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Abstract

Background: Existing functional description of genes are categorical, discrete, and mostly through manual
process. In this work, we explore the idea of gene embedding, distributed representation of genes, in the spirit
of word embedding.

Results: From a pure data-driven fashion, we trained a 200-dimension vector representation of all human
genes, using gene co-expression patterns in 984 data sets from the GEO databases. These vectors capture
functional relatedness of genes in terms of recovering known pathways - the average inner product (similarity)
of genes within a pathway is 1.52X greater than that of random genes. Using t-SNE, we produced a gene co-
expression map that shows local concentrations of tissue specific genes. We also illustrated the usefulness of
the embedded gene vectors, laden with rich information on gene co-expression patterns, in tasks such as gene-
gene interaction prediction.

Conclusions: We proposed a machine learning method that utilizes transcriptome-wide gene co-expression to
generate a distributed representation of genes. We further demonstrated the utility of our distribution by
predicting gene-gene interaction based solely on gene names. The distributed representation of genes could be
useful for more bioinformatics applications.

Keywords: Distributed representation, Gene2Vec, Gene co-expression, Embedding, Word2vec, Gene-gene
interaction

Background
Genes, discrete segments of the genome that are tran-
scribed, are basic building blocks of molecular biological
systems. Although almost all transcripts in the human
genome have been identified, functional annotation of
genes is still a challenging task. Most existing annotation
efforts organize genes into functional categories, e.g., path-
ways, or represent their relationship into networks. Path-
ways and networks crystallize biological knowledge and
are convenient qualitative conceptualization of gene func-
tions. Yet the exact functions of a gene are often more
subtle and elusive to be expressed in qualitative terms.

The challenge of creating a quantitative semantic rep-
resentation of discrete units of a complex system is not
unique to gene systems. For a long time, creating a
quantitative representation of words had been challen-
ging for linguistic modeling. Hinton proposed the pio-
neering idea of ‘learning distributed representations of
words’ [1], i.e., representing the semantics of a word by
mapping them to vectors in a high-dimension space.
However, Hinton’s idea did not lead to real implementa-
tion in mainstream natural language processing (NLP)
research, until recently. The word2vec model achieved
success in NLP modeling [2]. This process of distributed
representation is often called neural embedding because
the embedding function is often expressed by a neural
network with a large number of parameters. This success
of word2vec inspires us to investigate the possibility to
represent gene functions via neural embedding.
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In this study, we aim to represent genes as vectors in
a high-dimension space, i.e., a gene embedding. In the
word2vec model [2], a word embedding is trained by
maximizing the probability of word co-occurrences in
context, i.e., only a few words apart in a same sentence.
Analogously, we defined the context of a gene by the
other genes that co-expressed with it. We derive an em-
bedding such that the probability of the context of a
gene is maximized. While it is possible to train a gene
embedding using the standard NLP word embedding by
using a biomedical corpus, such as the PubMed ab-
stracts, published literature is incomplete and biased
towards genes that are well-studied. Therefore, we
intended to adopt a purely data-driven fashion.
Using co-expression patterns of all human genes in

984 whole transcriptome human gene expression data
sets from Gene Expression Omnibus (GEO), we learned
a gene embedding using a neural network. We show
that our embedding grouped related genes in clusters.
Moreover, we demonstrate the usefulness of the learned
gene embedding to downstream tasks in the problem of
prediction of gene-gene interaction.

Methods
Data collection
Overview
We chose to use GEO data with rationale from both
biological and technical aspects. In cellular systems, the
mRNA expression levels represent activities of genes
with fine resolutions. Over the past 10–20 years, GEO
deposits the majority of microarray-based gene expres-
sion data in various conditions. Although the recent
development of RNA-sequencing has generated tran-
scriptomic data with advantages in both accuracy and
scales than array-based data, the large cohort of GEO
data provides features that are more suitable for our
work. GEO data have been curated for over 10 years
and hence, the measurement covers a wide range of cell
and tissue types, cellular conditions, disease status, and
developmental stages. As our ultimate goal is to build a
gene co-expression map that could be used for infer-
ences in various conditions, we collected GEO data for
our task. In addition, we chose one single platform to
reduce technical variability and required the organism
to be Homo sapiens.

