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Abstract

Background: Plant basic leucine zipper (bZIP) transcription factors play crucial roles in plant growth, development,
and abiotic stress responses. However, systematic investigation and analyses of the bZIP gene family in peanut are
lacking in spite of the availability of the peanut genome sequence.

Results: In this study, we identified 50 and 45 bZIP genes from Arachis duranensis and A. ipaensis genomes,
respectively. Phylogenetic analysis showed that Arachis bZIP genes were classified into nine groups, and these
clusters were supported by several group-specific features, including exon/intron structure, intron phases, MEME
motifs, and predicted binding site structure. We also identified possible variations in DNA-binding-site specificity
and dimerization properties among different Arachis bZIPs by inspecting the amino acid residues at some key sites.
Our analysis of the evolutionary history analysis indicated that segmental duplication, rather than tandem
duplication, contributed greatly to the expansion of this gene family, and that most Arachis bZIPs underwent strong
purifying selection. Through RNA-seq and quantitative real-time PCR (qRT-PCR) analyses, the co-expressed,
differentially expressed and several well-studied homologous bZIPs were identified during seed development stages
in peanut. We also used qRT-PCR to explore changes in bZIP gene expression in response to salt-treatment, and
many candidate bZIPs in groups A, B, and S were proven to be associated with the salt-stress response.

Conclusions: This study have conducted a genome-wide identification, characterization and expression analysis of
bZIP genes in Arachis genomes. Our results provide insights into the evolutionary history of the bZIP gene family in
peanut and the funcntion of Arachis bZIP genes during seed development and in response to salt stress.
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Background
In plants, transcription factors (TFs) possess specific do-
mains that bind upstream of target genes to regulate
gene expression [1, 2]. Of these plant TFs, the basic leu-
cine zipper (bZIP) transcription factor family is one of
the largest, and was named and characterized based on
the conserved bZIP domain [3, 4]. The domain is 60–80
amino acids in length and is composed of two parts: a

basic region and a leucine zipper motif. The basic region
is highly conserved and includes 16 amino acid residues
with an invariant motif N-× 7-R/K-× 9, independently
determining nuclear localization and DNA binding spe-
cificity [5, 6]. The leucine zipper motif is less conserved,
and contains heptad repeats of leucine (Leu) or other
bulky hydrophobic amino acids which is responsible for
specific recognition and homo- and/or heterodimeriza-
tion [4, 7]. The bZIP gene family has been systematically
investigated and characterized based on the whole genome
sequences of several plants, including Arabidopsis [4], rice
[8], sorghum [9], maize [7], grapevine [10], Brachypodium
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distachyon [11], tomato [12], apple [13], cassava [14] and
banana [15].
bZIP genes play important roles in many essential bio-

logical processes, including organ differentiation, flower
and vascular development, embryogenesis, seed matur-
ation and storage protein gene regulation [16–20]. Con-
siderable evidence also indicates that bZIP genes are
important regulators of signaling and the response to
abiotic/biotic stress [4, 7]. The phytohormone abscisic
acid (ABA) is associated with seed development as well
as abiotic stress responses [21]. The ABA-responsive
element binding proteins (AREB) or ABRE binding fac-
tors (ABFs), which are group A bZIP proteins, have an
important role in ABA and stress signaling [22, 23]. For
instance, ABI5 is involved in ABA or stress signaling to
regulate seed size and development, seed germination
and early seedling growth as well as response to abiotic
stress [24–27]. Group B bZIP proteins, which have a
transmembrane domain and a specific domain at the
C-terminus, also are important to the salt stress re-
sponse via endoplasmic reticulum stress signaling [28].
For example, slbZIP38, a group G bZIP gene identified
in tomato, have proven to be a negative regulator of salt
stress tolerance [29]. For Group S bZIP proteins, Atb-
ZIP1, MtbZIP2, and MtbZIP26 from Arabidopsis thali-
ana and Medicago truncatula, were transcriptionally
induced by salt treatment, leading to an increase in salt
stress tolerance [30–32]. In addition, bZIPs from groups
C and S could cooperate with several TFs to form het-
erodimers and be responsible for the salt stress and seed
development crosstalk network [33]. Together, these evi-
dences indicate that bZIP genes have an essential role in
both seed development and salt stress.
The peanut (Arachis hypogaea) is an important eco-

