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Abstract

Background: MicroRNAs (miRNAs) are short endogenous, single-stranded, noncoding small RNA molecules of
approximately 22 nucleotides in length. They regulate gene expression posttranscriptionally by silencing mRNA
expression, thus orchestrating many physiological processes. The Small Ruminant Lentiviruses (SRLV) group includes
the Visna Maedi Virus (VMV) and Caprine Arthritis Encephalitis (CAEV) viruses, which cause a disease in sheep and
goats characterized by pneumonia, mastitis, arthritis and encephalitis. Their main target cells are from the monocyte/
macrophage lineage. To date, there are no studies on the role of miRNAs in this viral disease.

Results: Using RNA-seq technology and bioinformatics analysis, the expression levels of miRNAs during
different clinical stages of infection were studied. A total of 212 miRNAs were identified, of which 46 were
conserved sequences in other species but found for the first time in sheep, and 12 were completely novel.
Differential expression analysis comparing the uninfected and seropositive groups showed changes in several
miRNAs; however, no significant differences were detected between seropositive asymptomatic and diseased
sheep. The robust increase in the expression level of oar-miR-21 is consistent with its increased expression in
other viral diseases. Furthermore, the target prediction of the dysregulated miRNAs revealed that they control
genes involved in proliferation-related signalling pathways, such as the PI3K-Akt, AMPK and ErbB pathways.

Conclusions: To the best of our knowledge, this is the first study reporting miRNA profiling in sheep in
response to SRLV infection. The known functions of oar-miR-21 as a regulator of inflammation and
proliferation appear to be a possible cause of the lesions caused in the sheep’s lungs. This miRNA could be
an indicator for the severity of the lung lesions, or a putative target for therapeutic intervention.
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Background

The Small Ruminant Lentiviruses (SRLVs) are in a group
of RNA viruses in the lentivirus genus that infect cells of
the monocyte/macrophage lineage from sheep and goats.
This infection causes progressive inflammatory lesions in
the lungs, brain, mammary glands and joints that are char-
acterized by lymphoid hyperplasia, interstitial infiltration
of mononuclear cells and interstitial pneumonia. Visna/
Maedi disease (VM) has a great economic importance
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derived from decreased animal production and increased
replacement rates [1]. Infection is present in most coun-
tries that raise sheep but the impact on production and
animal welfare is affected by breed [2] and flock manage-
ment [3].

Not every infected animal shows the disease due to
the importance of the host genetic background [4]. In
genetic association studies several molecules have been
shown to be related to VMV infection: Toll like recep-
tors (TLRs), antiviral proteins (APOBEC family, TRI-
Mbalpha, tetherin), and cytokines (among others) [5, 6].
To our knowledge, microRNAs (miRNAs) have not been
analyzed in relation to this viral disease.
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miRNAs are a class of noncoding endogenous RNAs
of approximately 22 nucleotides that regulate gene ex-
pression posttranscriptionally. By binding to mRNA
molecules and with the help of the RNA-induced silen-
cing complex (RISC), they can silence or cleave mRNA
molecules [7]. They are one of the most abundant gene
expression regulators and have an effect on phenotypic
variations in domestic animals [8]. Several studies have
identified miRNAs in various sheep breeds, although
miRBase 21 includes only 106 miRNA precursors and
153 mature sequences (January 2018). Regarding tissue
types that have been previously studied, most of the
work has focused on muscle quantity, wool quality, fer-
tility and fat deposition [9-12] with little attention to
animal health and welfare.

Viruses exploit host gene pathways to accomplish
their basic biological processes, from transcription to
protein synthesis, thus, ensuring their own survival.
MicroRNA levels can be altered due to the host’s
own immune response modulation [13]; however, vi-
ruses can also modulate the expression of host genes
to avoid detection by the immune system or to mod-
ify cell survival pathways [14]. Furthermore, it has
been proposed that host miRNAs can directly target
RNA viruses either cleaving them or stabilizing them
[15]. Another way that miRNA expression may
change involves virally encoded miRNAs [16].

The aim of this study was to uncover the host mech-
anisms that are associated with VM disease in sheep.
To this end, the cellular miRNAs differentially
expressed at different stages of infection were identi-
fied, and information about involved genes, the mech-
anisms, and relevant pathways was inferred via
bioinformatics analyses. These predictions could also
contribute to wuncover the roles of miRNAs in
host-virus interactions.

Methods
Animals
Thirty Rasa Aragonesa adult (3 to 6years) ewes were
included in this study, in different stages of a natural
infection of VMV. The samples were obtained from
different commercial flocks in the routine of the Vet-
erinary Faculty (University of Zaragoza) in the frame-
work of the national research project ref. AGL2010-
22341-C04-01. The complete experimental procedure
was approved and licensed by the Ethical Committee
of the University of Zaragoza (ref: PI109/10). Animals
were euthanized by an intravenous injection of a bar-
biturate overdose (Dolethal’, Vetoquinol, Spain) and
exsanguinated.

Animals were classified attending to their VMV
infection status (seronegative or seropositive) using an
Enzyme-Linked ImmunoSorbent Assay (ELISA) (ELIT
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EST, Hyphen), and the clinical outcome (asymptom-
atic and diseased). For RNA-seq analysis, a total of 15
animals were included: Five animals were seronegative
for VMV (seronegative group), five of the animals
tested seropositive for VMV but did not show clinical
symptoms (seropositive asymptomatic group) and, the
remaining five animals were seropositive and had lung
lesions (lesions group). For validation of the sequen-
cing data 15 different animals were included (5 sero-
negative, 5 seropositive asymptomatic and 5 with
pulmonary lesions) (Table 1).

Tissue collection, RNA extraction and small RNA
sequencing

A sample from lung was aseptically taken from each ani-
mal and preserved in RNAlater solution (Ambion, Aus-
tin, TX, USA) at -80°C until used. Total RNA was
isolated from lung tissue using Trizol (Invitrogen, Carls-
bad, CA, USA) extraction. 60—70 mg tissue samples were
homogenized in 1ml of Trizol using Precellys®24
homogenizer (Bertin Technologies, Montigny le Breton-
neux, France) combined with 1.4 and 2.8 mm ceramic
beads mix lysing tubes (Bertin Technologies). After add-
ing chloroform, RNA was precipitated from the upper
aqueous phase with isopropanol, washed with ethanol,
suspended in RNase free water and stored at - 80°C.
RNA quantity and purity was assessed with NanoDrop
1000 Spectrophotometer (Thermo Scientific Inc., Bre-
men, Germany). RNA integrity and concentration was
assessed with the 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA).

