). In M. sexta, two alternatively spliced ETHRs
(ETHR-A and ETHR-B) are encoded by ethr gene and
expressed in discrete central neurons [94]. Previous
studies indicated ETH is a key regulator that initiates
ecdysis in insects [reviewed in [95]]. In D. melanoga-
ter, the eth gene encodes two neuropeptides desig-
nated ETH1 and ETH2. Injection of ETHI into
pharate pupae strongly induces proecdysis within 1-3
minutes, followed by ecdysis, while injection ETH2
has no effect [96]. One putative ETHR was identified

Fig. 7 Putative CHH receptors and their tissue distribution. a Pruned tree of CHHRs and amino acid sequence arrangement of putative CHHRs.
Transmembrane domains of both GI_GPCRA9 and GI_GPCRA12 were predicted using TMHMM online tool. b RT-PCR was carried out using cDNA
from ten different organs of G. lateralis. Primers were designed to amplify two putative CHHR receptors (GI_GPCRA9 and GI_GPCRA12) (Table 1).
Tissue expression pattern obtained from RT-PCR gel image visualized under UV light
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and clustered with P. clarkii ETH_R1. ETHR was
expressed at a similar level of RPKM through the
molt cycle except the postmolt stage, where no ex-
pression was detected (Fig. 3).

FMRFamide/ FMRFamide-like receptor

FMRFamides are widely distributed neuropeptides with
four signature amino acids at their C terminus
(F-M-R-F) [97]. Many isoforms with variations of this
signature tetrapeptide occur, which therefore classified
as FMRFa-like peptides (FLPs) [98]. The first FLP was
identified in D. melanogaster by cDNA cloning [99].
More FLPs have since been identified in insects using
mass spectrometry [100, 101]. The FLP family comprises
several neuropeptides that include sulfakinin, neuropep-
tide F (NPF), short neuropeptide F (sNPF), and myosup-
pressin [102-104]. FMRFamides are gut and heart
contraction factors that also control digestive processes
[105, 106]. Their role also extends to the ecdysis process
by activating FMRFamide neurons during premolt in
D. melanogaster [96] through direct innervation of the
PG [107, 108].

Two G. lateralis putative FMRFamide receptors clus-
tered with P. clarkii and S. verreauxi FMRFamide recep-
tors (FMRF_R1; GI_GPCRA1l and FMRF_R2;
Gl_GPCRA40). Motif analysis of the S. serreauxi and
G. lateralis FMRFamide receptors showed high similarity
between FMRF_R1 and FMRFamide receptor of S. ser-
reauxi. In particular, there were three N-glycosylation
motifs at the N-terminus and one N-glycosylation motif
at the seven TM domain. The only difference was at the
C-terminus where two additional N-glycosylation motifs
were predicted in G. lateralis (Fig. 6b). Motif analysis of
FMRF_R2 showed distinct organization of one
N-glycosylation motif at the N-terminus, two at the
C-terminus, and one at the first TM domain. RPKM ex-
pression analysis showed a similar trend in both FMFFa-
mide receptors, in which they were expressed high levels
in the intermolt stage, slightly decreased in the next
two molt stages, followed by an increase in the late
premolt, and no expression in the postmolt stage
(Fig. 6¢). A small neuropeptide F (sNPF) receptor is
also predicted based on the phylogenetic analysis
(GI-GPCRA26), where it clustered with the P. clarkii
sNPF receptor (Fig. 4).

Leucine-rich repeats containing GPCRs

Leucine-rich repeats-containing GPCRs (LGRs) belong
to the rhodopsin-like GPCR family. LGRs have, in
addition to the GPCR-conserved 7-TM domain, mul-
tiple repeats of leucine-rich regions (LRRs) and low
density lipoprotein (LDL) motifs for hormone binding.
LGRs are classified into three types (A, B, and C)
based on the number of LRRs, number of LDL
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motifs, and the structure of the hinge region [109].
Type A LGRs contain 7-9 LRRs and a long hinge re-
gion in their ectodomain, while type B LGRs typically
have about twice the number of LRRs (16—18 LRR)
and a shorter hinge region. In D. melanogaster, LGR1
(Type A LGR) is activated by GPA2/GPB5 neuropep-
tide, a heterodimer formed by GPA2 and GPB5 [110],
and LGR2 (Type B LGR) is activated by bursicon
[111]. Bursicon is a heterodimeric protein, consisting
of a and P subunits. In C. maenas, Bursicon is
co-localized with CCAP, both being released from
neurons in the CNS. Bursicon plays a key role in cu-
ticle hardening during post molt [112, 113]. Bursicon
is also involved in reproduction by increasing vitello-
genin and stimulating ovarian development in female
shrimp, Penaeus monodon [114]. The number of LRRs
in type C is similar to type A, but the hinge region is
quite short and the LDL motifs are N-terminal to the
LRRs. The Type C LGRs are subdivided into two sub-
groups: C1, which contains only one LDL motif and
two cysteines in their hinge region and C2, which has
five, six, ten or twelve LDLs N-terminal to the LRRs
and four cysteines in their hinge region [109].