Gene expression
We used the keywords “expression and human” to
search in GEO on 12/24/2017 and retrieved all GSE
sets that were conducted using the platform Affyme-
trix Human Genome U133 Plus 2.0 Array (GPL570).
We required each dataset to have ≥30 samples. The
downloaded gene expression intensity data were log
transformed and quantile-normalized. For genes with

multiple probe sets, we chose the probe set with the
largest variance across all samples. Gene co-expression
was measured using Pearson Correlation Coefficient
(PCC) for each data set. In each data set, gene pairs
with the PCC ≥ 0.9 were selected for following analysis.
Selected gene pairs from all data sets were merged and
serve as training data. We did not distinguish bio-
logical conditions.

Gene types on chip
The U133 array is one of the most widely utilized plat-
form to measure human gene expression. The chip has
54,675 probe sets for 24,442 genes. The number of
probe sets per gene ranged between 1 and 15, with
more than half of genes (52.08%) have one probe sets.
Among these genes, 21,960 (89.85%) genes could be
mapped to the current version of NCBI Entrez gene
annotation. These mappable genes include 18,055
protein-coding genes, 2660 ncRNA, 730 pseudo genes,
132 snoRNA, and 383 other types of genes. Particularly
for ncRNAs, there are 202 microRNA genes. Gene set
enrichment analysis was conducted using Fisher’s
Exact Test.

Gene-gene interaction dataset
We followed previous work [3] to build datasets for
gene-gene interaction based on shared Gene Ontology
(GO) annotations. GO annotation was obtained using
the R (× 64 3.4.3) package “org.Hs.eg.db” (version 3.5.0).
GO structure file in the obo format was downloaded
from [4]. All genes were mapped to NCBI Entrez Gene
[5] (downloaded on 11/6/2017). We defined gene pairs
that shared GO annotations as the positive set of func-
tional association. To this end, we chose the GO cat-
egory “Biological Process” with experimental evidence:
IDA (inferred from direct assay), IMP (inferred from
mutant phenotype), IPI (inferred from protein inter-
action), IGI (inferred from genetic interaction), and TAS
(traceable author statement). To minimize generalized
annotation, we excluded the highly over-represented GO
terms including (1) “signal transduction” (GO:0007165);
(2) three phosphorylation terms: “protein amino acid
phosphorylation” (GO:0006468), “protein amino acid au-
tophosphorylation” (GO:0046777), and “protein amino
acid dephosphorylation” (GO:0006470); and (3) all terms
at the first three levels of GO hierarchy (assuming the
root term of biological process, “GO:0008150”, is level
0). This lead to a total of 270,704 pairs involving 5369
genes. To build the negative data set, we obtained all
gene-pairs that did not share any GO term or their chil-
dren GO terms. This resulted a total of 40,879,714 gene
pairs involved in 12,521 (64.85% of 19,307) human
genes, serving as the set in which pairs of genes are not
functionally associated.
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Tissue-specific genes
GTEx data (version 6) [6] was used to estimate the
tissue-specific expression pattern of genes in 27 tissues,
each with ≥30 samples. For each gene, a z-score was cal-
culated to measure its tissue specificity by comparing the
average gene expression of the gene across all tissues [7].

Functional gene sets
We use clusteredness of MSigDB pathways (v5.1) [8] as
the target function for hyper-parameter tuning for gene
embedding training. Specifically, we used the category
c2 including curated pathways from various online re-
sources such as KEGG [9], Biocarta [10], and Reactome
[11]. A total of 4726 pathways were downloaded.