nomical oilseed crop primarily grown in the tropics and
semi-arid tropics and provide an important global source
of vegetable oil and protein (http://faostat.fao.org/). Des-
pite the economic and nutritional importance of pea-
nuts, and the critical role of bZIP transcription factors
in plant development and stress responses, only one
AhbZIP gene has been reported that the over-expression
of this gene (AREB1) is related to increase abiotic tolerance
[34]. In 2016, the genomes of the two diploid ancestors (A.
duranensis and A. ipaensis) of cultivated peanut have be-
come available [35], allowing the genome-wide identifica-
tion and systematic analysis of the bZIP gene family in
Arachis genomes. In this study, we identified bZIP genes
and analyzed their bZIP domain sequences, gene structure
and additional MEME motifs, the DNA-binding-site speci-
ficity and dimerization properties of the bZIP proteins. We
also investigated the impact of segmental and tandem du-
plication on the expansion of Arachis bZIP gene family.
Using the RNA-seq and quantitative real-time PCR
(qRT-PCR) methods, we analyzed their expression profiles

in seed developmental stages and salt stress, and identified
several candidate Arachis bZIPs responsive to seed develop-
ment and salt stress.

Methods
Identification of bZIP genes in A. duranensis and A.
ipaensis genomes
The genomic sequences of A. duranensis and A. ipaensis
and their annotated gene models were downloaded from
peanutbase (http://www.peanutbase.org/). BLAST were
firstly conducted to search homologous bZIP genes
using known bZIP proteins from Arabidopsis [4], rice [8]
and maize [7] as queries. The targeting genes with simi-
larity of E-value less than 1e-5 were retained for the fol-
lowing analysis. Subsequently, Hidden Markov Model
(HMM) search (http://hmmer.org/) of the bZIP domain
profiles (PF00170, PF07716 and PF03131) were per-
formed to identify bZIP domain in these candidate pro-
teins. Finally, Interpro (http://prosite.expasy.org/) and
ExPASy Proteomics Server (http://prosite.expasy.org/)
were used to confirm the integrity of bZIP domain in
candidate genes. Each bZIP gene was given a unique
name based on the exact position on chromosome/scaf-
fold (from top to bottom) (Additional file 1).

Sequence alignment and phylogenetic analysis
ClustalX 2.0 [36] were used to align the bZIP sequences
of coding DNA and proteins from A. thaliana, A. dura-
nensis and A. ipaensis. The penalties for a gap open and
gap extension were 10 and 0.1, respectively. PhyML 3.0
software [37] was used for the reconstruction of the
maximum likelihood (ML) phylogenetic tree. The JTT +G
model were determined to be the best model for phylo-
genetic tree construction according to the akaike informa-
tion criterion implemented in ProtTest 3.0 [38]. 100
replicates were used to produce bootstrap values. MEGA7
[39] was used to edit and show the phylogenetic tree.

Gene structure of bZIP genes
The exon/intron structure of bZIP genes was analyzed
and displayed using the GSDS platform (http://gsds.cbi.p-
ku.edu.cn/) [40]. Genewise [41] was used to determine the
correspondence on coordinates between DNA (containing
exon and intron together) and protein sequences. Then,
the coordinates of bZIP domain in protein sequence were
transformed to that in gene sequence using in-house perl
scripts. The intron splicing phase within the basic and
hinge regions of bZIP domains from all bZIP genes were
characterized and divided into different types.