Five putative LGRs were predicted in the phylogenetic
analysis. GI_GPCRA4 and GI_GPCRA19 clustered with
the Bursicon receptor (type B LGR) and Gl_GPCRA4b
clustered with the GP2/GP5 receptor (type A LGR).
Another LGR identified (GI-GPCRA14) clustered with
GRL 101-like. Like other GRL 101-like receptors,
GIl-GPCRA14 consists of 11 LDLs and 7 LRRs in its ecto-
domain, which defines it as type C2-like LGR (Fig.
6d). GI-GPCR14b clustered into the LGR3 clade, be-
longing to type C1 LGR, as it contains 1 LDL and 6
LRRs in its ectodomain. In D. melanogaster, LGR3 is
activated by Dilp8, a member of the insulin-like neuo-
peptide family [115]. LGR3 activation induces nitric
oxide synthase production in the PG in response to
Dilp8, which is elevated in injured imaginal discs
[116, 117]. The increased nitric oxide synthase activity
reduces ecdysone synthesis by the PG, which coordi-
nates molting with the growth of the regenerating im-
aginal discs [118]. The identification of LGR3 in
G. lateralis YOs suggests a similar function for this
receptor in delaying the molt by damaged or lost
limbs [11, 119, 120]. Autotomy of a regenerating limb
in early premolt suspends molting until a secondary
limb regenerate differentiates and grows to replace
the lost regenerate (108). Secondary limb regenerates
produce a peptide-like factor, designated limb autot-
omy factor - proedysis (LAFp,) (11), that delays
molting by lowering hemolymph ecdysteroid titer
(109). Given that several insulin-like peptides were re-
cently identified in decapods [121, 122], it is possible
that LAF,,, functions as the Dilp8 ortholog.
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Thyrotropin-releasing hormone/ Thyrotropin-releasing
hormone like receptors

In mammals, thyrotropin-releasing hormone (TRH) is a
hypothalamic releasing factor that is synthesized mainly
in the hypothalamus. Upon release TRH stimulates the
release of thyroid-stimulating hormone and prolactin by
the pituitary. TRH is also produced in peripheral tissues
and the nervous system [123]. TRHs have a tripeptide
Glu-His-Pro in their sequences and stimulate
thyroid-stimulating hormone (TSH) biosynthesis [124].
In vertebrates, two TRH receptor (TRHR) isoforms are
classified as type 1 (TRH-R1) and type 2 (TRH-R2).
These two receptors belong to the rhodopsin/p-adrener-
gic receptor-like family of GPCRs and share up to 50%
similarity in their amino acid sequences [125]. In arthro-
pods, TRH-like receptors were identified both in insects
(Nilaparvata lugens, Rhodnius prolixus [126]) and a
crustacean S. verreauxi [49] by phylogenetic analysis.
One putative G. lateralis TRHR clustered with P. clarkii
and S. verreauxi TRHRs.

Biogenic amine, adenosine, and prostaglandin receptors
Biogenic amines are neuroactive molecules involved
in synaptic transmission in the nervous system [127].
This group includes serotonin, dopamine, and octopa-
mine. Serotonin (5-HT) increases blood glucose, while
dopamine decreases blood glucose in hemolymph in
several crustacean species [128]. Dopamine has a
hyperglycemic effect in intact P. clarkii [129] and
Macrobrachium malcolmsonii [130], but it has no ef-
fect on bilaterally eyestalk-ablated individuals. In in-
sects, serotonergic neurons innervate the PG and
control ecdysterodogenesis [131]. Autocrine signaling
through the BP3-octopamine receptor is essential for
PTTH and insulin-like peptide stimulation of ecdys-
teroidogenesis in the Drosophila PG [132].