Concept embedding of genes
Distributed representation of word, or neural word
embedding, was a recent breakthrough in NLP re-
search based on deep learning. The goal of word em-
bedding is to derive a linear mapping, i.e., embedding,
from the discrete space of individual words to a con-
tinuous Euclidean space such that similar words will
be mapped to points in close vicinity in the embedding
space. The direct benefit of word embedding is that
such representation of individual words, vectors in
continuous space, becomes differentiable and thus
amenable for back-propagation-based neural network
modeling. Meanwhile, a nice surprising result is that
embedded space admits basic geometry. E.g., the KING
- QUEEN ≈ MAN - WOMAN.
Inspired by the success of word embedding, we in-

tend to produce an embedding of genes, also a discrete
conceptual unit, such that similar genes are mapped to
similar vectors. While for genes we do not have a nat-
ural equivalent concept of sentence in natural lan-
guages, we will use the notion of co-expression. This is
analogy of the concept of co-occurrence in natural
languages.
For neural embedding, a neural network is designed

that maximizes an objective function, often in a form of
likelihood, such as the probability of a word given its
context. The most commonly used architectures are
skip-gram and continuous bag-of-words (CBOW) that
discussed in the word2vec approach [2]. In both archi-
tectures, a two-layer neural network is constructed to
predict word co-occurrence, or the co-occurrence of a
word and its surrounding words, or context. In CBOW,
the input is the context and the output is the word; in
skip-gram, the input is the word and the output is the
context. For both architectures, input and output are
connected through a middle projection layer. Note that
neither neural network would offer satisfactory predic-
tions for most of the words. But the real goal of word
embedding is to learn a distributional representation,

i.e., the parameters of the embedding mapping from the
input to the middle projection layer. A simple fully
connected linear layer was used for the embedding
mapping. For CBOW, the embedded vectors of all
words in the context are averaged and thus provide a
uniform size vector for the next layer. The second layer
for both architecture is a linear layer with a soft-max. A
cross-entropy loss is minimized.
In gene embedding, we are using the genes who are

co-expressed with the gene of interest as its context.
Since the number of co-expressed genes may vary, the
size of the context may vary as well. For simplicity, in
this work, we extract all pairs of co-expressed genes
and maximize the probability of one given the other for
each pair. This is equivalent to the skip-gram model.
Since we are optimizing the total probability of all
edges in a co-expression network, our approach can
also be viewed as a graph embedding [12].
More formally, the input of the training problem is a

list of gene pairs that are highly co-expressed, T = {(gi1,
gi2)}, we will train an embedding network. The input of
the network is a one-hot encoded vector for gene gi ∈
Rd, where d is the number of genes and the elements
of gi are all 0 expert gi[xi] = 1, where xi is the dimen-
sion corresponds to the gene gi. The output of the net-
work is a vector of dimension vi ∈ Rk, the embedding
dimension. The parameter of the network is a matrix
W ∈ Rd × k such that vi =Wgi. If we define the
probability

Pr gijg j

� �
¼ exp vTi v j

� �
P

j0 exp vTi v j;
� �

The loss function that is to be minimized is the nega-
tive likelihood −

P
ðgi1;gi2Þ∈T Prðgijg jÞ . It can be shown

that this complex loss function for this single layer net-
work is equivalent to a two-layer network with shared
weight matrices of Wand WT, and the loss function as
the standard cross-entropy after softmax (see, Fig. 1).

Training of embedding
We took all the gene pairs that have a PCC equal to or
larger than 0.9 as the input. This is a choice due to lim-
ited computational resources. We shuffled the gene
pairs in each dataset on every iteration to avoid the im-
pact caused by the order of gene pairs in the datasets.
The embedding was trained on all genes with a mini-
mum frequency at 5. As number of iterations and di-
mensionality of the embedding are considered as two
major hyper-parameters parameters for word embed-
ding [13], in order to generate “best” gene embedding,
we did a preliminary parameters tuning and performed
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a grid search to find best parameters. The search ranges
for number of iterations and embedding dimension are
set at 1 to 10 and 50, 100, 200, and 300 respectively.
We used the word2vec function implemented in the
gensim library [14] to generate gene embedding. Other
parameters were set as default.
Since our goal is to obtain a gene embedding that

reflects the functional relationships among genes, we
selected the set of hyper-parameters that maximizes
the clusteredness of genes within functional path-
ways. We optimized the following target function:

