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Abstract

Background: Paratuberculosis is a contagious, chronic and enteric disease in ruminants, which is caused by
Mycobacterium avium subspecies paratuberculosis (MAP) infection, resulting in enormous economic losses
worldwide. There is currently no effective cure for MAP infection or a vaccine, it is thus important to explore the
genetic variants that contribute to host susceptibility to infection by MAP, which may provide a better
understanding of the mechanisms of paratuberculosis and benefit animal genetic improvement. Herein we
performed a genome-wide association study (GWAS) to identify genomic regions and candidate genes associated
with susceptibility to MAP infection in dairy cattle.

Results: Using lllumina Bovine 50K (54,609 SNPs) and GeneSeek HD (138,893 SNPs) chips, two analytical
approaches were performed, GRAMMAR-GC and ROADTRIPS in 937 Chinese Holstein cows, among which
individuals genotyped by the 50K chip were imputed to HD SNPs with Beagle software. Consequently, 15 and 11
significant SNPs (P<5x 10~ %) were identified with GRAMMAR-GC and ROADTDRIPS, respectively. A total of 10
functional genes were in proximity to (i.e, within 1 Mb) these SNPs, including /L4, IL5, IL13, IRF1, MyD88, PACSINT,
DEF6, TDP2, ZAP70 and CSF2. Functional enrichment analysis showed that these genes were involved in immune
related pathways, such as interleukin, T cell receptor signaling pathways and inflammatory bowel disease (IBD),
implying their potential associations with susceptibility to MAP infection. In addition, by examining the publicly
available cattle QTLdb, a previous QTL for MAP was found to be overlapped with one of regions detected currently
at 32.5 Mb on BTA23, where the TDP2 gene was anchored.

Conclusions: In conclusion, we identified 26 SNPs located on 15 chromosomes in the Chinese Holstein population
using two GWAS strategies with high density SNPs. Integrated analysis of GWAS, biological functions and the
reported QTL information helps to detect positional candidate genes and the identification of regions associated
with susceptibility to MAP traits in dairy cattle.
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Background

Paratuberculosis, also known as Johne’s disease (JD), is a
contagious, chronic and enteric disease in ruminants
caused by Mycobacterium avium subspecies paratuber-
culosis (MAP) [1]. Symptoms of the disease include diar-
rhea and weight loss that eventually leads to death. This
disease has a long period of incubation [2]. In cattle, JD
cannot be diagnosed until symptoms are observed be-
cause animals can have MAP in their systems, but not
have JD. It is always difficult to determine if an animal is
at risk of contracting JD by screening for MAP. Once a
cow shows symptoms of JD, there is no treatment so the
only effective means to get rid of the disease is to cull.
There is also no vaccine, so farmers cannot increase re-
sistance to JD within their herds, which causes huge eco-
nomic losses. The disease can easily be spread through
the farm from contact with MAP infected feces or milk
from infected cows. Changes in herd management could
help to reduce JD, but understanding resistance in cattle
will allow for better management of the disease. Gen-
omic selection for disease-resistant animals may be a
promising way to increase the ability of animals to resist
MAP infection. Exploring the genetic variants that con-
tribute to host susceptibility to infection by MAP is im-
portant both for animal genetic improvement programs
and for a better understanding of the underlying mecha-
nisms of disease.

Heritability estimates in Holstein and Jersey cows for in-
fection with MAP range from 0.031 to 0.283 [3-13]. By
employing a case-control design, several functional genes
have been reported to be associated with susceptibility to
MAP infection in cattle. This includes CLEC7A [14],
ILI0RA [15], ILI2RBI, ILI2RB2, IL23R, IFNGR2 [16],
NOD2 [17-19], PGLYRPI [20], SLC11A1 [21, 22], SP110
[23], TLRI [24, 25], TLR2 [24-26] and TLR4 [24, 25]. Mul-
tiple QTLs are located on BTA7 [27] and BTA20 [28].
These studies indicated that genetic factors contribute to
the susceptibility of MAP infection in cattle.