Three putative receptors clustered in the biogenic
amine clade. GI._ GPCRA30 and Gl_GPCRA32 clustered
with serotonin receptor 1 and serotonin receptor 2, re-
spectively. GI_GPCRA34 clustered with the octapamine
receptor clade. One adenosine (GI_GPCRA33) and four
prostaglandin (Gl-GPCRA35-A38) receptors were also
identified (Fig. 4). These results are comparable with
previous studies in decapods [48, 49]. The expression
of GI_GPCR32-34 did not change significantly between
stages in the YOs, while GI_GPCR31, Gl_GPCR35-36,
and Gl_GPCR38 show no expression in the postmolt
stage.

Immune-related GPCRs

Crustaceans have an innate immune system to protect
them from pathogenic bacteria and viruses. This im-
mune system relies on the recognition of pathogen
membrane proteins using pattern recognition proteins
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and defense using lectins, antimicrobial peptides, and
clotting/melanization mechanisms [133]. A recent study
on immune-related genes of P. clarkii activated by
Aeromonas hydrophila infection identified a putative
GPCR that is similar to HPR1 (protein receptor in hepato-
pancreas 1) [39]. Three putative receptors (Gl-GPCRA16,
A17, A18, and A44) clustered with P. clarkii HPR1 in the
phylogenetic analysis (Fig. 4). It is yet to be determined if
they have a direct role in the innate immunity.

Secretin-like family

Class B1

Diuretic hormones (DH) regulate water balance in ar-
thropods [134]. There are three primary insect DHs:
corticotropin-releasing factor (CRF)-related peptides,
calcitonin (CT)-like peptides, and the insect kinins
[135]. CREF is structurally related to mammalian cortico-
tropin, and is called Drome-DH31 in D. melanogaster
[136]. DH31 was recently identified in several tissues of
the green shore crab C. maenas and its function in
rhythmic coordination was established [137]. CT peptide
is structurally related to mammalian calcitonin-like pep-
tide and is called Drome-DH44 in D. melanogaster
[138]. One putative diuretic hormone type 44 (DH44)
receptor (GI-GPCRB25) and one diuretic hormone type
31 (DH31) receptor (GI-GPCRB25b), were identified by
phylogenetic analysis (Fig. 8).

Pigment dispersing factor (PDF) is a neuropeptide pro-
duced by the XO in crustaceans, and is found across
inverterates. It has a variety of functions, including pig-
ment dispersal in chromatophore cells [139] and regula-
tion of locomotion behavior and egg-laying [140]. In
B. mori, PDF binds to the BNGR-B2 receptor and stimu-
lates the ecdysone biosynthesis in the PGs [141]. Deca-
pod PDF receptors have been identified based on
similarity with a gene from D. melanogaster (CG13758),
including those in P. clarkii and M. rosenbergii [48, 142].
Three putative PDF/PDF-like receptors were identified
in our study (Gl-GPCRB26-A28).

Parathyroid hormone (PTH) belongs to the parathy-
roid hormone family, which includes PTH, PTH-related
peptide (PTHrP), and tuberoinfundibular peptide
(PTH2). In vertebrates, the PTH family regulates the cal-
cium titer in serum, affecting most organs [143]. One
putative PTH receptor (PTHR) in the G. lateralis YOs
transcriptome clustered with P. clarkii PTHR in the
phylogenetic tree (Fig. 8).

Class B2

The class B2 of the secretin-like receptor family includes
the calcium-independent receptor, brain-specific angio-
genesis inhibitor, starry night receptor, latrophilin recep-
tor, HE6 receptor, and homologs of the vertebrate
adhesion receptor [144]. Class B2 members share a
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Fig. 8 Phylogenetic tree of class B GPCRs presented as circular cladogram. Five protein groups were identified, including latrophilin,
lipoprotein, methuselah, PDF, and DH44 receptor. The phylogenetic trees were constructed by neighbor joining method with bootstrap
1000 following multiple sequence alignment of 7-TM regions in CLC workbench. Abbreviations: Cs= Callinectes sapidus, Dm= Drosophila
melanogaster, Dp= Daphnia pulex, Gl= Gecarcinus lateralis, Pc= Procambarus clarkii, Tc= Tribolium castaneum, Tu= Tetranychus urticae
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structural similarity in the form of a long extracellular
N-terminus in the ectodomain, which consists of cleavage
and binding sites, such as proteolytic site (GPS) and epi-
dermal growth factor (EGF) domains [145]. Five putative
latrophilin receptors (GI-GPCRB4, B11, B22-24) and two
lipoprotein receptors (Gl-GPCRB2, B3 and B12) were
identified in the G. lateralis YO transcriptome (Fig. 8).
The expression did not change significantly between
stages in the YOs.