The small RNA libraries were generated with Illumi-
na’s TruSeq small RNA library preparation kit following
manufacturer’s instructions. Sequencing was performed
in CNAG-CRG core facility (Barcelona, Spain), using an
Ilumina HiSeq 2500 instrument. Single-end sequencing
with 50 bp read length was used for miRNAs.

Table 1 Samples used in RNA-seq and RT-gPCR study

RNA-seq
Status Animals (15)
Pulmonary lesions 1P, 2P, 7P, 9P, 10P
Seropositive asymptomatic 8P, 11P, 12P, P19, 4
Seronegative 7,1011,13,14
RT-gPCR
Status Animals (15)
Pulmonary lesions P21, P22, P24, P25,P26
Seropositive asymptomatic 1,2,3,56

Seronegative 12, P-13, P-14, P-15, P-16
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Fig. 1 Computational pipeline of data analysis. The figure illustrates the four steps of the data analysis starting from the RNA extraction and
sequencing: MiRNA detection and prediction, differential expression, target prediction and functional analysis
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Prediction of miRNAs

The quality control was performed with fastQC and the
following computational pipeline was followed (Fig. 1).
Raw reads were analyzed with the sSRNAbench web tool,
which is included in the sSRNAtoolbox collection of tools
[17]. This program performed the preprocessing, map-
ping, expression profiling and novel miRNA prediction.
Parameters were set to minimum read count of four,
allowing one mismatch, with full read alignment and
three species were selected to search for homologs: goat,
cattle and mouse. After that, the prediction results of
novel miRNAs were manually curated to remove re-
peated entries that just differed in one nucleotide and to
give more updated miRNA names. Only miRNAs
marked with high confidence by the program were se-
lected for further analysis. Since the program only uses
miRNAs present in miRBase, new predicted miRNAs
that could had been previously described elsewhere were
locally blasted against the whole RNAcentral database
(http://rnacentral.org/) looking for perfect identity.

Differential expression

Before the differential expression analysis, the matrix of
novel miRNAs was built excluding repeated miRNAs
that mapped in different places, miRNAs that appeared
in less than half of the samples and with counts lower
than ten. This was done following common criteria in the
field to perform a conservative analysis. In addition, it was
performed a principal component analysis (PCA) (Add-
itional file 1) to check the grouping of the samples with
the DESeq2 Bioconductor R package (https://bioconduc-
tor.org/packages/release/bioc/html/DESeq2.html). Three
out of the 15 samples were excluded from further
analysis - these outliers highly increased variability -
leaving three groups with four samples each. DESeq2
results were plotted out as a heatmap with the Pheat-
map function for R (https://cran.r-project.org/packa-
ge=pheatmap). Differential expression analysis of
both, known and novel miRNAs was performed with
the sRNAde web tool included in the sRNAtoolbox
collection [17]. DESeq2 and EdgeR were the methods
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used by the program. Three different comparisons
were performed: Asymptomatic vs Seronegative, Le-
sions vs Seronegative and Lesions vs Asymptomatic.
For a miRNA to be considered differentially expressed
(DE), the adjusted p value was set to 0.05 and the ab-
solute log, expression fold change (FC) to one.

Target prediction, gene ontology and pathway analysis
Target genes for each differentially expressed miRNA were
predicted using TargetScan 7 [18] and miRanda — via the
miRNAconstarget tool included in sSRNAtoolbox [17] — al-
gorithms. The 3> UTR mRNA sequences of sheep for both
programs were obtained from the multi-species alignment
generated from human 3’ UTRs given by the authors of
TargetScan. The threshold for this program was set to ab-
solute context++ score > 1 and the thresholds for miRanda
were set to a score higher than 155 and a free energy
lower than -20 kcal/mol. The consensus targets predicted
by both programs were selected.

Viral-targeting miRNAs in the ovine genome were also
inferred by using 11 VMV (Visna Maedi Virus) and 5
Caprine Arthritis Encephalitis Virus (CAEV) complete
sequences deposited in GenBank database. The program
used was standalone miRanda [19].

In order to obtain biological information from the tar-
get genes of differentially expressed miRNAs, an enrich-
ment analysis was performed. We built three sets of
genes that interacted in our predictions with any of the
DE miRNAs in each comparison. Pathway and gene
ontology (GO) analysis were carried out with David
(https://david.ncifcrf.gov/) web tool. For pathways,
KEGG pathway terms were tested and Benjamini mul-
tiple test correction value of 0.05 was applied as a
threshold. We used Cytoscape version 3.5.1 [20] to build
functional networks merging interactions among miR-
NAs, target genes and enriched pathways. This way, we
were able to visualise genes in the selected pathways that
are being targeted by dysregulated miRNAs.

RT-qPCR validation

To validate changes identified by RNA-seq experiment,
the relative expression levels of 7 miRNAs (oar-miR-125b,
oar-let-7b, oar-miR-181a, oar-miR-148a, oar-miR-21,
oar-miR-30c, oar-miR-379-5p) selected based on signifi-
cant changes seen in Lesions vs Seronegative comparison
in the RNA-seq analysis, were verified by qPCR. The U6
snRNA, oar-miR-30d and oar-miR-191 were tested as in-
ternal standard controls and the last two were selected for
their expression stability in our samples. Additional file 2
shows the list of the amplified miRNAs and the corre-
sponding primer sequences. The expression study has
been based on the analysis of miRNA expression with Flu-
digm’s BioMark HD Nanofluidic qPCR System technology
combined with GE 48.48 Dynamic Arrays IFC. qPCR was
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performed on a BioMark HD System using Master Mix
SsoFastTM EvaGreen® Supermix with Low ROX (Bio-Rad
Laboratories, Hercules, CA, USA). The analysis of expres-
sion with the Fluidigm Biomark HD Nanofluidic qPCR
system was performed at the Gene Expression Unit of the
Genomics Facility, in the General Research Services (SGI-
KER) of the UPV/EHU.