Nowadays, genome-wide association study (GWAS) is
a popular strategy to identify candidate genes for speci-
fied traits. Earlier GWAS studies for MAP infection in
Holstein cattle were based on serum ELISA, milk ELISA,
fecal culture test or a comprehensive test for MAP infec-
tion [29-37]. Various SNPs associated with susceptibly
to MAP infection are extensively distributed across all
autosomes in different Holstein cattle populations. Sev-
eral candidate genes for MAP infection were subse-
quently identified, such as EDN2, PRDMI1, LAMB4,
DLD, LDLRAD3, CACNAIB, TIMD4, ITK, C, BINIAI
and TDP2 [29-37]. Zare et al. reported 9 SNPs on
BTA3, BTA6, BTA17 and BTA23 in the US Jersey cattle
population and suggested SLCI7A1, UBD, HIVEPI,
CCDC17, ZNF684, UBE2L3, UBE2K, FAMI109A and
FAMSC genes as candidates for susceptibly to MAP
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infection [35]. In the present study, the objectives were
to identify genetic markers and genomic regions that are
associated with susceptibility to MAP infection by per-
forming a GWAS in Chinese Holsteins, and to provide
further molecular information for the MAP resistance
breeding program.

Methods

Data description

A total of 8214 Chinese Holstein cows from 7 dairy
farms belonging to the Beijing Sanyuan Dairy Farm Cen-
ter were fed under the same management throughout
this study. We collected a 500 pL blood sample from the
caudal vein of each cow and performed a regular quar-
antine inspection of the farms during September 2014.
Serum extracted from blood samples were stored at 4 °C
until testing; within 5 days after collection. The commer-
cially available, ELISA kit (IDEXX Laboratories, Inc.,
Westbrook, ME, USA) was used according to the manu-
facturer instructions to measure the antibody levels of
each serum sample. The MAP status of an animal was
expressed as a percentage of the sample to positive ratio
(S/P) with the formula: S/P ratio = [(optical density (OD)
of the sample — OD of the negative control) / (OD of
positive sample — OD of the negative control)], where
<0.45 is negative; 0.45 < S/P < 0.55 is suspect; S/P > 0.55
is positive. ELISA suspect results were excluded because
of their uncertainty. Out of the 8214 detected cows, 185
positive individuals (case) and 760 negative individuals
(control) from 6 herds were used for GWAS. ELISA re-
sults were employed as a binary trait (0 = negative, 1=
positive).

Genotyping

The individuals in this study were divided into 2
sub-groups for genotyping. Five hundred and thirty three
cows belonging to the first sub-group were genotyped
with the Illumina Bovine SNP50 BeadChip (54,609
SNPs, Illumina, San Diego, CA, USA) after extracting
DNA from whole blood using routine procedures. DNA
was isolated from whole blood with a commercially
available kit, the DP318 Blood DNA Kit (Tiangen Bio-
tech Co., China). The DNA of the remaining 412 cows
in the second sub-group were extracted from hair by
GeneSeek with QIAamp® DNA Mini Kit (QIAGEN Inc.,
Valencia, CA, USA) and then genotyped with the Gene-
Seek Genomic Profiler HD v2 (138,893 SNPs, GeneSeek,
Lincoln, NE, USA). The genotype data were deposited in
the Additional files (Additional files 1 and 2).

Imputation and quality control

To make full use of SNPs originating from the GeneSeek
Genomic Profiler HD v2 (GeneSeek), individuals geno-
typed by the Illumina Bovine SNP50 BeadChip were
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imputed to GeneSeek Genomic Profiler HD v2. Imput-
ation was performed using BEAGLE 3.3.2 [38] default
options. Allelic R* was estimated as an indicator of im-
putation accuracy based on the genotype probabilities.

To further evaluate imputation accuracy, we randomly
selected 100 cows genotyped by the high-density chip,
obtained the common SNPs between the two panels,
and masked genotypes of SNPs left. We classified this
small subset of cows as the study population, while the
remaining cows genotyped by the high-density panel
were classified as the reference population. After imput-
ation, we compared the imputed and masked actual ge-
notypes of the selected 100 cows to calculate the
percentage of genotypes that are consistent between
them.