Class B3 (Methuselah-type receptors)
Methuselah/Methuselah-like was originally identified in
D. melanogaster [146], and named after the methuselah gene.
Most methuselah receptors contain conserved cysteine resi-
dues and glycosylation sites [147, 148]. This subfamily com-
prises 15 paralogs based on the similarity in their
ectodomain, as well as a 7-TM domain [149]. Methuselah/
Methuselah-like are found in several insects, such as 7. cas-
taneum and B. mori [150, 151]. They are involved in stress
response and are associated with extended lifespan in D.
melanogaster [146]. Mth2 in T. castaneum also plays a role
in heat resistance and eclosion [152]. Twelve variants of the
putative methuselah (Mth) receptor in G. lateralis clustered
with D. melanogaster Mth receptor (Gl-GPCRBI1, B6-8,
B17-20, B31, and B33-34) (Fig. 8).

Class C

Class C GPCRs are classified based on their sequence phyl-
ogeny and conservation in the 7-TM domain [114]. These
receptors possess a large (hundreds of residues) N-terminal
extracellular domain [115]. Class C GPCRs include metabo-
tropic glutamate (mGlu), y-aminobutyric acid (GABA), Ca®
“-sensing (CaS), sweet and amino acid taste, pheromone,
and odorant receptors in fish, as well as several orphan re-
ceptors [114]. One putative mGlu receptor (Gl-GPCRC3)
and one putative boss receptor (GI-GPCRC1) were identi-
fied, as they clustered with D. melanogaster mGlu and boss
receptors, respectively (Fig. 9).

Notable ommisions

Several GPCRs that are conserved across arthropods were
not identified in the G. lateralis YO transcriptome, perhaps
due to high divergence of these GPCRs between crusta-
ceans and insects, or simply because they are not expressed
in the YO. These include NPF, CNMamide, and Tachykinin
receptors. A Blastp search against nr database at NCBI
showed GlI_GPCRA24 as an NPF receptor but with low
identity (maximum of 23%) and marginal E-value (higher
than 1.0E”). With the rapid expanding availability of tran-
scriptomes and genomes of decapod species, the
spatial-temporal expression pattern and genomic context of
these receptors is expected to be elucidated.
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Fig. 9 Phylogenetic tree of class C GPCRs presented as circular cladogram. Two protein groups were identified, including mGlu receptor and boss
receptor. The phylogenetic trees were constructed by neighbor joining method with bootstrap 1000 following multiple sequence alignment of 7-
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Conclusions

Bioinformatic analysis of RNA-Seq data provides a com-
prehensive and cost-effective method to catalog and anno-
tate sequences and discover novel sequences (31). Using
this approach, we identified contigs encoding 99 GPCRs
in the YO transcriptome of G. lateralis (Fig. 1). The
GPCRs were distributed between the three known GPCR
classes. Seventy-two contigs were assigned to 17 identified
GCPR groups based on ligand binding specificity and
structural motifs (Fig. 4); 27 (27%) remained unidentified
(Fig. 1). These data suggest that the YO has at least the
potential for responding to a large number and diversity
of ligands. Moreover, most were differentially expressed
over the molt cycle (Figs. 1, 2, 5, and 6), suggesting that
the sensitivity of the YO to these ligands is molt
stage-specific. A striking example is the gene expression
pattern of the repressed YO in postmolt animals. The re-
pressed YO is characterized by low global gene expression
(33). It is hypothesized that this low transcriptional activity
prevents YO activation until the synthesis of the new exo-
skeleton is completed and the animal is in the intermolt
stage (33). The majority (67%) of the GPCR contigs follow
this pattern of higher levels in intermolt and premolt
stages and low levels in postmolt (Fig. 1). However, 33

contigs were expressed at high or their highest levels in
postmolt and one in particular, a progesterone receptor
(A37), was only expressed in postmolt (Fig. 1), suggesting
that these genes are involved in maintaining the repressed
state and/or are involved in preparing the YO to transition
to the basal state in the intermolt stage (33).