The software for the real-time PCR analysis and obtain-
ing of the Ct values was Fluidigm Real-Time PCR Analysis
Software [v3.1.3]. PCR efficiency calculation and correc-
tion, reference miRNA stability analysis and normalization
was done with GenEx software of MultiD [v5.4]. Most
miRNAs showed high amplification efficiencies (94.43—
99.65%). The stability of candidate reference miRNAs was
analyzed using both NormFinder [21] and GeNorm [22]
algorithms integrated in GenEx. The two most stable miR-
NAs were oar-miR-30d and oar-miR-191 so normalization
was performed using these two reference miRNAs. Nor-
mal distribution was checked using the Shapiro-Wilk test
in the IBM SPSS statistical package [v24]. Comparison
and correlation between the RNA-seq and qPCR results
was performed using T-test and Pearson’s correlation, re-
spectively. In all analyses, differences were considered sig-
nificant when p values were < 0.05.

Results

Small RNA sequencing and miRNA prediction

In the present study, the small RNAs from lung tissue of
sheep with and without VMYV infection were sequenced.
The raw reads were high quality — only approximately
2% had Q scores below 30 — and the numbers of reads
ranged from 22 to 8 million, with an average of 15 mil-
lion reads. The raw reads were analyzed by sRNAbench
for miRNA prediction, trimmed the adapters in around
the 95% of the reads in all the samples, and 85% of the
preprocessed reads were successfully mapped to the
sheep genome. The read-length distribution showed a
clear peak between 21 and 23 nucleotides in all of the
samples, where most of the reads were located.

Out of the mapping, the program could annotate 86
known sheep miRNAs from miRBase. All of the other
reads that mapped to the genome, but that did not coin-
cide with a miRBase miRNA were subjected to novel
discovery tests, from which several new miRNAs arose.
Some of these new miRNAs were apparently completely
novel molecules, and others were found to be conserved
in other species. After cleaning the output sequences
and aligning them with RNAcentral, it was found that
some were already annotated in sheep and that others
had homologs in other species. In total, 86 known miR-
NAs from miRBase, 68 known sheep miRNAs from
other databases, and 58 miRNAs shown for the first time
in sheep were found (Fig. 2b). Twelve miRNAs out of
these 58 could not be considered ovine homologs of
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previously described miRNAs and were considered
novel. The full list of the described miRNAs not present
in miRBase is in Additional file 3. The novel miRNAs
were named sequentially, but they were given the name
of a homolog if one existed. Regarding the expression
levels, some miRNAs were much more abundant than
others (Fig. 2a): the 13% most abundant miRNAs were
above 10,000 counts, while the 29% least abundant miR-
NAs had fewer than five average counts. Furthermore,
the miRNAs classified as novel or conserved had par-
ticularly low abundance, with only few of them having
more than 1000 counts.

Differentially expressed miRNAs

We made pairwise comparisons among the three sample
groups. Overall, the differential expression levels, as well as
the PCA, pointed out that the biggest differences were be-
tween seronegative sheep and the other two seropositive
groups (asymptomatic animals and animals with Lesions).
Clustering of differentially expressed (DE) miRNAs de-
tected by either of the two programs clearly grouped the
seronegative samples, but failed to distinguish the other
two groups, similar to the outcome of the PCA. Seroposi-
tive asymptomatic animals and animals with developed
clinical symptoms seemed quite similar in terms of miRNA
expression (Fig. 3; Additional file 1). By merging the results
of the EdgeR and DESeq2 analyses, 34 DE miRNAs were
identified between clinically affected and seronegative
sheep, of which 23 were upregulated and 11 downregulated.
There were also 9 upregulated and one downregulated
miRNAs when comparing samples from seropositive
asymptomatic animals with samples from seronegative ani-
mals, and only three miRNAs were differentially expressed
between animals with clinical symptoms and seropositive
asymptomatic animals (Table 2). Some novel ovine miR-
NAs with homologs in other mammals, namely,
chi-miR-30f-5p, chi-miR-449a-5p, mmu-let-7e-3p, mmu-

miR-144-3p, bta-miR-142-5p, chi-mir-92a-3p, ssc-mir-
7134-3p, ssc-mir-7134-5p and mmu-miR-98-5p, from goat
(chi), mouse (mmu), pig (ssc) and cattle (bta), showed dif-
ferences in VMV infected animals. Completely novel miR-
NAs did not differ significantly in their expression likely
due to their low expression levels, which were sometimes
even below the applied count threshold.

Among the most abundantly expressed DE miRNAs,
some showed relevant increases or reductions in expres-
sion (Fig. 4): oar-miR-21 was, by far, the most abundant
DE miRNA, since its expression was elevated 4.3 times
in seropositive asymptomatic animals and 12 times in
diseased animals, with average total counts of around
two million. Other highly expressed DE miRNAs, such
as oar-miR-148a and oar-let-7f showed significant in-
creases, with absolute fold changes of 3 and 2.2, respect-
ively, in infected animals compared with seronegative
animals. Furthermore, miRNAs such as oar-let-7b,
oar-miR-99a and oar-miR-125b, showed reduced expres-
sion in infected sheep (Fig. 4).

Validation of differential miRNA expression

To validate the miRNA-seq data, seven miRNAs
(oar-miR-125b, oar-let-7b, oar-miR-181a, oar-miR-1
48a, oar-miR-21, oar-miR-30c, and oar-miR-379-5p)
were verified using the Fluidigm Biomark HD Nano-
fluidic qPCR system. The log,FC in the miRNA ex-
pression levels calculated by qPCR in the Lesions
group relative to the Seronegative group are shown in
Fig. 5. The validation results confirmed the upregu-
lated expression of 3 miRNAs (oar-miR-148a,
oar-miR-21, oar-miR-379-5p) and the downregulated
expression of 4 miRNAs (oar-miR-125b, oar-let-7b,
oar-miR-181a, and oar-miR-30c), although only two
were statistically significant: oar-miR-21 (p =0.003)
and oar-miR-30c (p =0.004). There were no signifi-
cant differences in the FC data obtained from the
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RNA-seq and the Fluidigm Biomark HD Nanofluidic
qPCR system (p=0.656) showing a high degree of
concordance, with a correlation coefficient of 0.982
(p = 0.000).

Functional analysis of dysregulated miRNAs

In this study, the targets of the DE miRNAs were predicted
using the TargetScan and Miranda algorithms. TargetScan
predicted a total of 1.9 million interactions for all of the
identified miRNAs, and this number was reduced to
124,614 after applying the cut-off value. Miranda predicted
911,069 target sites for the same set of miRNAs and appli-
cation of the threshold settings reduced this number to
41,871 targets. Next, we performed an intersection analysis
to enhance the confidence of the predictions, and this
process reduced the number of interactions to 12,280, with

6426 unique genes. An average of 35 interactions was ob-
served for each of the 349 mature miRNAs analyzed. Out
of the collection of the predicted targets, we retrieved three
sets of genes (one for each comparison) with 1736, 1135
and 190 genes each. These gene sets were then used in en-
richment analyses.