Then we implemented PLINK [39] and removed SNPs
with call rates <95%, minor allele frequencies <0.01, a
deviation from Hardy-Weinburg equilibrium (HWE) P
values <107° and>5% missing genotypes. A dataset
containing 109,607 SNPs and 937 animals (182 cases
and 755 controls) was used for further analysis. All SNP
positions were determined according to the Bos taurus
UMD 3.1 assembly [40].

Population stratification

Differences in allele frequencies between subpopulations
of admixed populations can lead to false association in a
GWAS [41]. In order to determine whether stratification
exists in our study population, a principle component
analysis (PCA) was performed by GCTA 1.24 [42] and
results were visualized by R 3.3.1 [43].

GWAS

GRAMMAR-GC

We performed a GWAS using the Genome-wide Rapid
Association using Mixed Model and
Regression-Genomic Control (GRAMMAR-GC) ap-
proach [44, 45], a single-marker method implemented
within the GenABEL package [46] for R [43]. This ap-
proach can account for the potential population struc-
ture and infer relationships using SNP data without
pedigree information. There have been multiple GWAS
studies in cattle that utilized this approach [31, 34-37].
GRAMMAR-GC is comprised of three steps that use the
regression of phenotypes on the genotypes of individuals
for one SNP at a time. First, to account for familial de-
pendence among individuals, phenotypes were corrected
by conducting a polygenic analysis using a genomic kin-
ship matrix based on the SNP genotypes. Residuals from
the polygenic analysis were then used as dependent
quantitative traits for association analysis of each SNP
with a linear regression model. Finally, genomic control
(GC) was applied to correct the test statistic using the
genomic inflation factor (\), which is the regression
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coefficient of the observed statistic on the expected stat-
istic. We performed an association test for each SNP
based on the following linear mixed model:

y=Wa+xp+u-+te,

where y is the liability vector for case/control observa-
tions; W is a matrix of covariates (fixed effects that con-
tain herd and parity); a is a vector of the corresponding
coefficients including the intercept; x is a vector of geno-
types of a marker at the locus tested; P is the effect size
of the marker; u is a vector of random polygenic effects
with a covariance structure as B~N (0,V,), Vg is the
polygenic additive variance; € is a vector of residual er-
rors with e~N (0,IV,), I is the identity matrix, and V, is
the residual variance component.

In general, for GRAMMAR-GC, the value T2/ of
each SNP with one-degree freedom is compared with x?
to determine whether the locus is significantly associated

with the trait. Here 77 = [3; / var(/:?k), where /3?,( is the ef-
fect of the K SNP. The deflation factor { is estimated as
{ = median (T3, T%,..., T%)/0.456.

ROADTRIPS

A second GWAS approach was implemented with
ROADTRIPS 2.0 [47]. An important advantage of
ROADTRIPS 2.0 is that it can analyze data with pedigree
information and population admixture simultaneously.
Based on the genome-wide SNP data, an empirical co-
variance matrix was constructed to adjust for potential
population admixture and relatedness among individuals
and maintain the advantage of utilizing known pedigree
information when available. The ROADTRIPS 2.0 test
statistic based on y? distribution for each SNP takes the
form:

(v7y)’
Fviwy
Here Y=(Y;, Yo, ..., Y,)F, is genotype vector at a test

SNP for n individuals (coded using an allelic coding). V
is a vector of length n coding for phenotype information

Xi

(disease status) and known relationships. "W is an esti-
mate of the null variance/covariance matrix of Y. 6> is
an estimate of Var(Y) in an outbred population and ¥ s
an estimated matrix used to simultaneously adjust for
unknown relatedness/pedigree relationship errors and
population stratification.

ROADTRIPS 2.0 provides three association tests
named RM test, Ry test and RW test. According to the
authors’ recommendation, the RM test is the most
powerful among the three tests when pedigree informa-
tion is available. Compared with the Ry test and the RW
test, the RM test can use the phenotypic information of
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individuals with missing genotypes provided that they
have a genotyped relative at the tested marker. Consider-
ing the features of the RM test and the data structure of
this study being based on a corrected pedigree, we
adopted the RM test for association analysis. P values of
SNPs were derived from an asymptotic chi-square distri-
bution with 1 degree of freedom. In addition, the fixed
effects used here was the same as above.