The analysis identified several GPCRs expressed in the YO
that are of special interest. The proposed model for MIH
signaling pathway consists of a transient cAMP/Ca®
"-dependent triggering phase and a prolonged NO/
cGMP-dependent summation phase, which inhibits YO
ecdysteroid secretion between MIH pulses (10, 14, 28).
The identity of the MIH receptor has remained elusive,
but it is assumed that it is a GPCR, the activation of which
initates the triggering phase. Three contigs, designated
CHH_1 (A9), CHH_2 (A10), and CHH_3 (A12), were
identified as receptors for the CHH neuropeptide family,
which includes MIH, CHH, and ILP (13, 14, 22), and
therefore are candidates for the MIH receptor (Figs. 1, 7).
CHH_2 was expressed at high levels in the YOs from
intermolt and premolt animals (Fig. 2), making it the lead-
ing candidate. However, conclusive identification of the
MIH receptor awaits a functional assay that shows MIH
activation of MIH receptor candidates expressed in a
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heterologous reporting system [15, 153]. The identifica-
tion of FMRFamide, serotonin, and octopamine receptors
raise the possibility that the YO is controlled by direct in-
nervation. To our knowledge, innervation of the YO has
yet to be demonstrated. However, the insect PG receives
neuronal projections that directly control ecdysteroido-
genesis [154]. FMRFamides and FMRFamide-related pep-
tides bind to the myosuppressin receptor and inhibit
ecdysteroidogenesis by lowering cAMP production [107,
108]. Serotonergic neurons innervating the Drosophila PG
stimulate ecdysteroidogenic activity [131]. GABA and
dopamine have indirect effects on the P. americana PG,
as they have an inhibitory and excitory effect, respectively,
on the activity of the PG nerve [155]. The identification of
an octopamine receptor suggests that octopamine has a
direct effect on the YO. However, to our knowledge, there
are no published studies determining the effects of oc-
topamine on YO ecdysteroid secretion. A Crz receptor
was identified in the YO transcriptome that may be in-
volved with molt regulation (Fig. 5) [76]. Finally, LGR3
may provide a parallel pathway in decapods and dipterans
for the coordination of molting and tissue regeneration.
LGR3 in the YO may mediate the suspension of molt by
LAF,,, that is released by secondary limb regenerates,
much like Dilp8, released from damaged imaginal discs,
inhibits the PG. Transcriptomics has revealed that neuro-
peptide control of the YO is becoming more complex.

Methods

Transcriptome analysis

The transcriptome as well as FASTQ of G. lateralis YOs
were obtained from a previous study [34]. In brief, the ani-
mals were collected from the Dominican Republic, shipped
by air to Colorado, and maintained as described [29]. Ani-
mals were immobilized by severing the brain before remov-
ing sections of the carapace containing the YO. Animals
were frozen at -20 °C. The animals were induced to molt
using multiple leg autotomy (8 walking legs) and the YOs
from 2-3 individuals were then collected from animals at the
same molt stage. Five different molt stages including inter-
molt (IM - stage C,), early premolt (EP - stage D), mid pre-
molt (MP - stage D,), late premolt (LP - stage D,) and
postmolt (PM), were collected and sequenced in triplicates
(a total of 15 libraries). The transcriptomic data was screened
for the longest open reading frames (ORFs) using transdeco-
der (version 5.0), generating a fasta file with the amino acid
sequences. The amino acid sequences were scanned against
the PfamA database (version 27.0) using hidden Markov
models (HMMs) to identify the seven TM families. Se-
quences with seven TM profile were extracted (represented
in Table 1). Transmembrane HMM (TMHMM) scan was
then applied in parallel on the G. lateralis YOs OREF file to
find the predicted helices. Two lists of PFAM HMM and
TMHMM search outputs were cross-referenced to remove
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duplicates. The seven TM sequences were then categorized
into GPCR subclasses comprising rhodopsin-like (class A),
secretin and adhesion (class B), metabotropic glutamate
(class C) based on Pfam. The references list were created
using annotated sequences from previous studies [49, 156],
and the BLAST analysis of GPCR protein sequences from
YO against protein sequences from the NCBI
non-redundant (nr) database with Arthropoda organism fil-
ter, and protein sequences blasted against the FlyBase data-
base. The reference list was entered into TMMHMM [157]
using default parameters to obtain the seven TM domain of
each protein sequence.