The GO enrichment analysis did not identify any
significantly enriched terms using the multiple testing
correction, whereas some pathways were actually over-
represented, such as, signalling pathways (e.g. PI3K-Akt,
AMPK and ErbB), or other terms such as ECM-receptor
interaction and pathways in cancer (Table 3). The
PI3K-Akt signalling pathway had the most genes
involved in both comparisons — 51 and 40, respectively
— and it was the most statistically significant term (cor-
rected P values of 2.51E-04 and 0.004). The comparisons



Bilbao-Arribas et al. BMC Genomics (2019) 20:62

Table 2 Differential expression results of the three comparisons.
Only detections by both programs are showed and for the
selection, the adjusted p values of each program were used.
Log, FC of 7.000 in DESeq2 means that the miRNA was present
in one group of samples but not in the other
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Table 2 Differential expression results of the three comparisons.
Only detections by both programs are showed and for the
selection, the adjusted p values of each program were used.
Log, FC of 7.000 in DESeq2 means that the miRNA was present
in one group of samples but not in the other (Continued)

miRNA Name DESeq2 EdgeR miRNA Name DESeq2 EdgeR
Log,FC  Padj Log,FC  FDR Log,FC  Padj Log,FC  FDR
Lesions-Seronegative bta-miR-142-5p 7.000 242E-11 13831 1.67E-05
oar-mir-322-3p —2.830 0.003 —2.880 0.005 mmu-miR-98-5p 5023 0.0002 5.006 0.029
chi-miR-30f-5p —2.199 0.0001 —2.226 0.02 oar-let-7f 1.303 0.0007 1.237 0.0005
oar-mir-361-3p 7.000 564E-13 14182 3.1E-09 oar-miR-125b -1.361 0.0007 -1.401 0.008
oar-mir-361-5p 7.000 457E-17 13237 3.11E-08 oar-miR-148a 1.297 0.0009 1.224 0.0002
chi-miR-449a-5p 6.270 0.017 6.105 0.009 oar-miR-21 2.099 0.026 2029 5.99E-06
mmu-let-7e-3p -2.092 0.029 —2.149 0.008 Lesions-Seropositive asymptomatic
mmu-miR-144-3p 2.824 0.002 2.792 0.0007 oar-mir-148/mir-152-5p —4.143 0032 —4.098 0.005
oar-mir-32-5p 3939 345E-05 3877 0.0001 oar-mir-36-f-3p 7.000 6.99E-08 —13615  642E-05
oar-mir-340-5p 1.827 0.029 1.746 0.038 ssc-mir-7134-5p -3.016 0.044 -2973 0.009
oar-mir-34-nvb-5p 1.575 0.002 1.500 0.003
bta-miR-142-5p 7000 3E-10 1295 379805 between the seropositive and seronegative sheep were
oar-mir-9/mir-79-nvi-5p  4.173 00002 4045 0.043 the only ones yielding results, while there were no
chi-mir-92a-3p 1559  0.0002 ~1609 0008 enriched terms in the comparison between the seroposi-
oar-mir-36-f-3p 7000 284809 -14383 384E-06  tive groups, based on the corrected p values.
Ssc-mir-7134-3p 3517 00005 3676 0009 Interaction maps incorp.orating tbe miRNAs and the‘ir
targets and the pathways information were produced in
SSCMIr-/134-5p T3967 00002 =3968 AR o attempt to unveil how the differences in miRNA ex-
oar-let-7b —1458  5.28805  -1519 0002 pression could affect these pathways in seropositive
oar-let-7f 1.156 0003 1078 0003 asymptomatic compared to seronegative animals (Fig. 6)
oar-miR-125b 2083 265608 -2134  384k06 and in diseased animals compared to seronegative ani-
oar-miR-134-5p 3967 0026 3184 0,002 mals (Fig. 7). Key regulators in the PISK-Akt pathway,
oar-miR136 5623 0047 5599 0003 such as PTEN, and related transcription factors such as
FOXO3 and CREBI, appear to be targeted by dysregu-
oar-miR-148a 1579 2805 1501 193805 Jated miRNAs identified between the seropositive groups
oar-miR-181a —1781  116E05  —1836 647805  and the seronegative group. Most of the miRNAs target
oar-miR-200a 1614 0.001 1533 0.008 no more than three genes in these pathways, except for
oar-miR-21 3584 JE-05 3.500 864E-16  oar-miR-143 and oar-mir-361-3p, which target several
oar-miR-299-3p 2910 0025 2726 0008 genes based on our predictions.
oar-miR-29b 2.156 0.01 2.087 0.016
Virus-miRNA interactions
oarmif30c 144000002 1486 0003 Regarding the highly expressed DE miRNAs, two signifi-
oar-miR-369-3p 2966 0043 2858 0.002 cantly strong interactions were found between the miR-
oar-miR-376¢-3p 2268 0.022 2158 0.002 NAs and the SRLV genome. The upregulated miRNA
oar-miR-376e-3p 2058 0.032 1975 0.006 oar-miR-200a was predicted to target nine out the eleven
oarmiR-379-5p 7336 0017 3737 0008 tested sequences at nucleotides 1671 to 1689 with re-
oar-miR411a-5p 5181 0008 5084 0006 spect t‘o the VMV reference genome sequence (GenBank
accession number L06906.1), with a score of 155 and a
oarmif-99a “la7 0002 1168 002 folding energy of —16.1kcal/mol. The downregulated
seropositive asymptomatic-Seronegative miRNA oar-miR-99a was predicted to target nine se-
oar-mir-361-3p 7000 711E-10 11903 525807  quences around nucleotides 5383 to 5402 with a score
oar-mir-361-5p 7.000 208617 13286 677608 of 150 and a folding energy of — 25.54 kcal/mol. These
mmu-miR-144-3p 3733 6.95E-05 3690 ssik0s  Predicted interactions are in the “gag” and “vif” genes,
oar-mir-32-5p 2679 00002 3634 00005 respectively. These targeted sequences are all from the

genotype A of SRLV. On the other hand, oar-miR-99a
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\

may also target CAEV at nucleotides 2194 to 2212 — in
the “pol” gene — with respect to the CAEV reference
genome (GenBank accession number M33677.1) with a
score of 160 and a folding energy of — 23.83 kcal/mol.

