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Abstract

Background: The microbial community of the built environment (BE) can impact the lives of people and has been
studied for a variety of indoor, outdoor, underground, and extreme locations. Thus far, these microorganisms have
mainly been investigated by culture-based methods or amplicon sequencing. However, both methods have limitations,
complicating multi-study comparisons and limiting the knowledge gained regarding in-situ microbial lifestyles. A greater
understanding of BE microorganisms can be achieved through basic information derived from the complete genome.
Here, we investigate the level of diversity and genomic features (genome size, GC content, replication strand skew, and
codon usage bias) from complete genomes of bacteria commonly identified in the BE, providing a first step towards
understanding these bacterial lifestyles.

Results: Here, we selected bacterial genera commonly identified in the BE (or “Common BE genomes”) and compared
them against other prokaryotic genera (“Other genomes”). The “Common BE genomes” were identified in various climates
and in indoor, outdoor, underground, or extreme built environments. The diversity level of the 16S rRNA varied greatly
between genera. The genome size, GC content and GC skew strength of the “Common BE genomes” were statistically
larger than those of the “Other genomes” but were not practically significant. In contrast, the strength of
selected codon usage bias (S value) was statistically higher with a large effect size in the “Common BE
genomes” compared to the “Other genomes.”

Conclusion: Of the four genomic features tested, the S value could play a more important role in understanding the
lifestyles of bacteria living in the BE. This parameter could be indicative of bacterial growth rates, gene expression, and
other factors, potentially affected by BE growth conditions (e.g., temperature, humidity, and nutrients). However, further
experimental evidence, species-level BE studies, and classification by BE location is needed to define the relationship

strand skew, Codon usage bias

between genomic features and the lifestyles of BE bacteria more robustly.
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Background

The microbial community of the built environment (BE)
is an important player in human-microbe interactions.
As such, in order to build urban environments that
benefit human well-being, it is necessary to study the re-
lationship between the BE and microbial communities.
As of 2016, about 54% of the world’s population is living
in urban areas [1], and by 2050, this number is expected
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to increase to 66% [2]. Moreover, people spend about
87% of their time indoors and about 6% in cars [3], sug-
gesting that the indoor microbial community can play
an important role in the lives of individuals. In fact, the
indoor microbial community has already been shown to
affect occupant health (e.g., respiratory health [4] and
asthma [5]), including adverse effects on mental health
[6], and can be influenced by building design (e.g., venti-
lation), occupants, and usage [7-9]. In turn, individuals
can easily influence the surrounding microbial commu-
nity with their own personal microbiome, especially
through physical contact [10-12] and movement [13],
leaving a microbial fingerprint in the built environment
[9, 14, 15]. The microbial community of the BE also
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extends to the outdoor (e.g., green roofs [16] and parks
[17]), underground (e.g., transit systems [18-20]), and
extreme environments (e.g., cleanrooms [21] and
space [21, 22]).

The BE microbiome is slightly influenced by environ-
mental conditions, mainly temperature, humidity, and
lighting [23-28]. Several other building parameters have
been tested previously (e.g., room pressure, CO, concen-
tration, surface material) but were not found to play a
significant role in the microbial community composition
[29, 30]. Moisture levels are widely known to affect mi-
crobial abundances and activity, especially when water
damage occurs (e.g., flooded homes had higher abun-
dances of Penicillium [31]). However, many indoor built
environments are largely devoid of water and nutrients,
and it is likely that geographical location, on the scale of
cities or even at larger scales [32], plays a more import-
ant role in the microbiome composition [30].

The relationship between humans and microorganisms
in the BE has moved from investigations limited to
culture-based methods to approaches involving next-
generation sequencing. One of the first publications on
an indoor microbial community occurred in 1887 [33],
which expounded a positive correlation between the
presence of indoor microorganisms and death rate. Since
the advent of high-throughput sequencing, several stud-
ies have used amplicon sequencing to gain more infor-
mation about the microbial community of the BE,
including the ribosomal RNA region (e.g., 16S rRNA)
for Bacteria and Archaea and the internal transcribed
spacer (ITS) region for Fungi [29]. The microbial com-
munities of a variety of locations have been analyzed,
such as clean rooms [21], operating rooms [34], plumb-
ing systems [35], universities [36], and transit systems
[18-20]. While these studies have enhanced our under-
standing of the relationship between humans, microor-
ganisms, and the built environment [25, 29, 37], there
are limitations to amplicon sequencing, including bias
with sequencing primers, targeted amplicon region,
DNA extraction protocols, and sequencing platforms
[38], which make multi-study comparisons difficult.

Improving our understanding of microbial commu-
nities in the BE can be achieved by analyzing draft or
complete genomes derived from genomic and metage-
nomic studies [39]. There have been several published
genomes of bacteria collected from the BE, such as
Dermacoccus nishinomiyaensis [40], Arthrobacter sp.
[41], and Gordonia sp. [42], among others [43-53].
These data provide detailed information on individual
bacterial genomes and can be indicative of a bacteria’s
lifestyle or ecological niches [54, 55]. For example,
comparative genomics of Lactobacillus species, a
common microorganism in the human vagina which
is mostly absent from other habitats, revealed that the
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genomes of the vaginal species were smaller with
lower GC (guanine and cytosine) content compared
to the non-vaginal species [56]. The observed genome
size reduction suggests that the vaginal Lactobacillus
species has “some degree of adaptation to a
host-dependent lifestyle” and is commonly observed
in symbiotic microorganisms [56]. However, the indi-
vidual organismal genome information (e.g., genome
size and nucleotide composition) has not been inves-
tigated in depth for microorganisms in the BE.

In the present study, we performed genome sequence
analyses for bacteria that have been commonly identified
in BEs, and focused on genomic features, including gen-
ome size, GC content, replication strand skew, and
codon usage bias. This information could be useful for
the characterization of the microbial members present
in BEs, and in the future, these basic features might be
useful to help predict the microorganisms likely to adapt
to BE conditions.

Results

Bacteria commonly identified in the built environment
Built environments (BEs) are occupied by various micro-
organisms and are also important transitions that link
the natural world, humans, and the urban environment.
The indoor microbiome has already been shown to in-
fluence human health [4-6], and a building’s design and
operation can play a major role in the spread of micro-
organisms, including pathogens [25]. For example, air
and water via ventilation and plumbing systems, respect-
ively, are major routes for microbial dispersal through-
out a BE [25]. Since BEs are designed to improve the
lives of the individuals cohabiting them, it is important
to understand the relationship between the BEs and the
microorganisms therein.