Detection of additional conserved motifs of bZIP genes
The MEME tool (http://meme.nbcr.net/meme/) [42] was
employed to detect the additional motifs outside the bZIP
domain of protein sequences. The motifs with 10–50
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amino acids in length and E-value less than 1e - 40 were
characterized. All the motifs were compared among bZIP
genes to identify the group-conserved or group-specific sig-
natures. These motifs were numbered according to their
order in the protein sequences.

Detecting duplicated genes and estimation of
nonsynonymous (Ka) and synonymous (Ks) substitutions
per site and their ratios
MCScan (http://chibba.agtec.uga.edu/duplication/mcscan)
was used to detect the duplicated genomic segments in two
Arachis genomes. Tandem duplication cluster was defined to
contain at least two consecutive genes with sequence similar-
ity (threshold of e < 10− 20), and one unrelated gene among
cluster members was tolerated. The amino acid sequences of
duplicated gene pairs were firstly aligned and guide the align-
ment of cDNA sequences in-house perl-scripts. KaKs_Calcu-
lator was used to compute Ka and Ks values of each
duplicated gene pair using the YN model [43].

Expression analysis of Arachis bZIP genes during seed
development and under salt stress
For investigating the expression of bZIP genes during peanut
seed development, we downloaded the previously reported
RNA-seq data of peanut seeds at 20, 40 and 60 days after
flowering (DAF) [44]. Trimmomatic [45] was used to check,
filter or trim RNA-seq reads with low-quality. RNA-seq
reads were mapped to reference genome using Hisat2 [46],
and the gene expression value were estimated using RSEM
[47]. DESeq2 package [48] was used for differential expres-
sion (DE) analysis.
For qRT-PCR experiment, the elite peanut cultivar

‘Zhonghua16’ was planted to collect seeds at DAF20,
DAF40, and DAF60 according to the previous method
[44]. For preparing salt-stress plants, 2-week-old peanut
seedlings (at the four-leaf stage) were removed from the
soil and hydroponically grown in a 300 mM NaCl solu-
tion (Treatment) or deionized water (Control). The time
points for salt treatment were setted to be 0, 1, 5, and
10 h, and the seedling roots were collected and frozen
immediately in liquid nitrogen for RNA extraction.
Total RNA was extracted with RNAprep Pure Plant Kit

(TIANGEN, China) and reverse transcribed into cDNA
with cDNA Synthesis Kit (Thermo Fisher Scientific, USA)
following the manufacturer’s instructions. qRT-PCR were
performed in a 20 μL reaction volume using a CFX con-
nect Real-Time System (Bio-Rad, Hercules, CA, USA) and
Hieff qRCR SYBR Green Master Mix (YEASEN, Shanghai,
China). The peanut Actin gene (Aradu.W2Y55) was used
as the internal control, and the difference in relative target
gene expression among the different experimental condi-
tions was calculated using the 2-ΔΔCt method. Standard
error was calculated among the three biological replicates
of each experiment. Student’s t test was used to test the

statistical significance of differences in relative target gene
expression.

Results and discussion
Identification, phylogenetic analysis and group
classification of bZIP genes in A. duranensis and A. ipaensis
Based on homology searches and domain verification, a
total number of 50 and 45 unique bZIP genes were iden-
tified in A. duranensis and A. ipaensis genomes, respect-
ively. The details for these genes, including gene ID,
genomic position, domain composition, and group classifi-
cation are given in Additional file 1. According to the
existing nomenclature system, we assigned unique names
to each of these novel bZIP genes: AdbZIP1–50 and Aib-
ZIP1–45. After checking bZIP domains, 93 genes had a
typical bZIP domain, including an invariant N-× 7-R/K
motif in the basic region and a heptad repeat of Leu posi-
tioned exactly nine amino acids upstream of R/K toward
the C terminus (Additional file 2). The remaining two
bZIP genes, AdbZIP28 and AibZIP22, had an unusual sub-
stitution in the basic region: a replacement of the con-
served Arg/Lys (R/K) with IIe (I). This replacement has
also been reported in other species [8, 49].
A systematic investigation of the bZIP gene family was