Discussion

In this work, we used NGS techniques to analyze the ex-
pression pattern of miRNAs in seronegative sheep and in
SRLV seropositive but asymptomatic animals and in dis-

regulatory functions of the miRNAs. Since we used tissue
samples from naturally infected animals for the experi-
ments, the data reflect the actual miRNA transcriptome in
the lung tissue of SRLV-infected animals. Host-virus inter-
actions modify several biological processes as a conse-
quence of the ability of the viruses to employ the host
machinery to complete their replication cycle, and of the
host’s attempts to deal with the infection. These changes
can be observed at the miRNA expression level since miR-

eased animals. We then made predictions of the possible NAs can control different pathways; therefore,
4
3 |
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3

Fig. 5 gPCR validation of miRNAs. Expression of selected miRNAs in Lesions group relative to Seronegative group measured by RNA-seq and
gPCR. Bars represent the average results of the different samples. Statistically significant differences in the expression measured by gPCR of the
indicated miRNAs are showed with an asterisk (p < 0.05)
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Table 3 Enrichment analysis of pathways between both seropositive groups and the seronegative group. Significant entries with

Benjamini score equal or smaller than 0.05 are shown

Pathway Seropositive asymptomatic-Seronegative Lesions-Seronegative
Fold enrichment Benjamini Fold enrichment Benjamini

0as04151:PI3K-Akt signaling pathway 2327 2,51E-04 1.868 0.004
0as04152:AMPK signaling pathway 2831 0.024 2411 0.022
0as05202:Transcriptional misregulation in cancer - - 2111 0.024
0as05161:Hepatitis B 2.542 0.027 2.134 0.047
0as04012:ErbB signaling pathway 3.29 0.034 2519 0.048
0as05200:Pathways in cancer - - 1.595 0.049
0as04512:ECM-receptor interaction 3.186 0.024 2435 0.050
0as04510:Focal adhesion 2232 0.029 - -
0as05215:Prostate cancer 3.29 0.034 - -
0as04360:Axon guidance 2.643 0.034 - -
0as04014:Ras signaling pathway 2112 0.038 - -
0as05206:MicroRNAs in cancer 2.190 0.050 - -
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Fig. 6 Functional network of the comparison between seropositive asymptomatic and seronegative sheep. It illustrates the predicted interactions
of DE miRNAs with their targets and the pathways those target genes are part of. Upregulated miRNAs are coloured in red and downregulated
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understanding changes in miRNA expression could be
crucial for understanding the disease.

The enriched pathways identified in this study suggest
an increase in cell proliferation-related signaling. The
PI3K-Akt pathway is a key pathway involved in growth
and proliferation, and it has been extensively studied in
the context of proliferative diseases such as cancer; fur-
thermore, it seems to be influenced by a miRNA regula-
tory network as an added layer of modulation [23].
Furthermore, viruses can hijack this pathway for en-
hanced replication, as has been reported in several cases
[24]. For instance, Porcine Reproductive and Respiratory
Syndrome Virus (PRRSV) modulates PI3K-Akt signalling
via FoxO1 and Bad ([25]) and influenza A codes for the
NS1 protein which directly interacts with the PI3K regu-
latory subunit p85 ([26]). DE miRNAs were predicted to
target very important factors in this pathway including
PTEN, PI3K, FOXO3, the BCL2 family, CREB, GRB2,
growth factors (FGF23) and cytokine receptors
(IFNAR1). Other enriched pathways in our set of target
genes were the AMPK signalling pathway, which is a
regulator of cellular homeostasis and is linked to

PI3K-Akt pathway, and the ErbB pathway, which is re-
lated to signal transduction involving growth factors.
Although miRNAs are fine tuners of gene expression that
can act at low concentrations, the appearance of highly
expressed miRNAs may be very relevant and could indicate
strong modulation. Normally, a few miRNAs comprise the
majority of the miRNAome, and many others are present
at low concentrations. In our experiments, oar-miR-21 ex-
pression showed an interesting behaviour, as its expression
is remarkably high in both seropositive groups, with its
highest expression level in diseased animals. miR-21 is a
fairly well-studied miRNA, and was one of the first miR-
NAs identified as an oncogene; it has been seen to be up-
regulated in several conditions including tumours [27] and
viral infections. In the case of RNA viral diseases, miR-21 is
upregulated by hepatitis C virus (HCV), which leads to a
decreased IFN response in human cell lines [28], during
dengue virus infection in human cancer cells, which pro-
motes viral replication [29] and in HIV and in HIV-related
pulmonary arterial hypertension in human plasma [30].
Furthermore, Epstein-Barr virus (EBV) induces miR-21 ex-
pression in B cells, which promotes tumorigenesis by
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activating the PI3K-Akt pathway, causing FOXO3a to stop
repressing miR-21 [31, 32], findings that are in agreement
with our current results.

The respiratory form of SRLV infection exhibits some
typical histopathological lesions characterized by
lymphocytic infiltration and inflammation, M2-polarized
macrophages, interstitial pneumonia, lung fibrosis and
decreased gas exchange [33, 34]. However, the mecha-
nisms of this pathogenesis, which are likely immunome-
diated [35], are not fully characterized. There were no
major differences between the infected asymptomatic
animals and the sheep that did show lesions, indicating
that the miRNA levels mostly change after infection,
rather than when symptoms appear. It seems that most
of the transcriptional changes occur in the early stages
of infection and that the differences between the
asymptomatic-seronegative and the lesions-seronegative
comparisons could be due to disease progression and
appearance of clinical symptoms.

Interestingly, these kinds of lesions could be related to
some of the DE miRNAs and with the pathways regu-
lated by them. In an artificially induced lung fibrosis in
mice, miR-21 mediates the activation of pulmonary fi-
broblasts [36]. Furthermore, miR-21 has been recently
proposed as an indicator of disease progression and po-
tential treatment target in another mouse model [37].
MiR-21 could control pathways such as the TGF-$1 sig-
naling pathway by targeting SMAD7 and SPRY1 or by
inhibiting PTEN, which is a known negative regulator of
lung fibrosis [38]. The remodelling of lung tissues caused
by fibrosis related hypoxia has also been linked with
miR-21 [39]. Importantly, PTEN has a crucial role in
controlling the PI3K-Akt pathway, and its interaction
with miR-21 has been experimentally validated several
times in human and in mice [40]. The upregulated
miR-148a also targets PTEN, as well as GADD45A and
BCL2L11, and it accelerates the development of auto-
immunity [41].