The Reads Per Kilobase of transcript, per Million mapped
reads (RPKM) were obtained by mapping sequence reads
against YOs database using the RNA-seq tool of CLC
Genomics Workbench (CLC Bio, version 10.0) with default
parameters. The RPKM was calculated as follows:

RPKM — Total exon reads

mapped reads(millions)x exon length (KB)

The RPKM values of proteins relating to molt cycle
were then imported into CLC for statistical analysis to de-
termine whether there were significant differences in
RPKM between different molt stages. The Empirical ana-
lysis of DGE was performed to compare RPKM between
molt stages with the probability distribution less than 5%
(P < 0.05). To avoid false positive result, the P values were
then corected using false discovery rate (FDR < 0.05).

Phylogenetic and functional study of GPCR families

To further annotate the G. lateralis GPCRs for phylogenetic
analysis, the seven TM domains of all GPCRs were extracted
and compiled with the reference list. Multiple sequence
alignment was carried out using MUSCLE tools imple-
mented in CLC Genomics Workbench (CLC Bio, version
10.0). The sequence alignment file was used to generate a
phylogenetic tree with CLC Genomics Workbench (Neigh-
bor-joining phylogeny with 1,000 bootstraps). The lists of
GPCRs used for phylogeny are given in Additional file 1.

Tissue specific expression of predicted CHHR by RT-PCR

Tissues were harvested from three adult intermolt G. later-
alis males. A competitive ELISA assay was performed to
confirm that the animals were in intermolt (stage C,) by
measuring hemolymph ecdysteroid titer (19.0 + 2.3 pg/
ppl, n = 7). The samples were stored in RNA later at -20 °
C until extraction. Total RNA was extracted from 10 tis-
sues comprising claw muscle (CM), eyestalk ganglia
(ESG), gill (G), heart (H), hindgut (HG), hepatopancreas
(HP), midgut (MG), testis (T), thoracic ganglia (TG), and
Y-organs (YOs). Trizol® Reagent (Invitrogen), was used to
extract total RNA according to manufacturer’s instruction
and quantified wusing a ND-2000 (NanoDrop
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Table 3 Set of primers used for RT-PCR

|dentifer Forward primers Reverse primers
GI-GPCRA9 ggccaacagagtgattgcaa gtgacgtcggtggtagatcc
GI-GPCRA12 tgactacaacttcacggacag agc gtacacgtgcatcttgttcacctc
Beta-actin ctgacaccactccaccatgt tcatagatggggacggtgtg

Technologies, DE, U.S). The extractions were stored at
-80 °C for RT-PCR experiment. Primers were designed
using Primer 3 (http://bioinfo.ut.ee/primer3-0.4.0/) and
synthesized by Sigma-—Aldrich company (Table 3). The
stored RNA was then converted into c¢DNA by
reverse-transcription reaction in which 1 upg RNA of each
sample was used as templates, using Tetro cDNA synthe-
sis kit (Bioline, Australia) following manufacturer’s in-
structions. PCR was performed using Mytaq Red kit
(Bioline, Australia), complemented with 1 pul of cDNA as
the template, 0.8 nM of forward and reverse primers and
up to 20 ppl DNase-free water. Touchdown PCR was set
up as follows: 94 °C for 3 min, followed by 5 cycles of 94 °
C for 30 s, annealing at 62 °C for 30 s and gradually de-
crease 1 °C in each cycle, elongation at 72 °C for 45s. An-
other 35 cycles included denaturation at 94 °C for 30 s,
annealing at 55 °C for 30 s, elongation at 72 °C for 45 s,
followed by a final extension at 72 °C for 10 min. The
amplicons were then loaded on 1 % agarose gel stained
with ethidium bromide, in TBE buffer and electrophor-
ased at 90 volts for 60 min and visualized under UV light.

Additional files

Additional file 1: Table S1. List of curated GPCRs using phylogenetic
study and Blast search analysis. GPCRs subgroup clasification was defined
using Pfam database and reference list. (XLSX 159 kb)

Additional file 2: Table S2. Statistical analysis of defined GPCRs using
empirical analysis of DGE and false discovery rate method. (XLSX 80 kb)
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