clusteredness ¼
1
Qj j

X
P∈Q

1
#gene pairs in P

X
gi;g j∈P

vTi v j
� �

1
#gene pairs in Q0

X
gi;g j∈Q

0 vTi v j
� � ;

where Q is the set of pathways in MSigDB, and Q
,
is a

set of random gene pairs. Due to the limitation of
computation power, we selected all the pathways from
the MSigDB with the number of genes equal or fewer
than 50. In total, 6729 pathways were selected as Q.
We randomly selected 1000 genes from gene embed-
ding and generated all possible unique gene pairs
(499,500 in total) as Q

′
.

Visualization by t-SNE
A common way to visualize high-dimensional datasets
is to map the datasets into 2D or 3D array. t-Distrib-
uted Stochastic Neighbor Embedding (t-SNE) is a ma-
chine learning algorithm for dimensionality reduction,
which optimizes for neighborhood preserving and thus
particularly well suited for the visualization of high-di-
mensional datasets [15]. Visualizations produced by
t-SNE have been found significantly better than those
produced by the other techniques [15].
In order to speed up the t-SNE on the high-dimen-

sional gene embedding, we first reduced the dimension
to 50 using principal component analysis (PCA) and
then applied a multicore modification of Barnes-Hut
t-SNE by L. Van der Maaten [16, 17]. The perplexity was
set at 30 and the learning rate was set at 200. To get
stable t-SNE results, we set the number of iterations at
100,000.

Prediction of gene-gene interaction
To investigate the usefulness of the trained gene em-
bedding for downstream tasks, we applied the embed-
ding to the problem of gene-gene interaction
prediction. The goal is, given a pair of genes, we design
a gene-gene interaction predictor neural network
(GGIPNN) to predict if they will be together in any of
the annotated pathway [3].

Fig. 1 The Skip-Gram architecture was used for training for gene embedding. This is the modified architecture which is equivalent to the original
word2vec, adopted from this blog [22]
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The architecture of GGIPNN can be seen in Fig. 2. We
first convert the genes in each gene pair to one-hot vec-
tors and then map the one-hot vectors to gene embedding
vectors using a shared embedding matrix. Then, the two
gene embedding vectors will be concatenated together
and be fed to a fully connected layer with a dimension at
100. The output will be fed to another fully connected
layer with a dimension at 100. The output of the second
fully connected layer will then be fed to a second (third)
fully connected layer with a dimension at 10. The output
will be then fed to a softmax (same as sigmoid as this is a
binary classification) layer. We compute the cross entropy
of the softmax function output and then compute the
mean of elements across results as the loss. We choose
ReLU (Rectified Linear Units) as the activation function.
To avoid overfitting, we apply dropout on both the first
and second fully connected layers. The dropout out rates
are set at 0.5.
Area Under Curve (AUC) is computed to measure

the performance of the prediction. We compared the
AUC score of our pre-trained gene embedding and em-
bedding which is randomly initialized. We also investi-
gated the impact of trainable embedding layer
(fine-tuning during the training) versus non-trainable
embedding layer (fixed during the training) on the pre-
diction. This model was implemented in TensorFlow.
We took all the pairs from HumanNet.v1.benchmark

[3] as the positive pairs. This led to a total of 270,704
pairs involving 5369 genes. To build the negative data
set, we obtained all gene-pairs that did not share any
GO term or their children GO terms. This resulted in a

total of 40,879,714 gene-pairs involved in 12,521
(64.85% of 19,307) human genes, serving as the set in
which pairs of genes are not functionally associated. To
avoid the impact of the imbalanced labels distribution,
we randomly selected negative pairs with the equal
number of the positive pairs. We then split all the
unique genes into training, validation and testing sets
with an proportion of 7: 1: 2. The pairs that the both
two genes belong to training set are used as training;
the pairs that the both two genes belong to validation
set are used as validation; the pairs that the both two
genes belong to testing set are used as testing. By doing
so, we avoid the possibility that the neural network
“memorizes” the likelihood of genes to be interacting
with any other genes. In total, the training dataset has
263,016 pairs (involving 8832 genes), while the valid-
ation and testing dataset have 5568 pairs (1173 genes)
and 21,448 pairs (2467 genes) respectively.