first carried out in Arabidopsis [4]. In this analysis, dif-
ferent groups of bZIP genes were distinguished and
named based on their phylogenetic relationships and
functional divergences. This classification system has
since been adopted for other species based on the clus-
tering of bZIP genes from their own and Arabidopsis ge-
nomes [7–15, 50–53]. Here, based on a maximum
likelihood (ML) analysis of bZIP proteins from Arachis
and Arabidopsis genomes, we identified 11 distinct bZIP
gene clades (groups A–I, S, and U), all with high boot-
strap support (Fig. 1). The subgroup classification of
Arachis bZIPs was further confirmed by phylogenetic
tree reconstruction after adding bZIPs from soybean
(Additional file 3). Most bZIP clades include closely re-
lated Arachis bZIPs and their Arabidopsis orthologs;
clades E and F have no corresponding members in A.
duranensis or A. ipaensis. Notably, bZIP genes within
the same clade shared similar group-specific sequence
characteristics, including exon/intron structure, intron
phases, MEME motifs, and prediction of binding site
structure (further analyzed below). This pattern of inter-
specific group clustering suggested that the group-specific
features emerged prior to the divergence of Arachis and
Arabidopsis. However, several differences have also accu-
mulated in the bZIP genes of the different plant species
over evolutionary time.

Gene structure of Arachis bZIP genes
As intron and exon organization might indicate the evo-
lutionary trajectory of bZIP genes [8], we examined the
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structure of Arachis bZIP genes, including intron num-
ber, length, and splicing phase (Additional file 4). We
found that overall gene structures were identical or simi-
lar for Arachis bZIPs within the same phylogenetic
group. Considering the number of introns of peanut
bZIPs, 24% of AdbZIPs and 22% of AibZIPs were intron-
less, occurring exclusively in groups S and B. Among the
intron-containing genes, the number of introns varied
from 1 to 13 in AdbZIP and AibZIP genes. bZIP genes
in group G had the most introns, consistent with obser-
vations in other legume genomes [32].
The splicing phases were designated as three splicing

phases: phase 0 (P0), splicing occurred after the third

nucleotide of the codon; phase 1 (P1), splicing occurred
after the first nucleotide of the codon; and phase 2 (P2),
splicing occurred after the second nucleotide. The
phases of splicing sites within the open reading frames
(ORFs) were diverse, but were highly conserved in the
basic and hinge regions of bZIP domain, because any
changes in these regions would affect their code and
function. Based on intron position and presence or num-
ber of splicing phases in the bZIP domain, four intron
patterns (a to d) in Arachis bZIP genes were identified
(Fig. 2 and Additional file 2). Pattern a had just one in-
tron inserted at the − 5 position of the hinge region, be-
tween the amino acids Gln and Ala; this pattern was

Fig. 1 Phylogenetic analysis of peanut and Arabidopsis bZIP genes. Genes at branch ends from different species are denoted by different colored
triangles. The peanut bZIP proteins are grouped into nine distinct clades (A–D, G–I, S, and U). bZIP protein sequences were aligned with ClustalX,
and the phylogenetic tree was constructed in PhyML using the maximum likelihood method. Bootstrap values are based on 100 replicates
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identified in all Arachis bZIP genes in groups A and G.
Pattern b had two intron insertions with phase 0, one in
the basic region and the other in the hinge region; this
pattern was identified in all bZIP genes in group D. Pat-
tern c had a single intron inserted at the − 20 position in
the basic region in phase 2 (P2), and contains all bZIP
genes in groups C and H. Pattern d lacked introns in the
basic and hinge regions, and includes all bZIP genes in
groups B and S. In addition, most Arachis bZIPs exhibit-
ing pattern d were intronless, except for AdbZIP45 and
AibZIP40. Each of these genes had one intron outside
the basic and hinge regions. The patterns of splicing
phase in Arachis bZIP domain observed here were con-
sistent with those observed in other species [7, 8, 32].
The high conservation of gene structure and intron
phases within phylogenetic clades supported the ac-
cepted group classification, and suggested that these dif-
ferent patterns of exon splicing may play an important
role in functional evolution.