In this study, we selected 28 bacterial genera that
have been commonly identified in the BE at the gen-
era level from 54 publications (Additional file 1:
Table S1-S2), ranging from various locations around
the world (Additional file 2: Figure S1) and covering
four major BE locations (indoor, outdoor, under-
ground, and extreme), several sub-locations (e.g. hos-
pital, residential, recreation, space, subway, and
cleanroom), climates, and 3 sample types (surface,
air, and water) (Table 1, Additional file 1: Table
S3-S5). The International Space Station (ISS) is in-
cluded as a built environment located in space (or
low Earth orbit), and the microorganisms observed
in this location would be affected by microgravity
and increased radiation. The list of common BE bac-
terial genera (“Common BE genera”) was obtained by
selecting genera that have been identified in over
10% of the total publications (#>6 publications) and
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Table 1 Locations in the BE where “Common BE genera” were identified. The locations where “Common BE genera” were identified
are listed for the 28 genera. This list is based on the 54 publications used for this study (see Additional file 1: Table S2)

Bacterial Genera

Environment Type in BE

Ref

Acinetobacter

Arthrobacter

Bacillus

Bradyrhizobium

Brevundimonas

Burkholderia

Clostridium

Corynebacterium

Delftia

Enterobacter

Enterococcus

Escherichia

Kocuria

Lactobacillus

Methylobacterium

Microbacterium

Clinical (e.g., hospitals), Residential (e.g., bathroom),
Extreme (e.g., spacecraft, cleanroom. ISS),
Subway (e.g., underground touchscreens). Public recreation

(e.g., gym), Hotel bathroom, Office workspace, University (e.g., classroom)

Extreme (e.g, cleanroom, ISS), Residential dust, Subway air

Clinical (e.g., hospitals), Residential (e.g., bathroom),
Extreme (e.g., spacecraft, cleanroom, ISS),

Subway, Public recreation (e.g., gym), Hotel bathroom, Office workspace

Extreme (e.g., spacecraft, cleanroom, ISS), Residential (e.g., wall surfaces),

Clinical (e.g., hospital bathroom),
Office workspace, Hotel bathroom

Clinical (e.g., hospital),
Extreme (e.g., spacecraft, cleanroom, ISS),
Subway, University classroom

Extreme (e.g., spacecraft, cleanroom, ISS),
Residential (e.g., bathroom),

Clinical (e.g., hospital),

Hotel, bathroom Public recreation (e.g., park, gym)

Residential (e.g., kitchen),
Extreme (e.g., cleanroom, ISS),
Subway

Clinical (e.g., hospitals),

Residential (e.g., dust),

Extreme (e.g., spacecraft, cleanroom, ISS),

Subway (e.g, ticketing machines, underground touchscreens),
Office, workspace University (e.g., classroom, dormitory)

Extreme (e.g., spacecraft, cleanroom, ISS), Clinical (e.g., hospital)

Extreme (e.g., spacecraft, ISS),
Subway (e.g., outdoor and underground surfaces),
University (e.g., classroom,)

Extreme (e.g., cleanroom, ISS),

Clinical (e.g., hospital),

Subway (e.g., outdoor and underground surfaces),
Public recreation (e.g., park)

Clinical (e.g., hospitals),

Residential (e.g., kitchen, bathroom),
Extreme (e.g., IS9),

Subway (e.g., passenger area),

Public recreation (e.g., gym), Hotel bathroom

Residential (e.g., indoor surface),
Extreme (e.g., cleanroom, ISS),
Subway (e.g., underground air),
Clinical (e.g., hospitals)

Clinical (e.g., nursing home),

Residential (e.g., indoor air, surface dust),
Extreme (e.g., cleanroom, ISS),

Subway (e.g., touchscreens),

Office workspace)

University (e.g., classroom, dormitory, bathroom)

Clinical (e.g., hospitals),

Residential (e.g., bathroom),

Extreme (e.g., spacecraft, cleanroom, ISS),

Subway (e.g., touchscreens),

Office (e.g., dust), University (e.g. door handle), Hotel bathroom

Extreme (e.g., spacecraft, cleanroom, ISS), Subway
(e.g., underground air)

[18, 30, 32, 36, 133-144]

[21, 22, 141, 145-149]

[18, 21, 22, 133, 135,
136, 138, 139,
141-143, 147, 148, 150-156]

[135, 136, 139, 141, 150,
156-159]

[12,18, 21, 22, 135,
141, 143, 157, 160]

[112,136, 137, 141,
146, 149, 155, 161]

[20, 21, 138, 141, 154,
156, 162]

[10, 12, 20, 21, 32, 36,
133,135, 138,

140-145, 150, 153-156,
158, 163-166]

[21,135, 137,139,
141, 146, 156,
157,160, 163]

[18, 135, 137, 156,
164, 167]

[18, 30, 137, 139,
142,153, 161]

[136, 137, 153, 157, 160,
162, 168, 169]

[21, 22, 112, 138, 142-144,
147, 148, 167]

[10, 12,13, 21, 30, 32, 36,
141, 144, 145,
150, 156, 165, 166]

[13, 21, 22,32, 36, 135,
136, 139, 141,

144, 146, 154, 157,
163, 167, 170]

[21, 22,135, 139, 147, 148]
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Table 1 Locations in the BE where “Common BE genera” were identified. The locations where “Common BE genera” were identified
are listed for the 28 genera. This list is based on the 54 publications used for this study (see Additional file 1: Table S2) (Continued)

Bacterial Genera

Environment Type in BE

Ref

Micrococcus

Mycobacterium

Neisseria

Paenibacillus

Prevotella

Propionibacterium

Pseudomonas

Ralstonia

Sphingomonas

Staphylococcus

Stenotrophomonas

Streptococcus

Clinical (e.g., hospitals), Residential (e.g., indoor air, surface),
Extreme (e.g., spacecraft, cleanroom, ISS),
Subway (e.g., underground air)

Clinical (e.g., hospitals), Residential (e.g., indoor air, surface),
Extreme (e.g., cleanroom), Subway (e.g., outdoor air), Hotel
(e.g., showerhead),

Public recreation (e.g., gym)

Clinical (e.g., hospitals), Residential

(e.g., dust),

Extreme (e.g., IS9),

Hotel (e.g., showerhead), Public recreation
(e.g., gym), Office workspace

Extreme (e.g., space station, ISS), Subway (e.g., underground air)

Residential (e.g., wall surface, dust),
Extreme (e.g., IS9),
Office workspace, University (e.g., dormitory)

Clinical (e.g., nursing home), Residential (e.g., kitchen, bathroom),
Extreme (e.g., cleanroom, space station),

Subway (e.g., indoor air),

University (e.g., classroom, door handle)