Following the suggestion of the Welcome Trust Case
Control Consortium [48], two P value thresholds of 5 x
1077 and 5x 107> were considered as genome-wide
“strong” and “moderate” association respectively.

Gene contents and functional annotation

Using BioMart in the Ensembl database (Ensembl Genes
92), genes within 1 Mb of the significant SNPs were re-
trieved based on the UMD 3.1 assembly. To provide
insight into the functional enrichment of genes identi-
fied, we carried out GO (Gene Ontology) and Pathway
analysis using KOBAS 3.0 [49]. KOBAS annotates a set
of genes with putative pathways and disease relation-
ships by mapping to genes with a known annotation. In
addition, we compared the regions within 1 Mb of the
significant SNPs with the reported cattle to QTLs for JD
tolerance and MAP susceptibility in the Animal QTL
database (http://www.animalgenome.org/cgi-bin/
QTLdb/index) [50].

Results

Imputation accuracy

After imputation, we discarded SNPs with allelic R* <
0.85 and found an average allelic R* of 96.7% for im-
puted genotypes. Then we took a small subset including
100 cows genotyped by the high-density chip for calcu-
lating the imputation accuracy. Finally, the percentage of
consistent genotypes was 97.03%, which suggested a high
accuracy of imputation.

GWAS based on GRAMMAR-GC

With GCTA 1.24, a slight population substructure was
revealed (Additional file 3: Figure S1). The inflation fac-
tor (M), estimated to be 0.9399 (SE =0.0002), indicates
population substructure was a minor issue and that our
results can be accepted for further analysis. The
GC-corrected P values for the majority of SNPs corre-
sponded well to the expected P values under the null hy-
pothesis of no association. However, a few departures
which mean the P values of these SNPs were higher than
the expected P values under the null hypothesis indi-
cated associations with the trait being studied (Add-
itional file 4: Figure S2). As shown in Tables 1, 2 SNPs
passed the strong association threshold and 13 SNPs
passed the moderate threshold (Fig. 1).
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Table 1 Results of GRAMMAR-GC genome-wide association
analysis for susceptibility to MAP infection (df =1)

SNP BTA Position P value

BovineHD2200003382 22 11,359,993 1.13E-14
BovineHD0700017491 7 60,947,866 2.76E-09
BovineHD0700007000 7 25,403,106 2.54E-06
BovineHD2300007824 23 28,173,531 6.90E-06
BTB-00030699 1 61,806,466 8.85E-06
BovineHD0800002130 8 6,659,432 1.18E-05
BovineHD0200036516 2 125,910,848 1.49E-05
Hapmap44402-BTA-73818 13 27,398,154 1.64E-05
BovineHD4100015938 23 8,975,441 1.98E-05
ARS-BFGL-BAC-29490 23 20,166,517 2.75E-05
BovineHD2300009447 23 32,516,000 3.82E-05
ARS-BFGL-NGS-36626 18 54,052,117 4.50E-05
BovineHD0700006647 7 24,259,310 4.62E-05
BovineHD1800010086 18 33,293,455 4.62E-05
BovineHD2700011748 27 40,498,309 4.83E-05

GWAS based on ROADTRIPS

RM test was implemented for the association analysis.
As shown in Additional file 5: Figure S3, the P values for
the majority of SNPs exhibited a good correspondence
to the expected values with a limited number of SNPs
indicating their associations with the studied trait. In
total, 4 and 7 SNPs passed the threshold of strong and
moderate association, respectively (Fig. 2, Table 2).