The motif compositions for different groups of Arachis
bZIPs
In addition to the bZIP domain, many additional con-
served motifs were detected in bZIP genes by the MEME
analysis tool. As shown in Fig. 3, a total of 18 conserved
motifs outside the bZIP domain were identified, and the
consensus motif compositions for each subgroup were
constructed (Additional file 5). These consensus motifs
indicated that the overall compositions of the motifs
were similar within the same subgroup but different among
different groups. This suggested that functional divergence
of bZIP genes may be determined by group-specific motifs.
Individual examination of these motifs indicated that many
were group-specific. For example, motifs 1, 2, 3, and 10
were only identified in group D; motifs 5, 14, and 15 were
only identified in group G; motif 6 was only identified in

group I; and motif 9 was only identified in in group H.
Several motifs may be associated with specific biological
functions. For example, Motif 1 is the DELAY OF GER-
MINATION (DOG) 1 domain, which is required for the in-
duction of dormancy and multiple aspects of seed
maturation, in part by interfering with ABA signaling com-
ponents [54]. Motif 3 contains potential casein kinase II
(CK II) phosphorylation sites (S/TxxD/E), which play a key
role in cell division and expansion and affect diverse devel-
opmental and stress responsive pathways [55, 56]. Interest-
ingly, these group-specific motifs have also been identified
in bZIPs from the same group in other legume genomes
[32], suggesting that motif composition is conserved across
legume plants.

Arachis bZIP DNA-binding-site structure and dimerization
properties
The core basic region and the hinge region of the bZIP
domain independently determine DNA-binding specifi-
city, as demonstrated by several experiments [5, 6]. The
unusual replacement of the two invariant sites, aspara-
gine (Asn/N; position: − 18) and arginine (Arg/R; pos-
ition: − 10), altered DNA-binding specificities [5]. We
aligned the amino acids sequences of the basic and hinge
regions of peanut bZIP proteins to identify conserved
and polymorphic amino acid residues within each group
(Additional file 6). No replacements of Asn/N at the − 18
position were observed in any peanut bZIPs. However, all
members of group I had lysine (Lys/K) instead of arginine
(R) at the − 10 position, consistent with the group I bZIPs
from other legume species [32]. In addition, AdbZIP28
and AibZIP22 (group U) had a hydrophobic isoleucine
(Ile/I) residue instead of an arginine (Arg/R), and such a
replacement was demonstrated to completely inhibit the
affinity of bZIP for AP1 in yeast [5] and does not
recognize G-boxes in rice [49].
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Fig. 2 Intron patterns within the basic and hinge regions of the Arachis bZIP domain. The primary structure of the bZIP domain is shown at the
top of the image. P0 indicates that the intron splicing site is between codons, and P2 indicates that the intron splicing site is located between
the second and third nucleotides of the codon. Based on the intron incidence, intron position, and splicing phase, the Arachis bZIP genes
exhibited four different types of patterns (a–d). Details of the intron positions within the bZIP domain of the peanut bZIP proteins are shown in
Additional file 2
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The Leu zipper sequence mediates the homo- and/or
heterodimerization of bZIP proteins, which are known
to bind to DNA as dimers [57, 58]. The Leu zipper re-
gion consists of heptad repeats, the amino acids are re-
ferred to a, b, c, d, e, f, and g within each heptad [59]. As
the amino acids at the a, d, e and g positions are near
the Leu zipper interface, these amino acids are the ones
that primarily determine Leu zipper oligomerization,
dimerization stability, and dimer specificity. We analyzed
the compositions of the amino acids found at the a, d, e
and g positions of peanut bZIPs (Fig. 4a).
At the a position, about 20% of the residues were as-