Clinical (e.g., hospitals), Residential (e.g. kitchen, bathroom),
Extreme (e.g., cleanroom, space station, ISS),

Subway (e.g., underground air),

University (e.g., door handle),

Hotel (e.g., showerhead), Public recreation (e.g., gym),
Office (workspace)

Clinical (e.g., hospitals), Residential (e.g., indoor air),
Extreme (e.g., cleanroom, space station, ISS)

Clinical (e.g., hospitals), Residential (e.g., bathroom),

Extreme (e.g., cleanroom, space station, ISS),

Subway (e.g, ticketing machines, underground touchscreens),
University (e.g., classroom), Hotel (e.g., showerhead),

Public recreation (e.g., gym, park, parking lot),

Office (e.g., dust)

Clinical (e.g., hospitals), Residential (e.g., bathroom),
Extreme (e.g., cleanroom, space station, ISS),
Subway (e.g, air),

University (e.g. classroom), Hotel (e.g., showerhead),
Public recreation (e.g.,, gym), Office workspace

Clinical (e.g., hospitals), Extreme
(e.g. cleanroom, space station, ISS), Subway
(e.g. ticketing machines, underground touchscreens)

Clinical (e.g., hospitals), Residential (e.g., bathroom, wall surface),
Extreme (e.g., cleanroom, ISS),

Subway (e.g., indoor air, touchscreens), University

(e.g., classroom, door handle), Hotel (e.g., showerhead),

Public recreation (e.g., gym), Office (e.g., dust, workspace)

[20,22,32,112,133, 135,
138, 142-144, 147, 148,
153, 155, 167]

[134, 136, 137, 141, 143,
144,159, 163, 171-173]

[136, 145, 150, 154, 156, 158]

[21, 22,135, 147, 148, 156]
[21, 32, 145, 150, 158, 165]

[20, 21, 32, 36, 133, 143, 144,
151, 154, 156, 157, 164-166]

[18, 21, 22, 30, 36, 112,
134-137, 141-144, 148-151,
153,156, 163, 172, 174, 175]

[135, 139, 141, 146, 149, 152,
157,167]

[13, 21, 22,32, 36, 134-138,
140, 141, 144, 146, 149, 154,
156, 157,159, 161, 163, 164,
170]

[12, 13, 20-22, 30, 32,
36, 112,

133, 135-145,

148, 151-156, 160,
163, 164,

166-168, 171, 173]

[18, 21, 22, 141, 149,
157, 160]

[12, 13,32, 36, 133, 136,
137,139, 141, 142,
144, 145,

150, 151, 153, 154,
156, 158, 160, 164,

166, 171, 173]
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have at least one completed genome in the NCBI RefSeq
database (1 = 28 genera) (Additional file 1: Table S1). The
“Common BE genera” and their identified locations in the
BE are summarized in Table 1.

From the 54 publications used in this study, many
of the “Common BE genera” (Table 1) were identified
around the world (Additional file 2: Figure S1). For
example, Acinetobacter was found in five countries,
spanning eight different climates, and in the ISS. Un-
surprisingly, all 28 genera had some association with
humans, as analyzed by MetaMetaDB (Additional
file 1: Table S6) [57], further demonstrating the influ-
ence that humans have on the BE microbiome [29,
37]. Due to the limitations of this study, the preva-
lence of these “Common BE genera” cannot yet be as-
sociated with BE selection pressures. For example,
while there are several other human-associated genera
(e.g., Haemophilus, Veillonella, Alistipes, Rothia), the
microbial community abundances could be affected
by different abundance levels and shedding rates
across the human body. Other limitations are listed
in the section “Robustness and limitations.”
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Diversity among common BE genera

To assess the diversity of the “Common BE genera,” we
calculated the mean distance (Dmean) between all pairs
of taxa within each genus based on 16S rRNA gene se-
quences available in the LTP datasets of the SILVA v128
release [58]. The SILVA database was selected over other
16S rRNA databases (e.g. Greengenes [59, 60] and RDP
[61]) due to greater alignment quality [62] and because
it is continuously updated [63]. The Dmean was also se-
lected over the phylogenetic diversity index (PD) [64, 65]
because it is less affected by the number of taxa (N)
available in the LTP database, as demonstrated by a
smaller Pearson correlation coefficient (r=0.0017) be-
tween N and Dmean compared to N and PD (r = 0.7248)
(Additional file 2: Figure S2).

The Dmean for each “Common BE genus,” with 7> 2
in the LTP database ranged from 0.005 (Ralstonia) to
0.038 (Clostridium) with a median value of 0.015 (Fig. 1,
Additional file 1: Table S7), suggesting, for example, that
taxa within Ralstonia are relatively more closely related
than those in Clostridium. In comparison, the Dmean
for genera not commonly found in the BE (850 genera)

Clostridium 1
Lactobacillus A
Propionibacterium
Bacillus 4

Neisseria 1
Prevotella 1
Brevundimonas
Methylobacterium
Sphingomonas
Arthrobacter A
Acinetobacter A
Stenotrophomonas 1
Pseudomonas A
Bradyrhizobium
Streptococcus A
Corynebacterium
Escherichia A
Paenibacillus
Staphylococcus
Mycobacterium
Kocuria
Burkholderia A
Enterococcus 1
Enterobacter A
Microbacterium A
Micrococcus 4
Delftia A

Ralstonia A

between all pairs of bacteria was used as a diversity index [58]

0000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

Fig. 1 Diversity levels in 165 rRNA gene sequences for each bacterial genus commonly found in the built environment. The mean distance (Dmean)

Dmean
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ranged from 0 (Stigmatella) to 0.115 (Salinibacter) with
a median value of 0.016. A Wilcoxon rank sum test,
which compared the Dmean values between the two
groups (28 genera versus 850 genera), was not statisti-
cally significant (p-value = 0.28). This indicates that there
was insufficient evidence to conclude that there was a
significant difference in intra-genus diversity between
“Common BE genera” and “Other genera.” However, the
16S rRNA gene has its limitations (e.g., sequence hetero-
geneity [66] and horizontal gene transfer [67]), even
though it is widely used as a molecular clock to under-
stand evolution [67-70]. Intragenus variations in gen-
omic features (genome size, GC content, GC skew, and
codon usage bias) can reflect the level of diversity among
taxa within each of the “Common BE genus.”

Genome size, GC content, and GC skew

We compared the genomic features (genome size, GC con-
tent, GC skew, and codon usage bias) of 2580 complete
prokaryotic genomes from the NCBI RefSeq database, in
which 717 genomes are from bacteria commonly identified
in the BE (“Common BE genera”) and 1863 other genomes
(“Other genera”) (Additional file 1: Table S8-S9). The
“Other genomes” have not been identified in at least six
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publications (equivalent to 10% of the publications used for
this study).