Gene contents and functional annotation

There were 15 significant SNPs detected by
GRAMMAR-GC in total. Utilizing BioMart in the
Ensembl database (Ensembl Genes 92), we obtained the
232 IDs for genes located within or overlapped with the
regions nearby these SNPs (<1 Mb) (Additional file 6:

Table 2 Results of ROADTRIPS genome-wide association
analysis for susceptibility to MAP infection (df = 1)

SNP BTA  Position P value

BTB-01281916 3 71,760,025  1.21E-08
Hapmap49590-BTA-38619 16 35765411  437E-08
ARS-BFGL-NGS-25380 1 2,260,123 1.98E-07
BTB-00452217 11 2,983,521 281807
BTA-79476-no-rs 7 60,933,059  9.71E-07
BovineHD0700006447 7 23495415  2.10E-06
BovineHD0200035709 2 123,174,023  7.90E-06
ARS-USDA-AGIL-chr6-117,920,790-000733 6 117,920,790  1.87E-05
BovineHD2400014963 24 52,857,741 3.33E-05
Hapmap39753-BTA-50189 20 28,186,842  4.80E-05
BovineHD1300015832 13 55,734,067  4.92E-05
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Table S1). Based on the 11 significant SNPs detected by
ROADTRIPS, 123 functional gene IDs were identified
(Additional file 7: Table S2). After the combination of re-
sults, a total of 343 genes were obtained, including 283
protein-coding genes, 21 miRNA genes, 6 pseudogenes,
12 snRNA, 15 snoRNA, 4 rRNA and 2 miscRNA (Add-
itional file 8: Table S3).

GO and Pathway analysis were performed by KOBAS
3.0 to determine the biological functions of the 343
genes. Finally, 348 significant GO terms were detected,
including those related to immune response (P < 0.05),
such as immune response-regulating signaling pathway,
regulation of leukocyte proliferation and immune
response-activating signal transduction. Fifteen signifi-
cant pathways were found, including those related to im-
mune responses (P < 0.05) such as autoimmune thyroid
disease and enrichment of the interleukin signaling path-
way (Additional file 9: Table S4). In addition, T cell re-
ceptor signaling pathway [51] and inflammatory bowel
disease (IBD) were detected but not significant.

Quantitative traits locus overlapped with SNPs

Until now, 6 JD tolerance and 161 MAP susceptibility
QTLs have been reported in the cattle QTL database
(http://www.animalgenome.org/cgi-bin/QTLdb/BT/
index). After comparing these QTLs with the regions
within 1 Mb of the 26 significant SNPs, 2 QTLs identi-
fied before [30, 37] located in BTA23 (~ 32.5Mb) for
MAP susceptibility were found. This implies the func-
tional genes, such as TDP2 (tyrosyl-DNA phospho-
diesterase 2) around these SNPs are likely candidates for
MAP susceptibility traits.

Discussion
There have been multiple GWASs conducted in differ-
ent cattle population [29-37], and some candidate loci
and genes have been identified. Although these studies
found evidence of genomic regions associated with MAP
infection, the consistency was not high. The genomic re-
gions and genes regarded as candidates for the target
traits were variable among previous studies. The differ-
ence between genomic regions identified by different
studies is because of different trait definitions except for
statistical methodologies [52]. There were four main def-
initions for infection cases in previous studies: ELISA
positive [27, 31, 33], fecal culture positive [29], tissue
culture positive [29] and comprehensive testing. Com-
prehensive testing includes tissue culture positive and
fecal culture positive [29], ELISA positive or fecal posi-
tive [30], and ELISA positive or tissue culture positive
[34].

We found 15 SNPs passing the threshold (5x 107 °)
using GRAMMAR-GC with BTA23 owning the most
SNPs. The most significant SNP, BovineHD2200003382
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(P=1.13E-14) was identified on BTA22 (Table 1). Simi-
larly, 11 SNPs passed the threshold (5x10™°) using
ROADTRIPS with the most significant SNP,
BTB-01281916 (P = 1.21E-08) identified on BTA3 (Table
2). There was no common SNP sharing between these
two methods because of some possible reasons. Firstly,
different computational principles can cause different
significant SNPs. It is common that the discrepancy
caused by this reason, such as the report of Alpay et al.
[36] and Sallam et al. [37]. Both ROADTRIPS and
GRAMMAR-GC can correct sample structure. The
ROADTRIPS program uses the quasi-likelihood methods
(implemented in the MQLS and similar statistics), to ob-
tain known kinship coefficients, which then together with
the empirical covariance matrix estimated from genomic
data to correct for known and unknown relatedness and
population  structure [47]. Instead of pedigree,
GRAMMAR-GC program uses genomic kinship matrix
estimated through genomic marker data to adjust for aver-
age allele sharing or relatedness among sample individuals
and thus remove genetic stratification [44, 45].