Another miRNA, miR-99a, which was downregulated
in the diseased sheep, appears to target AKT1 [42]
(which has an important role in the PI3K-Akt pathway)
and inhibits cancer cell proliferation by targeting mTOR
[43]. Thus, its downregulation in the animals with le-
sions should increase AKT1 and mTOR expression,
stimulating proliferative signal. In our analysis,
inflammation-related interleukin 13 (IL-13) was pre-
dicted as a target of miR-98-5p and let-7 family miR-
NAs, and it is noteworthy that previous experimental
observations have shown that let-7 miRNAs can modu-
late inflammation through inhibition of IL-13 [44]. Dur-
ing bluetongue virus infection in sheep testicular cells,
while IL-13 and let-7f were downregulated, let-7d was
upregulated and PI3K-Akt pathway was overrepresented
in the enrichment test of the DE genes [45].
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The relationship between the dysregulation of some
miRNAs and VM disease could be a direct consequence
of virus modulation or a side effect of the host defense
mechanisms. In the case of miR-21, it has been proposed
as a key switch in the inflammatory response [40]. Clin-
ical lesions observed could be a consequence of exces-
sive cell survival signalling after the initial proinflam
matory immune response. On the other hand, the virus
itself may modulate miRNA expression, as it does in
EBV and HCV infections [28, 46], during which the vi-
ruses induce miR-21 expression to promote their repli-
cation by enhancing the growth and survival of the
infected cells, thus modulating the response in favour of
the virus. Furthermore, PRRSV downregulated miR-125b
to negatively regulate NF-kB signaling as a survival strat-
egy [47].

Direct targeting of viruses remains controversial not
only because of viral genome structure and rapid evolu-
tion but also because the normal concentrations of miR-
NAs are too low for efficient silencing [48]. Only some
highly expressed DE miRNAs have been analyzed to de-
termine if they could potentially silence some viral RNA.
Interestingly, there were some predicted miRNA target
sites in the SRLV genome, including one for
oar-miR-200a. oar-miR-200a was upregulated in the
lesions-seronegative comparison and could actively tar-
get the viral gag gene in the A genotype. Functional ex-
periments are necessary to uncover the antiviral
functions of these candidate miRNAs.

Conclusions

In this work, we performed for the first time a miRNA
profiling in sheep responding to SRLV infection. Twelve
completely novel miRNA molecules and more than 40
others were found for the first time in sheep. MiRNAs
differentially regulated between seronegative and in-
fected sheep, such as oar-miR-21, oar-miR-148a or
oar-let-7f may have potential implications for the
host-virus interaction. The miRNAs were predicted to
target important genes involved in apoptosis, prolifera-
tion and growth, e.g., the PI3K-Akt and AMPK path-
ways. The role of oar-miR-21 as a regulator of
inflammation and proliferation appeared as a possible
cause for the lesions caused in sheep lungs, and this
miRNA could be an indicator of the severity of the lung
lesions or may be useful as a putative target for thera-
peutic intervention.

Additional files

Additional file 1: PCA analysis of the 12 samples used in the RNA-seq
analysis. (PDF 25 kb)

Additional file 2: Primers used for RT-qPCR validation of selected miR-
NAs (XLSX 8 kb)



https://doi.org/10.1186/s12864-018-5416-0
https://doi.org/10.1186/s12864-018-5416-0

Bilbao-Arribas et al. BMC Genomics (2019) 20:62

Additional file 3: List of described miRNAs not present in miRBase
(XLSX 16 kb)

Abbreviations

CAEV: Caprine arthritis encephalitis; DE: Differentially expressed; EBV: Epstein-
barr virus; ELISA: Enzyme-linked immunoSorbent assay; FC: Fold change;
GO: Gene ontology; HCV: Hepatitis C virus; miRNAs: MicroRNAs;

PCA: Principal component analysis; PRRSV: Porcine reproductive and
respiratory syndrome virus; RISC: RNA-induced silencing complex;

SRLVs: Small Ruminant Lentiviruses; TLRs: Toll like receptors; VM: Visna/Maedi
disease; VMV: Visna maedi virus

Acknowledgements

Thanks are due to Dr. AM. Aransay from CIC-Biogune for advising in RNAseq
analysis and to Dr. I. Bernales (SGlker-UPV/EHU) for her involvement in the
validation assays. Technical support provided by SGlker (UPV/EHU, MICINN,
GV/EJ, ERDF and ESF) is gratefully acknowledged.

Consent to participate
Not applicable.

Funding

This work was supported by a UPV/EHU grant (GIU14/23) provided to B.M.
Jugo, two predoctoral fellowships from the UPV/EHU to M. Bilbao-Arribas
(PIF17/306) and E. Varela-Martinez (PIF15/361) and a postdoctoral fellowship
from the UPV/EHU to Dr. N. Abendano (ESPDOC16/43).

Availability of data and materials

The datasets generated and analyzed during the current study are available
in the NCBI's Gene Expression Omnibus repository and are accessible
through GEO Series accession number GSE115415 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115415).

Authors’ contributions

Conceptualization, design and funding acquisition: BMJ.
Sample acquisition: RR, DdA.

Experimental analysis and validation: NA.

Bioinformatic analysis: MB-A and EV-M.

Visualization and analysis: MB-A; NA, EV-M, BMJ.

Writing — original draft: MB-A; BMJ.

Writing — review & editing: All authors.

All' authors have read and approved the manuscript.

Ethics approval

The samples were obtained from different commercial flocks in the routine
of the Veterinary Faculty (University of Zaragoza) in the framework of the
national research project ref. AGL2010-22341-C04-01. The complete
experimental procedure was approved and licensed by the Ethical
Committee of the University of Zaragoza (ref: PI09/10).

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Department of Genetics, Physical Anthropology and Animal Physiology,
Faculty of Science and Technology, University of the Basque Country UPV/
EHU, 48080 Bilbao, Spain. “Institute of Agrobiotechnology
(CSIC-UPNA-Government of Navarra), Avenida de Pamplona 123, 31192
Mutilva, Navarra, Spain.