Genomic features, including genome size, GC content,
and GC skew, can provide information about the bacter-
ial lifestyle as well as phylogeny [54]. For example, gen-
ome size can reflect genome streamlining, symbiosis, or
genome expansion [71, 72]. GC content has been shown
to relate to both the phylogeny and ecological adapta-
tions of a microbial species, as demonstrated by Reich-
enberger and co-workers [73]. GC content can range
from 15 to 75% and can be influenced by environmental
factors such as temperature [74], oxygen levels [75], and
nucleotide availability [76]. Furthermore, GC skew, as
quantified by the GC skew index (GCSI), measures the
strength of replication strand skew [77] and could indi-
cate variation in mutational and selective pressures be-
tween leading and lagging strands of DNA replication
[78]. Indeed, the leading strand tends to be biased with
G and T while the lagging strand is rich in A and C [79].
Strand composition bias has been shown to especially
occur in obligate intracellular microorganisms that per-
manently live within a host, resulting in the loss of some
DNA repair genes and the accumulation of mutations
[80]. Replication, repair, and transcription enzymes are
thought to influence strand composition, where different
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genes are involved in transcribing the leading and lag-
ging strand [81]. Each enzyme will have different muta-
tional and selective pressures, and thus, GCSI informs
DNA repair capabilities and provides insight into the
metabolism and lifestyle of bacteria [81].

The “Common BE genomes” tended to have larger
genome sizes (1.30-9.21 Mb, median 3.62 Mb) (Fig. 2a),
higher GC contents (27.4-73.0%, median 46.6%)
(Fig. 2b), and higher GCSI (0.007-0.629, median 0.19)
(Fig. 2c) compared to the “Other genomes”. Among the
717 “Common BE genomes,” the bacterium, Clostridium
perfringens strain 13 (NC_003366), had the highest GCSI
value (0.629) and exhibited a clear GC skew, especially
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around 14 Mb (Additional file 2: Figure S3A), while
Methylobacterium sp. 4—46 (NC_010511) had the lowest
GCSI value (0.007) with indiscernible GC skew (Add-
itional file 2: Figure S3B). The median for all three fea-
tures of the “Common BE genomes” was higher than
that of the “Other genomes” (1863 genomes; Size = 2.74
Mb; GC content = 44.6%; GCSI=0.133) (Fig. 2). While
these differences were statistically significant based on the
Wilcoxon rank sum test q-value (genome size = 1.68e-31;
GC content =0.002; GCSI =6.46e-17), further analysis
using the Cliff’s delta effect size (genome size =0.3, GC
content = 0.079, GCSI =0.215) demonstrated negligible
(<0.147) or small (<0.33) thresholds when comparing
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the “Common BE” and “Other” genomes. Similar re-
sults were observed when categorizing by environments
(MetaMetaDB) (Additional file 2: Figure S4—S6). More-
over, each genome feature may cover a wide range
(Fig. 3a-c), depending on the BE genus.

Codon usage bias

The genetic code of each “Common BE genus” can also
provide information about codon usage bias, which has
further implications on evolutionary processes, such as
selection, mutation [82], and even horizontal gene trans-
fer [83—85]. Many amino acids can be encoded by more
than one codon, also known as synonymous codons, due
to the redundancy of the genetic code, and there is gen-
erally a preference for one synonymous codon over an-
other [86]. The pattern of synonymous codon usage can
vary between organisms (e.g., some organisms use a set
of synonymous codons more frequently) and across
genes within a genome [82, 87]. It is hypothesized that
codons are selected based on their impact on translation,
influencing bacterial growth [88, 89], and that codon
usage bias can be derived from highly expressed genes
[90, 91]. Several studies have demonstrated that codon
usage bias correlates with bacterial growth rates, likely
suggesting a selection towards efficient translation ma-
chinery [87, 89, 92, 93]. Codons may also be selected to
optimize protein production speed [94]. For example,
the codon usage bias of Salmonella enterica serovar
Typhimurium, a fast-growing bacterium, correlates well
with gene expression levels [87]. Thus, it is imperative to
determine the codon usage bias in order to further sur-
mise the lifestyles of bacteria that have been commonly
identified in the BE.

Here, we determined the strength of selected codon
usage bias (S value) (Fig. 2d), as discussed by Sharp and
co-workers [87]. The S value is based on a comparison
of codon usage between constitutively highly expressed
genes and the entire genome (see Methods for details)
[87]. The median S value of the “Common BE genomes”
(1.32) was higher than that of the “Other genomes”
(0.50), with a large effect size (Cliff’s delta of 0.574).
Moreover, the Wilcoxon rank sum test provided a sig-
nificant result with a q-value of 1.22e-111, suggesting
that the S value could be more indicative of the type of
bacteria commonly observed in the BE compared to
other genomic features described previously (genome
size, GC content, and GC skew).

Further categorization of the environments (MetaMe-
taDB) indicates that the S value is stronger for the
“Common BE genomes” observed with the human
microbiome, as compared to the other “Common BE
genomes” (Additional file 1: Table S10 and Additional
file 2: Figure S7). Among the 517 “Common BE ge-
nomes” for which species were categorized according to
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environments in MetaMetaDB, the S value tended to be
lower in compost-associated “Common BE genomes”
than in the other “Common BE genomes” (Cliff’s delta =
- 0.647; q-value =1.01e-21). In contrast, the median S
value for the “Common BE genomes” also associated
with the category “human” by MetaMetaDB (n = 454;
median S value = 1.45) was higher than that for the other
“Common BE genomes” (1 =63; median S value = 0.71).
The difference was large based on the effect size (Cliff’s
delta = 0.516) and was statistically significant based on
the Wilcoxon rank sum test (q-value =2.53e-10). This
trend is also true when examining only the top bacterial
genera found in the human microbiome (list taken from
Lloyd-Price ], Mahurkar A, et al. [95]). The top human
microbiome genera that are also commonly found in the
BE (1 =301 genomes; median S value = 1.50) had signifi-
cantly higher S values compared to those not commonly
found in the BE (n =28 genomes; median S value = 1.08)
with a medium effect size (Cliff’s delta of 0.451) and a
g-value of 0.0009. This suggests that the human and BE
microbiome are interconnected, with bacterial genera
trending towards larger S values. However, the limitations
of this study (see section “Robustness and limitations”)
cannot associate the “Common BE genera” with BE selec-
tion pressures.