Secondly, JD is affected by multiple genetic loci and
SNPs identified using different methods were polygenic
in present study. Those SNPs with large effect may be
captured more easily by multiple GWAS methods. In
addition, the size of study population may cause discrep-
ancy. The more individuals, the higher the accuracy of
GWAS result. So it seems normal that different methods
identifying different SNPs in present study. Thus, it seems
normal that different methods identify different SNPs.

While no SNPs were identified by two methods, but
the SNPs between the two methods were located close
to each other on the same chromosome. For example on
BTA2 ~274Mb was found between Bovi-
neHDO0200036516  (GRAMMAR-GC) and  Bovi-
neHD0200035709 (ROADTRIPS), on BTA7 ~14.81 Kb
was found between BovineHD0700017491 (GRAM-
MAR-GC) and BTA-79476-no-rs (ROADTRIPS), on
BTA7 ~191Mb was found between Bovi-
neHD0700007000 (GRAMMAR-GC) and  Bovi-
neHDO0700006447 (ROADTRIPS) and ~0.76 Mb was
found between BovineHD0700006647 (GRAMMAR-GC)
and BovineHD0700006447 (ROADTRIPS). Combining
the results of these two methods, 26 significant SNPs
were obtained. The most SNPs were found on BTA7
followed by BTA23.

Among the 26 significant SNPs detected by two
methods, BovineHD0700006447 (23.5 Mb) located on
BTA7 in this study was close to SNPs detected by Pant
et al. (20.6 Mb ~ 22.3 Mb) [27]. Genes nearby this SNP
within less than 1 Mb were IL4, IL5, IL13 and IRFI1. The
genes, [L4 (interleukin 4), IL5 and IL13 are type 2 cyto-
kines, that may be the predominant cytokines produced
by CD4+ and other T cells in lymph nodes during the
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subclinical infection of MAP [53]. As previously re-
ported [54—56], in the clinical infection, the bovine MAP
infection disease was characterized by a gradual shift in
the immune responses from cell-mediated immune re-
sponse to antibody mediated immune response while
IL4, IL5 and IL13 «can promote the T2
antibody-mediated immune response. Therefore, these
three genes might play important roles in the pathogen-
esis of the disease [27]. IRFI, interferon regulatory factor
1, plays an important role in many immune responses
including the Type 1 (Tpl) cell-mediated immune re-
sponse. Cell mediated immunity is an important host
defense mechanism against intracellular pathogens in-
cluding MAP [57]. In addition, it can regulate the ex-
pression of many immune genes such as IL6, IL12B, and
inducible nitric oxide synthase (NOS2) that function in
the pathogenesis of human IBD [58-60].

The most significant SNP, BovineHD2200003382 de-
tected by GRAMMAR-GC was located at 11.3Mb on
BTA22. Genes within 1Mb of this location includes
MyD88 (myeloid differentiation primary response gene
88) which encodes a cytosolic adapter protein that plays
a central role in the innate and adaptive immune re-
sponse. MyD88 functions as an essential signal trans-
ducer in the interleukin-1 and Toll-like receptor
signaling pathways [61].