Received: 25 July 2018 Accepted: 26 December 2018
Published online: 18 January 2019

References
1. Minguijén E, Reina R, Pérez M, Polledo L, Villoria M, Ramirez H, et al. Small
ruminant lentivirus infections and diseases. Vet Microbiol. 2015;181:75-89.

20.

21.

22.

23.

24,

25.

26.

Page 12 of 13

Christodoulopoulos G. Maedi-Visna: clinical review and short reference
on the disease status in Mediterranean countries. Small Rumin Res.
2006;62:47-53.

Pérez M, Munoz JA, Biescas E, Salazar E, Bolea R, de Andrés D, et al.
Successful Visna/maedi control in a highly infected ovine dairy flock using
serologic segregation and management strategies. Prev Vet Med. 2013;112:
423-7.

Larruskain A, Jugo BM. Retroviral infections in sheep and goats: small
ruminant lentiviruses and host interaction. Viruses. 2013;5:2043-61.
Larruskain A, Bernales |, Lujan L, de Andrés D, Amorena B, Jugo BM.
Expression analysis of 13 ovine immune response candidate genes in Visna/
Maedi disease progression. Comp Immunol Microbiol Infect Dis. 2013;36:
405-13.

Stonos N, Wootton SK, Karrow N. Immunogenetics of small ruminant
lentiviral infections. Viruses. 2014;6:3311-33.

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.
2004;116:281-97.

Wang X, Gu Z, Jiang H. MicroRNAs in farm animals. Animal. 2013;7:1567-75.
https://doi.org/10.1017/51751731113001183.

Caiment F, Charlier C, Hadfield T, Cockett N, Georges M, Baurain D.
Assessing the effect of the CLPG mutation on the microRNA catalogue of
skeletal muscle using high throughput sequencing. Genome Res. 2010;20:
1651-62. https://doi.org/10.1101/gr.108787.110.

Gao W, Sun W, Yin J, Lv X, Bao J, Yu J, et al. Screening candidate microRNAs
(miRNAs) in different lambskin hair follicles in Hu sheep. PLoS One. 2017;12:
1-19.

Pokharel K, Peippo J, Honkatukia M, Seppéld A, Rautiainen J, Ghanem N, et
al. Integrated ovarian mRNA and miRNA transcriptome profiling
characterizes the genetic basis of prolificacy traits in sheep (Ovis aries). BMC
Genomics. 2018;19:1-17.

Miao X, Luo Q, Qin X, Guo Y. Genome-wide analysis of microRNAs identifies
the lipid metabolism pathway to be a defining factor in adipose tissue from
different sheep. Sci Rep. 2015;5:18470. https://doi.org/10.1038/srep18470.
Cohen TS. Role of MicroRNA in the Lung's innate immune response. J
Innate Immun. 2017,9:243-9.

Guo YE, Steitz JA. Virus meets host MicroRNA: the destroyer, the booster,
the hijacker. Mol Cell Biol. 2014;34:3780-7. https://doi.org/10.1128/MCB.
00871-14.

Trobaugh DW, Klimstra WB. MicroRNA regulation of RNA virus replication
and pathogenesis. Trends Mol Med. 2017;23:80-93. https.//doi.org/10.1016/j.
molmed.2016.11.003.

Swaminathan G, Martin-Garcia J, Navas-Martin S. RNA viruses and
microRNAs: challenging discoveries for the 21st century. Physiol Genomics.
2013;45:1035-48. https.//doi.org/10.1152/physiolgenomics.00112.2013.
Rueda A, Barturen G, Lebrén R, Gémez-Martin C, Alganza A, Oliver JL, et al.
SRNAtoolbox: an integrated collection of small RNA research tools. Nucleic
Acids Res. 2015;43:W467-73.

Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target
sites in mammalian mRNAs. elife. 2015;4:1-38.

Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in
drosophila. Genome Biol. 2003;5R1. https//doi.org/10.1186/gb-2003-5-1-r1.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.
Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res. 2003;13:2498-504.

Andersen CL, Jensen JL, @rntoft TF. Normalization of real-time quantitative
reverse transcription-PCR data: a model-based variance estimation approach
to identify genes suited for normalization, applied to bladder and colon
cancer data sets. Cancer Res. 2004;64:5245-50.

Vandesompele J, De Preter K, Pattyn ilip, Poppe B, Van Roy N, De Paepe A.
et al. Accurate normalization of real-time quantitative RT-PCR data by
geometric averaging of multiple internal control genes. Genome Biol 2002;
3:34-31.

Xu M, Mo YY. The Akt-associated microRNAs. Cell Mol Life Sci. 2012,69:
3601-12.

Diehl N, Schaal H. Make yourself at home: viral hijacking of the PI3K/Akt
signaling pathway. Viruses. 2013;5:3192-212.

Zhu L, Yang S, Tong W, Zhu J, Yu H, Zhou Y, et al. Control of the PI3K/Akt
pathway by porcine reproductive and respiratory syndrome virus. Arch Virol.
2013;158:1227-34.

Ehrhardt C, Wolff T, Pleschka S, Planz O, Beermann W, Bode JG, et al.
Influenza a virus NST protein activates the PI3K/Akt pathway to mediate


https://doi.org/10.1186/s12864-018-5416-0
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115415
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115415
https://doi.org/10.1017/S1751731113001183
https://doi.org/10.1101/gr.108787.110
https://doi.org/10.1038/srep18470
https://doi.org/10.1128/MCB.00871-14
https://doi.org/10.1128/MCB.00871-14
https://doi.org/10.1016/j.molmed.2016.11.003
https://doi.org/10.1016/j.molmed.2016.11.003
https://doi.org/10.1152/physiolgenomics.00112.2013
https://doi.org/10.1186/gb-2003-5-1-r1

Bilbao-Arribas et al. BMC Genomics

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

46.

47.

48.

(2019) 20:62

Antiapoptotic signaling responses. J Virol. 2007,81:3058-67. https://doi.org/
10.1128/JV1.02082-06.

Pfeffer SR, Yang CH, Pfeffer LM. The role of MIR-21 in Cancer. Drug Dev Res.
2015;76:270-7.

Chen Y, Chen J, Wang H, Shi J, Wu K, Liu S, et al. HCV-induced miR-21
contributes to evasion of host immune system by targeting MyD88 and
IRAKT. PLoS Pathog. 2013;9:21003248.