When examining each “Common BE genus,” the S
value was found to cover a wide range (e.g., Entero-
coccus, Mycobacterium, and Bacillus) (Fig. 3d). Future
reports of BE microbial communities could help to re-
solve the importance of the S value by accurately identi-
fying taxa to the species level and by unifying metadata
collection and method protocols. Indeed, the S value has
been shown to vary across species, especially for those
that are not closely related [96]; e.g., Clostridium has the
largest S value range (Fig. 3d) and also has the largest
Dmean (0.038) (Fig. 1).

Case study: Mycobacterium

As a case study for one of the “Common BE genera”, we
further discuss Mycobacterium and describe how the
four genomic features can be used to surmise the poten-
tial lifestyle of bacteria. Mycobacterium, a genus with
well-known pathogenic species (e.g., Mycobacterium tu-
berculosis and Mycobacterium bovis), has one of the lar-
gest genome size ranges from 3.3 Mb [Mycobacterium
leprae Br4923 (NC_011896)] to 7.0 Mb [Mycobacterium
smegmatis strain MC2 155 (NC_008596)] with a median
of 4.5Mb (Fig. 3a). Mycobacterium has been found in
several locations, including hospitals, therapy pools,
showerheads, water-damaged homes, and cleanrooms
(Table 1). One of the major factors determining the
presence of Mycobacterium in water-damaged homes
may be due to transmission from human and pet occu-
pants [32]. The GC content in Mpycobacterium was
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relatively high (57.8-69.3%) compared to other “Com-
mon BE genera” (27.4-73.0%) (Fig. 3b), where the outlier
group (57.8%) was the species M. leprae (Additional
file 1: Table S8). The smaller genome size and lower GC
content of M. leprae, an obligate pathogen, are a result
of genome reduction which has been well documented
[97]. The GCSI ranged from 0.025 [M. avium subsp.
paratuberculosis K-10 (NC_002944); Additional file 2:
Figure S8A] to 0.167 [M. leprae Br4923 (NC_011896);
Additional file 2: Figure S8B]. The S value for Mycobac-
terium ranged from 0.36—1.30, suggesting that either the
growth rate of different Mycobacterium species present
in the BE varies drastically or that some Mycobacterium
species have more “volatile” codons, as discussed below.
For example, M. tuberculosis and M. leprae have S
values in the lower range (0.36—0.45) and also have slow
generation times of ~1 and 14 d, respectively [87, 98,
99]. In comparison, one of the highest S values (1.3) cor-
responded to M. abscessus, which has a generation time
of 4-5h [100].

Discussion

Genomic features relation to the potential lifestyle of
bacteria commonly identified in the built environment

To further understand the 28 “Common BE genera,” we
analyzed four genomic features: genome size, GC con-
tent, GC skew, and codon bias. While our study based
itself on the results of previous studies to retrieve the
“Common BE genera,” we aimed to demonstrate the po-
tential of using genomic features to provide insight into
microbial lifestyles and to describe the trends found in
the “Common BE genera” [54]. The “Common BE ge-
nomes” tended to have larger genome sizes, higher GC
contents, higher GCSI, and larger S values compared to
the “Other genomes.” While the differences for all the
genomic features were statistically significant based on
the Wilcoxon rank sum test, further analysis by the
Cliff’s delta effect size demonstrated that the S value is
likely a more important genomic feature for bacteria
commonly identified in the BE compared to the “Others”
analyzed in this study.

This initial analysis could help begin to surmise certain
lifestyles of the bacteria commonly found in the BE. For
example, the S value has implications on the growth
rates of bacteria [89] found in the BE, which may be
higher than those found in other environments, and
could also be related to higher levels of gene expression
[90, 91]. A stronger preference for codon usage bias in
the “Common BE genera” may have resulted from a of
long-term relationship with humans (e.g., genome reduc-
tion in bacteria was associated with the “Neolithic revo-
lution” [101] and “Common BE genera” were found on
nineteenth century documents [102, 103]) but further
analysis is needed.
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Moreover, the preference for certain codons may be
related to either directional mutation or specific selec-
tion [104]. In the case of directional mutation, it is hy-
pothesized that some codons are more prone to
mutation, resulting in lower S values [87]. For example,
Mycobacterium tuberculosis, one of the “Common BE
genera” and pathogen with S values (0.41-0.45) below
the “Common BE” and “Other” genome medians
(Fig. 3d), has more “volatile” codons relating to antigens,
surface proteins, or antibodies which are likely to mutate
more than other codons [105]. These help M. tubercu-
losis prevent host-immune system interactions [105]. As
for specific selection, it is thought to lead to efficient
translation processes and accurate protein synthesis due
to the use of more frequent codons by highly expressed
genes [104]. This can be a reflection of an organism’s
adaptation to an environment, and it is likely that the
“Common BE genomes” share “synchronized regulation
mechanisms of translational optimization” [106]. Indeed,
this has been shown for 11 distinct metagenomes from
various environments [106], where, for example, micro-
organisms living with an abundant food source (whale
fall carcass) have translationally optimized genes for en-
ergy production and conversion.

The trend towards larger S values in the “Common
BE genera” also suggests that these genera can inhabit a
wide range of environments [107]. The “Common BE
genera” must also contend with chemicals derived from
the daily use of personal care and household products
(e.g., avobenzone from sunscreen, laureth sulfate from
shampoo, and amlodipine from medication used to
treat high blood pressure), in addition to human-de-
rived chemicals (e.g., acyl glycerols, which make up the
membrane of human cells) [108-110]. For example,
Propionibacterium has been shown to metabolize trigly-
ceride triolein, a human acylated glycerol, and was
found to be co-localized with acylated glycerols on the
human body [108]. Since these chemicals can be found
in the BE and may be associated with an occupant’s
chemical signature [109], future studies are needed to
determine how these chemicals may affect the BE mi-
crobial community composition (e.g., rural vs. urban
environments, change in a product’s formula, etc.).

While not as important as the S value in this study,
larger genome sizes could be attributed to the incorpor-
ation of regulatory and secondary metabolic genes [72],
which may be important for survival in the BE (e.g., ar-
omatics degradation and regulation to environmental
stresses). Indeed, the top three major functional path-
ways annotated for the microbial community found in
ambulances were 1) biosynthesis of cofactors, pros-
thetic groups, and electron carriers, 2) secondary
metabolites biosynthesis, and 3) aromatics compound
degradation [111].
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Robustness and limitations

This study demonstrates the potential of using the
four genomic features (genome size, GC content,
GCSI, and S value) to surmise the lifestyle of bacteria.
The “Common BE genera” selected in this study have
only been commonly identified by culture-based and
amplicon-based sequencing studies, which have limi-
tations as described in the Introduction. Although the
“Common BE genera” have been detected in multiple
BE studies (> 6), these bacteria may not be active in
the BE. Moreover, although this study is based on
completed genomes from the NCBI RefSeq database,
the genomes could have been derived from environ-
ments not related to the BE. Thus, the conclusions
derived from this study serve as a hypothesis for the
potential lifestyles of commonly identified BE bacterial
genera. Further studies are needed to accurately de-
termine the typical BE genera and the association of
BE genera with BE selection pressures.