Results
Parameter tuning results by clusteredness
The parameter tuning results can be seen in Table 1.
As we can observe, the dimension of 200 at iteration 9
produced best gene embedding using clusteredness as
the target function (1.521). As result, we chose this em-
bedding for all following analyses.

Gene embedding groups similar genes into spatial
clusters
Using the first and second components from the t-SNE
representation, we produced a gene co-expression map,

Fig. 2 The architecture of gene-gene interaction predictor neural network (GGIPNN)
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based on which we explored the distribution of all hu-
man genes from our results (Fig. 3). A direct
visualization of the gene distribution revealed that the
majority of genes formed one single cloud while several
isolated groups of genes scattered around. We extracted
these gene islands and found they were mainly non-pro-
tein-coding genes. Island 2 was significantly populated
with the snoRNA genes (pink dots, p = 1.07 × 10− 72, Fish-
er’s Exact Test). Island 4, located to the very right of the
plot, mainly contains human cDNA/PAC clone genes.
microRNA genes (cyan dots) were mainly distributed in
island 2 (p = 3.99 × 10− 19), island 4 (p = 3.51 × 10− 73), and
island 5 (p = 2.64 × 10− 41). A group of ncRNAs which
start with “LOC” and are often uncharacterized split
the whole distribution into the left panel and the right
panel (red dots, Fig. 3). In the left panel, we observed a
cluster of open reading frames (yellow dots, Fig. 3) in
the human genome.

Tissue specific genes form spatial patterns in gene
embedding
We mapped genes with z-scores representing their
tissue-specific expression onto the gene co-expression
map. We observed clear clusters in several tissues such as
blood, skin, spleen, and lung (Fig. 4 and Additional file 1).
Genes with high tissue specificity in blood highlighted
two distant clusters. This is likely because that blood
samples are relatively more widely used in gene expres-
sion studies and blood-specific genes and their relation-
ships are thus better represented in our map. Tissues
that are biologically relevant showed similar patterns.
For example, tissues of female reproductive systems
presented graded and similar patterns, including breast,
ovary, and uterus. In these tissues, genes located in the
bottom part of the map in general showed increased
tissue specificity, compared to genes located on the top
part of the map (Fig. 4 and Additional file 1).

Table 1 Hyperparameter tuning using clusteredness as target function

Dimension Number of Iterations

1 2 3 4 5 6 7 8 9 10

50 1.428 1.444 1.467 1.470 1.487 1.465 1.473 1.479 1.475 1.462

100 1.415 1.467 1.488 1.491 1.498 1.501 1.519 1.486 1.480 1.490

200 1.403 1.463 1.491 1.498 1.495 1.482 1.470 1.488 1.521 1.509

300 1.392 1.443 1.472 1.473 1.473 1.509 1.474 1.513 1.479 1.480

Bold number denotes the largest number in that row

Fig. 3 Gene co-expression map generated from embedding reveals clusters of functionally related genes. F1 and F2 are the first and the second
dimensions of t-SNE. Red: LOC non-coding genes; cyan: microRNA; pink: small nucleolar RNA (snoRNA); yellow: undercharacterized ORFs
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Interestingly, we found a group of ribosomal genes (~
50) that were highly expressed in ovary and formed a
small cluster in our map. In addition, cognition and
neurology related tissues, such as brain (Additional file 1:
Figure S5), nerve (Additional file 1: Figure S14), and pi-
tuitary (Additional file 1: Figure S17), presented quite
diverse patterns. Nerve and pituitary are more similar
to each other, with a wide range of genes showing mod-
erate tissue-specificity distributed across the whole
map. In contrast, active genes in brain, which are
mainly distributed on the top part of the map, are
much smaller in numbers but showed much stronger
tissue-specificity (red dots, Additional file 1: Figure S5).
Notably, all tissues except the blood are expected to be
under-represented in the GEO data we used because
tissue samples are difficult to obtain for human.