SNP BovineHD4100015938 on BTA23 (8.98 Mb) was
close to ARS-BFGL-NGS-109956 (7.84Mb) and
ARS-BFGL-NGS-115177 (7.87 Mb) reported by Zare et
al. [35]. The genes near to these two SNPs included
PACSIN1 and DEF6 that are related to immune re-
sponse. PACSINI (protein kinase C and casein kinase
substrate in neurons 1), belonging to a family of cyto-
plasmic phosphoproteins, participates in the regulation
of endocytosis [62] and regulates the TLR7/9-mediated
type I interferon response in plasmacytoid dendritic cells
[63]. DEF6 (DEF6, guanine nucleotide exchange factor)
is a guanine nucleotide exchange factor (GEF) for RAC
(MIM 602048) and CDC42 (MIM 116952) that are
highly expressed in B and T cells [64]. SNP Bovi-
neHD2300009447 (32.5 Mb) located on BTA23 was very
close to ARS-BFGL-NGS-1938 (32.6 Mb) reported by
Zare et al. in Jersey cattle [35], and close to ss105264543
(33.6 Mb) reported by Minozzi et al. in Holstein cattle
[34]. Gene within 1 Mb of this region was TDP2 (tyro-
syl-DNA phosphodiesterase 2). This gene encodes a
member of a superfamily of divalent cation-dependent
phosphodiesterases. The encoded protein associates with
CD40, tumor necrosis factor (TNF) receptor-75 and
TNF receptor associated factors (TRAFs) that inhibits
nuclear factor-kappa-B activation. In addition, TDP2 has
sequence and structural similarities with APE1 endo-
nuclease, which is involved in both DNA repair and the
activation of transcription factors [65].
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Interleukin, T cell receptor signaling pathway and
inflammatory bowel disease (IBD) pathways are re-
lated to immune or inflammatory response. Two
genes including ZAP70 and SRE except for IL4, ILS,
IL13 and MyD88 stated above, were involved in the
immune biological processes. ZAP70 (zeta chain of
T-cell receptor associated protein kinase 70) encodes
an enzyme belonging to the protein tyrosine kinase
family that plays a role in T-cell development and
lymphocyte activation. This enzyme, phosphorylated
on tyrosine residues upon T-cell antigen receptor
(TCR) stimulation, functions in the initial step of
TCR-mediated signal transduction in combination
with the Src family kinases, Lck and Fyn and plays an
essential role in the process of thymocyte develop-
ment [66]. In addition, mutations in this gene cause
selective T-cell defect, a severe combined immuno-
deficiency disease characterized by a selective absence
of CD8-positive T-cells [67]. Leite et al. investigated
the expression of ZAP70 in cows naturally infected
with MAP and revealed that the surface expression of
ZAP70 was decreased in CD4+ T cells of both sub-
clinical and clinical animals indicating a change in T
cell phenotype with disease state [68]. CSF2 (colony
stimulating factor 2), also known as CSF and GMCSE,
encodes a cytokine that controls the production, dif-
ferentiation, and function of granulocytes and macro-
phages. This gene has been localized to a cluster of
related genes at chromosome region 5q31 that are
known to be associated with interstitial deletions in
the 5q- syndrome and acute myelogenous leukemia.
Other genes in the cluster include those encoding in-
terleukins 4, 5, and 13 [69].

Furthermore, we found a region nearby the Bovi-
neHD2300009447 (BTA23, 32.5Mb) overlapped with
one QTL associated with MAP susceptibility. Comb-
ing this information with related genes found above,
the 32 ~33 Mb region of BTA23 may be a case of a
genomic region associated with MAP infection, which
corresponds to the report of Zare et al. [35].

The present study focused on the potential function
of 10 candidate genes. Future analysis is necessary to
investigate the biological processes and molecular
mechanism of these genes to anchor immune alter-
ations and possible triggers that result in clinical
paratuberculosis.

Conclusions

We performed a case-control GWAS for MAP infec-
tion in Chinese Holstein cattle using two statistical
approaches, GRAMMAR-GC and ROADTRIPS.
Twenty-six significant SNPs located on 15 chromo-
somes were detected based on data after imputation.
Ten genes within less than 1 Mb of these SNPs were
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involved in immune response pathways, implying their
potential associations with susceptibility to MAP.
These genes included IL4, IL5, IL13, IRF1, MyD8S,
PACSIN1, DEF6, TDP2, ZAP70 and CSF2. By examin-
ing the QTLdb, the 32 ~ 33 Mb region of BTA23 may
be a genomic region associated with MAP infection.
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