It is important to note that the results remained simi-
lar when different data sets were compared (Additional
file 1: Table S9). We tested the robustness to the com-
position of the genome data set by testing different sub-
sets of bacteria (e.g., phyla of Proteobacteria, Firmicutes,
and Actinobacteria), and also by randomly selecting one
representative for species that have multiple strains se-
quenced. Of the four genomic features (genome size,
GC content, GCSI, and S value), only the S value
showed consistent results and tended to be higher in the
“Common BE genera” compared to the “Others.” This
indicates that the selected codon usage bias tends to be
stronger in the “Common BE genera” than in the “Other
genera,” regardless of the datasets used, and that our re-
sults were less affected by biases in the available se-
quenced genomes. We also tested different numbers of
publications (n =1, 2, 3, 4, 5, and 6) to select for BE gen-
era. The corresponding numbers of the selected “Com-
mon BE genomes” were 1208, 1029, 922, 825, 739, and
717. Even when genera observed in at least 1 out of 54
publications were defined as the “Common BE genera,”
the median S value for the “Common BE genomes”
(1.14) was higher than that for the “Other genomes”
(0.35) with a large effect size (Cliff’s delta of 0.548), and
the Wilcoxon rank sum test returning significant result
with g-value of 2.59e-126. This is consistent with the re-
sults obtained by larger numbers of publications (1> 1)
to define the “Common BE genera.” Thus, selected
codon usage bias tends to be larger in the “Common BE
genomes” than in the “Other genomes,” regardless of the
genome data set used and criteria to define BE genera.

Our selection of the 28 common bacterial genera is
likely biased towards the genera found in certain loca-
tions (e.g. fewer publications sampling outdoors and
subways compared to indoors and extreme; more
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publications sampling locations with mild temperate
climates) (Additional file 1: Table S3-S5) and sam-
pling type (e.g., fewer publications conducted micro-
bial community analysis of water samples compared
to surface and air samples) (Additional file 1: Table
S3). In addition, 16S rRNA amplicon sequencing was
the dominant method used to determine the micro-
bial community amongst the 54 publications used in
this study. Some publications also conducted culture-
based studies (e.g. study on airborne bacteria in
Tokyo [112]). This introduces bias from the range of
protocols used across publications, including sample
collection methods (e.g. swab, wipe, air, and storage
method), DNA extraction methods, primers used, 16S
rRNA target region (e.g. V3-V4, V4, V6-V8), and se-
quencing methods [113-115]. With advances in sequen-
cing for 16S rRNA (e.g., full-length [116]), genomes, and
metagenomes (e.g., longer contigs, accurate base calling)
and increased global research collaboration (e.g., MetaSUB
[117]), more specific classification of BE microorganisms
can be obtained at the species level, allowing for more ac-
curate descriptions in future studies.

After obtaining the 28 “Common BE genera,” we
then used the NCBI RefSeq database to obtain com-
pleted genomes. Another level of bias arises from
using sequenced genomes from the public database
(e.g., towards medically and industrially important mi-
croorganisms), although there are ongoing “efforts to
expand the bacterial and archaeal reference genomes...to
maximize sequence coverage of phylogenetic space” [118].
However, this study aimed to demonstrate the capability
of using genomic features to characterize the “Common
BE genera,” providing a first step towards understanding
the potential lifestyles of these bacteria. As more genomes
from the BE microbial community are sequenced (e.g., ef-
forts by the MetaSUB International Consortium [117]),
much more accurate analyses can be carried out to appro-
priately examine the microbial lifestyles based on genomic
features and functional annotation.

Conclusions

Twenty-eight bacterial genera were selected to repre-
sent the bacteria commonly identified in the BE. Al-
though geographical location, temperature, and
humidity are important factors in shaping the BE mi-
crobial composition, many of the “Common BE gen-
era” were identified around the world. All the genera
have also been observed in the human microbiome.
Here, we used genomic features to demonstrate the
potential of understanding the lifestyle of bacteria
from the genome. Together, the genome size, GC
content, and GC skew for the “Common BE
genomes” showed trends similar to (were not strongly
deviated from) those for the entire data set of
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completed prokaryotic genomes analyzed obtained
from the NCBI database. On the other hand, the
strength of selected codon usage bias (S value) for
the “Common BE genomes” tended to be significantly
higher than that of the “Other genomes.” As such,
the S value could be indicative of bacterial growth
rates, gene expression, and other evolutionary pro-
cesses that may play a role in the bacteria present in
the BE. Further insights could be gained through
more BE studies analyzing locations with fewer publi-
cations (e.g., rural, tropical climates, and outdoor),
identifying microbial communities at the species-level,
and by minimizing cross-study biases.

Methods

Selection of common BE bacterial genera, metadata, and
genome sequence data

Bacteria commonly identified in the BE are listed in Add-
itional file 1: Table S1 and Table 1. Since most currently
available BE studies conducted 16S rRNA amplicon se-
quencing, the identification was largely limited to the
genus level. In this study, 54 total publications (published
between 2003 and 2017) were compiled with metadata, in-
cluding the bacterial genera, BE location identified, sample
type, temperature (°C), humidity (%), and approximate cli-
mate (Additional file 1: Table S2). These publications ei-
ther conducted 16S rRNA amplicon sequencing or
isolated bacteria from the BE. If the temperature or hu-
midity was not described by the publication, the average
over a certain period of time (either the timeframe stated
in the publication or the publication year) was obtained
from online sources (see Additional file 1: Table S2 for ref-
erences and timeframe). In order to obtain climate level
assignment, the Koppen climate classification scheme
was implemented (1981-2010) by determining the
closest latitude and longitude to a publication’s de-
scribed study location [119] (Additional file 1: Table
S4). In order to identify the “Common BE genera,”
we selected for bacterial genera which were identified
in more than about 10% of the publications (n>6
publications) and had at least one genome sequenced
in the National Center for Biotechnology Information
(NCBIL https://www.ncbi.nlm.nih.gov) RefSeq database
[120, 121] (Additional file 1: Table S8) (n=28 gen-
era). These were denoted as “Common BE genomes”
or “Common BE genera” while the bacterial genera
not selected were denoted as “Other genomes” or
“Other genera.” Based on this criterion, 28 genera
were retained (Additional file 1: Table S1).