Kanokudom S, Vilaivan T, Wikan N, Thepparit C, Smith DR, Assavalapsakul W.
miR-21 promotes dengue virus serotype 2 replication in HepG2 cells. Antivir
Res. 2017;142:169-77. https://doi.org/10.1016/j.antiviral.2017.03.020.

Parikh VN, Park J, Nikolic I, Channick R, Yu PB, Marco T De, et al. Coordinated
modulation of circulating miR-21 in HIV, HIV-Associated Pulmonary Arterial
Hypertension , and HIV / Hepatitis C Virus Coinfection. J Acquir Immune
Defic Syndr. 2015;70:236-241.

Da Yang G, Huang TJ, Peng LX, Yang CF, Liu RY, Huang HB, et al. Epstein-
Barr Virus_Encoded LMP1 Upregulates MicroRNA-21 to promote the
resistance of nasopharyngeal carcinoma cells to Cisplatin-induced apoptosis
by suppressing PDCD4 and Fas-L. PLoS One. 2013;8:1-15.

Anastasiadou E, Garg N, Bigi R, Yadav S, Campese AF, Lapenta C, et al.
Epstein-Barr virus infection induces miR-21 in terminally differentiated
malignant B cells. Int J Cancer. 2015;137:1491-7.

Pépin M, Vitu C, Russo P, Mornex JF, Peterhans E. Maedi-visna virus infection
in sheep: a review. Vet Res. 1998,29:341-67.

Gayo E, Polledo L, Balseiro A, Martinez CP, Garcia Iglesias MJ, Preziuso S, et
al. Inflammatory lesion patterns in target organs of Visna/Maedi in sheep
and their significance in the pathogenesis and diagnosis of the infection. J
Comp Pathol. 2018;159:49-56.

Blacklaws BA. Small ruminant lentiviruses: Immunopathogenesis of visna-
maedi and caprine arthritis and encephalitis virus. Comp Immunol Microbiol
Infect Dis. 2012,35:259-69. https://doi.org/10.1016/j.cimid.2011.12.003.

Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, et al. miR-21
mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J
Exp Med. 2010;207:1589-97. https://doi.org/10.1084/jem.20100035.

He S, Li L, Sun'S, Zeng Z, Lu J, Xie L. A novel murine chronic obstructive
pulmonary disease model and the pathogenic role of microRNA-21. Front
Physiol. 2018,9 MAY:1-12.

Kral JB, Kuttke M, Schrottmaier WC, Birnecker B, Warszawska J, Wernig C, et al.
Sustained PI3K activation exacerbates BLM-induced lung fibrosis via activation
of pro-inflammatory and pro-fibrotic pathways. Sci Rep. 2016;6:23034.

Yang S, Banerjee S, Freitas A d., Cui H, Xie N, Abraham E. et al. miR-21
regulates chronic hypoxia-induced pulmonary vascular remodeling. AJP
Lung Cell Mol Physiol. 2012,;302:L.521-L529. doi:https://doi.org/10.1152/
ajplung.00316.2011.

Sheedy FJ. Turning 21: induction of miR-21 as a key switch in the
inflammatory response. Front Immunol. 2015;6:19.

Gonzalez-Martin A, Adams BD, Lai M, Shepherd J, Salvador-Bernaldez M,
Salvador JM, et al. The microRNA miR-148a functions as a critical regulator
of B cell tolerance and autoimmunity. Nat Immunol. 2016;17:433-40. https//
doi.org/10.1038/ni.3385.

Yu S, Zhang C, Dong F, Zhang Y. miR-99a suppresses the metastasis of
human non-small cell lung Cancer cells by targeting AKT1 signaling
pathway. J Cell Biochem. 2015;116:268-76. https://doi.org/10.1002/jcb.24965.
Huang HG, Luo X, Wu S, Jian B. MiR-99a inhibits cell proliferation and
tumorigenesis through targeting mTOR in human anaplastic thyroid cancer.
Asian Pacific J Cancer Prev. 2015;16:4937-44.

Kumar M, Ahmad T, Sharma A, Mabalirajan U, Kulshreshtha A, Agrawal A, et
al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway
inflammation. J Allergy Clin Immunol. 2011;128:1077-85.e1071-1010. https://
doi.org/10.1016/}jaci.2011.04.034.

Du J, Gao S, Tian Z, Xing S, Huang D, Zhang G, et al. MicroRNA expression
profiling of primary sheep testicular cells in response to bluetongue virus
infection. Infect Genet Evol. 2017;49:256-67. https.//doi.org/10.1016/j.
meegid.2017.01.029.

Cameron JE, Fewell C, Yin Q, McBride J, Wang X, Lin Z, et al. Epstein-Barr
virus growth/latency Il program alters cellular microRNA expression.
Virology. 2008;382:257-66. https.//doi.org/10.1016/j.virol.2008.09.018.

Wang D, Cao L, Xu Z, Fang L, Zhong Y, Chen Q, et al. MiR-125b reduces
porcine reproductive and respiratory syndrome virus replication by
negatively regulating the NF-kB pathway. PLoS One. 2013;8:55838.
Tenoever BR. RNA viruses and the host microRNA machinery. Nat Rev
Microbiol. 2013;11:169-80.

Page 13 of 13

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.1128/JVI.02082-06
https://doi.org/10.1128/JVI.02082-06
https://doi.org/10.1016/j.antiviral.2017.03.020
https://doi.org/10.1016/j.cimid.2011.12.003
https://doi.org/10.1084/jem.20100035
https://doi.org/10.1152/ajplung.00316.2011
https://doi.org/10.1152/ajplung.00316.2011
https://doi.org/10.1038/ni.3385
https://doi.org/10.1038/ni.3385
https://doi.org/10.1002/jcb.24965
https://doi.org/10.1016/j.jaci.2011.04.034
https://doi.org/10.1016/j.jaci.2011.04.034
https://doi.org/10.1016/j.meegid.2017.01.029
https://doi.org/10.1016/j.meegid.2017.01.029
https://doi.org/10.1016/j.virol.2008.09.018

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Animals
	Tissue collection, RNA extraction and small RNA sequencing
	Prediction of miRNAs
	Differential expression
	Target prediction, gene ontology and pathway analysis
	RT-qPCR validation

	Results
	Small RNA sequencing and miRNA prediction
	Differentially expressed miRNAs
	Validation of differential miRNA expression
	Functional analysis of dysregulated miRNAs
	Virus-miRNA interactions

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Consent to participate
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval
	Competing interests
	Publisher’s Note
	Author details
	References