Prediction of gene-gene interaction using embedded
vectors
The performances of GGIPNN with embedding matrix
are presented in Fig. 5. Using gene embedding matrix

derived from GEO but do not make them trainable, we
achieved an AUC of 0.720 over the test set, in which
there are no gene overlapping with the training set nor
the validation set. The AUC score is lower, 0.664, for the
GGIPNN with gene embedding matrix derived from
GEO as initial weights but trainable. This is understand-
able as the gene embedding matrix for the genes in the
training set was updated and leaving the gene embed-
ding matrix in the test set “out of sync” with that for the
training set, i.e., overfitting. As expected, the GGIPNN
with both untrainable and trainable random embedding
matrix have AUC scores (0.505 and 0.493) close to ran-
dom (0.5).

Discussion
In this work, we explored the idea of distributed repre-
sentation of genes using their co-expression. Purely
trained from their co-expression patterns in GEO, ex-
cept using MSigDB as hyper-parameter tuning, the
trained embedding matrix captures functional relation-
ships among genes. In the t-SNE generated gene

Fig. 4 Embedding reveals clusters of genes with tissue-specificity. Blood and spleen have clear patterns of tissue-specific genes. Reproductive
system (e.g., ovary) also showed distinguished genes. Genes not available in GTEx data were colored grey
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co-expression map of the embedding matrix, tight clus-
ters of non-coding genes are formed, while broader clus-
ters corresponding to tissue specific genes are also
visible.
The usefulness of gene embedding is beyond simply a

nice visualization. Using the gene embedding as the
basic layer for a multi-layer neural network, we can pre-
dict the gene-gene interaction with an AUC of 0.720.
This is an intriguing result because the only input to the
predictor is the names of the two genes. Therefore, the
distributed representation of the genes, i.e., their embed-
dings, are laden with rich semantic information about
their function.
The concept of concept embedding is not new to mo-

lecular biology. Works had been done to geometrical
embedding gene co-expression networks into 2-D pla-
nar networks [18]. Recently, in the spirit of embedding
everything, the work of bioVectors have been devel-
oped to embedding kmers in biological sequences into
distributed representation [19]. Yang et al. leveraged
the Doc2vec model to learn embedded representations
of protein sequences [20]. Similarly, a project named
‘Gene2vec’ is available embedding gene sequences [21].
However, to the best of our knowledge, our work is the
first to directly embed genes into distributed represen-
tations based on their natural context - their expression
and co-expression.
In this work, we are using the gene co-expression as

the definition of “context” for gene embedding. How-
ever, it is possible to extend the current work to include
other definitions of context for genes. For example,

co-occurrence of genes across species, gene-gene and
protein-protein interactions from experiments, and
co-occurrences of genes in literature, all can be a
source of information to define context.
The distributed representation of genes can enable

new applications. E.g., as illustrated in the Results, with
continuous representation of genes, it is possible to dir-
ect feed gene as inputs to neural networks, and can be
useful for any prediction tasks with gene names as input.
A limitation of current approach is the lack of higher

order semantics. In word embedding a surprising result
was that the direction of the embedding space can be
interpreted. For example, the vector representations of
the words King, Queen, Man, and Woman formed a
parallelogon. This higher order of semantics from NLP
modeling may be due to that the concepts between
these words were connected by certain relationships,
which is reflected by the occurrences of these words
being connected by certain verbs. To achieve this level
of semantic embedding of genes, future works model-
ing more information about genes are warranted.

Conclusions
We proposed a machine learning method that utilizes
transcriptome-wide gene co-expression to generate a
distributed representation of genes. We further dem-
onstrated the utility of our distribution by predicting
gene-gene interaction based solely on gene names.
We believe that this distributed representation of
genes could be useful for more bioinformatics
applications.

Fig. 5 ROC curves for gene-gene interaction predictor neural networks

Du et al. BMC Genomics 2019, 20(Suppl 1):82 Page 14 of 54



Additional file

Additional file 1: Supplementary figures (Figure S1 to Figure S27).
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