To further understand the potential associated
environments of each BE genus, we used MetaMetaDB
(data by November 6, 2014 at http://mmdb.aori.u-to-
kyo.ac.jp) (Additional file 1: Table S6) [57]. MetaMetaDB
is a database to search for the possible habitats a
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microorganism could live in and was made by collecting
16S rRNA sequences. Hits for environmental categories
for each common BE genus was based on an identity
threshold of 97%, corresponding to the species taxo-
nomic level. Environmental categories on MetaMetaDB
are based on the classification used by the NCBI tax-
onomy, which include categories such as aquatic, soil,
human, compost, and more. While these categories are
not well-defined and controlled (e.g., there are several
categories for human, including human, human gut, hu-
man oral, human skin, and others), we used MetaMe-
taDB to gain insight into the associated environments of
each BE genus.

RefSeq chromosome sequence accessions with the
NC_ prefix were obtained from the NCBI prokaryotic
genome list (ftp://ftp.ncbi.nih.gov/genomes/GENOME_
REPORTS/prokaryotes.txt), and complete sequences of
prokaryotic chromosomes (GenBank format [122]) were
downloaded with the RefSeq accessions using E-utilities
on 2018-01-27. In cases where the organism has multiple
replicons (chromosomes and plasmids), only the largest
chromosome was used for the analysis as a representative
replicon of the organism. The final data set included 2580
prokaryotic genomes (142 Archaea and 2438 Bacteria), in-
cluding 717 genomes of bacteria belonging to the 28 gen-
era commonly found in the BE (“Common BE genomes”)
and 1863 other prokaryotic genomes (“Other genomes”).
The 717 “Common BE genomes” belonged to 4 phyla: Fir-
micutes (370), Proteobacteria (222), Actinobacteria (123),
and Bacteroidetes (2). The 1863 “Other genomes”
belonged to 644 genera from 36 phyla, including Proteo-
bacteria (875), Firmicutes (192), Actinobacteria (115), and
Chlamydiae (110). The “Common BE genomes” and
“Other genomes” were linked to the 18 environmental cat-
egories in MetaMetaDB: Aquatic, Biofilm, Compost, Food,
Freshwater, Hot_springs, Human, Human_gut, Human_-
lung, Human_nasal pharyngeal, Human_oral, Human_-
skin, Marine, Rhizosphere, Rock, Root, Sediment, and Soil.
Complete listings of the genomes used in this study, along
with the genomic features, are shown in Additional file 1:
Table S8.

Bacterial diversity

To measure the genetic diversity among taxa within a
genus, the mean distance (Dmean) between all pairs of
bacteria was calculated [58]. The genetic distance be-
tween a pair of bacteria was calculated with the K80
model using the ‘dist.dna’ function of the ‘ape’ package
of R (https://cran.r-project.org/web/packages/ape) [123].
We used a nucleotide sequence alignment of the 16S
rRNA genes in ‘The All-Species Living Tree’ Project
(https://www.arb-silva.de/projects/living-tree/) [124].
LTP datasets based on SILVA release 128 were down-
loaded from the Download page [125].
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Genomic features

Genome size

The total number of nucleotides (A + T + G +C) was
calculated from the whole nucleotide sequence of
each chromosome.

GC content (%)

The relative frequency (percentage) of guanine and cyto-
sine (G+C)/(A+T+G+C) was calculated from the
whole nucleotide sequence of each chromosome.

GC skew index (GCSI)

The asymmetry in nucleotide composition between
leading and lagging strands of DNA replication is rep-
resented by GC skew (C-G)/(C+ G). The strength of
GC skew was measured by the GC skew index or
GCSI [126] with a window number of 4096. This
fixed window number was used to prevent any effects
from biased nucleotide composition in coding regions
and is based on an average gene length of 1kb and a
genome size of 2-4Mb [126]. The GCSI values can
range from 0 (no GC skew) to approximately 1
(strong GC skew).

Strength of selected codon usage bias (S value)

As a measure of translationally selected codon usage
bias, the S value was calculated for each chromosome,
as described in Sharp and co-workers [87] and
Vieira-Silva and Rocha [89], using the codon usage
for four amino acids, Phe (TTC and TTT), Tyr (TAC
and TAT), Ile (ATC and ATT), and Asn (AAC and
AAT). The two codons are recognized by the same
tRNA species, and the C-ending codon is recognized
more efficiently than T-ending codon. The S value is
based on a comparison of codon usage within these
synonymous groups between constitutively highly
expressed genes (those encoding ribosomal proteins
and translation elongation factors) and the entire
genome [87, 89].

Statistical analyses

We performed several statistical analyses to compare the
values of the genomic features (genome size, GC con-
tent, GCSL, and S value) between two groups of ge-
nomes: e.g, “Common BE genomes” versus “Other
genomes”; and MetaMetaDB environment-associated
“Common BE genomes” (e.g., “Human”) versus other
“Common BE genomes” (e.g., not associated with
“Human”).

Wilcoxon rank sum test

We performed the Wilcoxon rank sum test (also called
Mann-Whitney U test) as a non-parametric statistical
hypothesis test to compare the values between two
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groups [127]. The p-value obtained by the statistical test
was adjusted for multiple comparisons by controlling for
the false discovery rate (FDR) [128]. An FDR adjusted
p-value (g-value) of 0.05 was used as a threshold for
statistical significance.

Cliff's delta effect size

We calculated Cliff’s delta statistic as a non-paramet-
ric effect size to estimate the degree of overlap be-
tween two distributions [129]. A Cliff’s delta of 0.0
indicates the group distributions overlap completely,
whereas a 1.0 or - 1.0 indicates the absence of overlap
between the two groups. A positive Cliff’s delta close
to 1.0 indicates that the genomic feature values
tended to be higher in the “Common BE genomes”
than in the “Other genomes.” A negative Cliff’s delta
close to -1.0 indicates that the genomic feature
values tend to be lower in the “Common BE ge-
nomes” than in the “Other genomes.” Three thresh-
olds were used to determine the magnitude: |d|<
0.147 “negligible,” |d| <0.33 “small,” and |d|<0.474
“medium” or “large” [130]. These thresholds are used
for two normal distributions [136], equivalent to the
original thresholds used by Cliff (1993) [135] to scale
the effect size indices to observable phenomena.

Software

Genome sequence analyses (e.g., calculating genome
size, GC content, GCSI, and S value) were performed
using the G-language Genome Analysis Environment
version 1.9.1 (http://www.g-language.org) [131]. Statis-
tical computing and graph drawing were conducted with
R version 3.3.3 (https://www.R-project.org/) [132].

Additional files

Additional file 1: Table S1. Selection of bacterial genera commonly
identified in the built environment. Bacterial genera identified in 54
publications were compiled (see Table S2) and commonly identified
genera were selected. All bacterial genera identified in more than about
10% of the publications (n = 6 publications) with at least one complete
reference genome on the NCBI RefSeq database were used in this study
(n =28 genera). Table S2. Metadata for each reference. 54 publications
were compiled, including metadata for location, sub-locations, bacterial
genera identified, sample type, climate (Table S4 and S5), temperature (°
Q), and humidity (%). If temperature or humidity was not described by the
publication, the average over a certain period of time (either the timeframe
stated in the publication or the publication year) was obtained from online
sources. Table S3. Publication count for each “Common BE Bacterial Genus”
by macro-Level BE location. Macro-level BE Locations included indoor, out-
door, underground, and extreme. Further division by type of sample is also
depicted, including surface (S), air (A), water (W). Darker orange color indicates
more references identified the genera in the macro BE location and sample
type while lighter orange color indicates fewer references. The total number
of references for each location and genera are also shown. Table S4. Kop-
pen climate classification. Kdppen climate classification was used to
identify the climate for each publication’s study location. Only the climate
assignment between 1981 and 2010 was used for this study. Abbreviation
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descriptions, latitude, and longitude values are listed. Table S5. Publication
count for each "Common BE Bacterial Genus” by climate. The climate was
identified for each publication’s study location based on the closest Kdppen
latitude and longitude values and correlated with the Kdppen ID (see Table
S4 for Koppen assignment). For publications describing general locations
(e.g., only provided a US. state name), a central location in the region was
chosen for latitude and longitude. Publications without location specifics
were not included, and publications in space were separated out to “Space”
category. Darker orange color indicates more references identified the gen-
era in the macro BE location and sample type while lighter orange color in-
dicates fewer references. The total number of references for each location
and genera are also shown. Table S6. MetaMetaDB environmental category
assignment for each “Common BE Bacterial Genus.” MetaMetaDB is a
database to search for the possible habitats a microorganism could live in
and was made by collecting 16S rRNA sequences. Environmental categories
for each "Common BE bacterial genus” were based on the identity threshold
of 97%, corresponding to the species taxonomic level. Every species for
each "Common BE genus” is listed with the corresponding environmental
category, where "Y" indicates that the species has been previously identified
in the category and “N" indicates the species has not been identified in the
category. “Hits” indicates the number of 16S rRNA sequences used by the
database. Table S7. Mean distance (Dmean) between all pairs of bacterial
species for each “Common BE Bacterial Genus.” The Dmean was used to
describe the genetic diversity among species within a genus. The genetic
distance between a pair of bacteria was calculated with the K80 model
using the ‘distdna’ function of the ‘ape’ package of R (https.//cran.r-projectorg/
web/packages/ape). We used a nucleotide sequence alignment of the 165
RNA genes in The All-Species Living Tree’ Project (https//www.arb-silva.de/
projects/living-tree/). LTP datasets based on SILVA release 128 were
downloaded from Archive (https//www.arb-silva.de/no_cache/download/
archive/living_tree/LTP_release_128/). Bacterial genera for which 3 or more
taxa (N > 2) were available at LTP_release_128 were included in the 16S
rRNA diversity analysis. Table S8. Genome information. Genome features
reported include size (Mb), GC content (%), GCSI (GC skew index), and S
value (strength of selected codon usage). A genus was deemed BE if ob-
served in at least 6 publications out of 54. The column “BE” shows the num-
ber of references that identified the genera. Table S9. Robustness of the
study. The genome data set used in this study was tested over two levels: 1)
different subsets of bacteria (e.g, Phyla of Proteobacteria, Firmicutes, and Acti-
nobacteria) and also randomly selecting one representative for species that
have multiple strains sequenced, and 2) testing different numbers of
publications (1=1, 2, 3,4, 5, and 6) to select for BE genera. Table S10.
Genomic feature statistical analysis for each MetaMetaDB selected
environmental category. Each genomic feature per MetaMetaDB
environmental category was analyzed to determine statistical significance
between the “Common BE genomes” associated with an environment and
the “Common BE genomes” not associated. Significance is indicated by g-
value < 0.05 and large effect size by Cliff's delta |d| > 0.474. (XLSX 3660 kb)

Additional file 2: Figure S1. Map of publications used in this study. The
54 publications used in this study are mapped by the closest Kdppen
latitude and longitude values in order to assign Képpen climate IDs by
color (Table S4) (Shades of purple = Dry; Shades of green = Tropical;
Shades of grey = Snow; Shades of red/orange = mild temperate). The size
of the circle indicates the number of common BE bacterial genera (n = 28)
identified in the publication. Publications not plotted on the map are those
from the International Space Station. Figure S2. Descriptive statistics of
diversity indices (N, Dmean, PD). Plots of diversity levels between taxa
within each genus based on 16S rRNA gene sequences, with scatter plots
below the diagonal, histograms on the diagonal, and the Pearson
correlation coefficient (Corr) above the diagonal. The diversity levels for
each genus were represented by three indices: the number of taxa (N),
mean distance (Dmean) between all pairs of taxa, and phylogenetic
diversity (PD). Figure S3. GC skew plots for Clostridium perfringens strain 13
(A) and Methylobacterium sp. 4-46 (B). G-language Genome Analysis
Environment version 1.9.1 (http//www.g-language.org) was used to
generate the GC skew plot. Figure S4. Genome size (Mb) distribution
among MetaMetaDB selected environmental categories. A boxplot showing
the distribution of genome sizes within each “Common BE genus” associated
with an environment (purple) compared to the “Common BE genera” not
associated (red). Figure S5. GC content (%) distribution among MetaMetaDB

selected environmental categories. A boxplot showing the distribution of GC
content within each “Common BE genus” associated with an environment
(purple) compared to the “Common BE genera” not associated (red).
Figure S6. GCSI distribution among MetaMetaDB selected environmental
categories. A boxplot showing the distribution of GCSI within each
“Common BE genus” associated with an environment (purple) compared to
the “Common BE genera” not associated (red). Figure S7. S value
distribution among MetaMetaDB selected environmental categories. A
boxplot showing the distribution of S value within each “Common
BE genus” associated with an environment (purple) compared to the
“Common BE genera” not associated (red). Figure S8. GC skew plots
for Mycobacterium avium subsp. paratuberculosis K-10 (A) and Mycobacterium
leprae Br4923 (B). G-language Genome Analysis Environment version 1.9.1
(http://www.g-language.org) was used to generate the GC skew plot.
(PDF 7950 kb)
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