paragine (Asn/N), which can form a polar pocket in the
hydrophobic interface, allowing for more stable N-N in-
teractions at a↔a′ (the corresponding position in the
opposite helix), as compared to other amino acids [60].
Across the different heptads, the second and the fifth
heptads had the highest frequency of Asn/N residues in
the a position (61.46 and 60.22%, respectively; Fig. 4b).
At the d position (Fig. 4a), the Leu was found in 45% of
all peanut bZIPs and is one of the most dimer-stabilizing
aliphatic amino acids [61]. At the e position, 37% of all
peanut bZIPs had acidic amino acids D or E, while at
the g position, 44% of all peanut bZIPs had the basic
amino acids R or K (Fig. 4a). These charged amino acids
are thought to form salt bridges between helices in elec-
trostatic interactions [62]. The attractive or repulsive
g↔e′ electrostatic interactions can also form interhelical
salt bridges that affect dimerization specificity and stability
[62]. For investigating the contribution of charged residues
at the e and g positions in governing dimerization proper-
ties of Arachis bZIP proteins, the frequencies of attractive

and repulsive g↔e′ pairs in each heptad was calculated
(Fig. 4c). Across all heptads, the attractive g↔e′ pairs were
concentrated in the second (15.6%), fifth (35%) and sixth
(30%) heptads, indicating they can form complete attractive
g↔e′ interactions and contribute to stability through
complementation in a heterodimer. Three groups compris-
ing 28 subfamilies (BZ1–BZ28) were further divided based
on homo- and heterodimerization properties, particularly
dimerization specificity [60, 63] (Additional file 7).

The impact of whole genome duplication and tandem
duplication on the expansion of Arachis bZIP gene family
We identified the genome-wide collinear duplicated
blocks in the A. duranensis and A. ipaensis genomes and
the orthologous collinear blocks between two genomes.
The pairwise synonymous distances (Ks values) between
the paralogs and orthologs within collinear blocks were
calculated, and their frequency distributions were plotted
(Fig. 5a; Ks bin = 0.05). The peak Ks frequency between
A. duranensis and A. ipaensis, representing average se-
quence variation, was 0.035. This represented the se-
quence divergence between these two closely related
Arachis species, which was estimated to have diverged ~
2.16 million years ago [35]. Further, the Ks peaks for A.
duranensis and A. ipaensis paralogs were 0.90 and 0.95,
respectively, corresponding to the sequence divergence
of early papilionoid whole genome duplication (WGD)
event occurred ~ 58 million years ago [35].
We detected 35 AdbZIPs and 32 AibZIPs involved in

duplicated genomic blocks, accounting for around 70%
(35/50) and 71% (32/45) of the bZIP genes in each species
(Fig. 5b and Additional file 8). Moreover, the duplicated

Fig. 3 Distribution of additional conserved motifs, as identified by MEME. Motif compositions for each group of peanut bZIP proteins are shown,
based on the position of the bZIP domain and additional conserved motifs outside the bZIP domain. The bZIP domains are shown in red, while
other motifs are highlighted with colored boxes numbered 1 to 18. Details of the predicted conserved motifs are given in Additional file 6
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bZIP gene pairs occurred either within a chromosome or
between chromosomes, and some of these pairs were seg-
mentally duplicated once, twice, or three times. This result
indicated preferential gene retention and frequent
chromosomal arrangements after WGD. Tandem duplica-
tions were detected for only two gene pairs (AdbZIP33/
AdbZIP34 and AdbZIP41/AdbZIP42) in A. duranensis and
only one gene pair (AibZIP28/AibZIP29) in A. ipaensis.
This suggested that tandem duplication occurred rarely
and was not more important than segmental duplication
in the expansion of the bZIP gene family. We also used
phylogenetic and syntenic analyses to identify 35 ortholo-
gous bZIP gene pairs between A. duranensis and A. ipaen-
sis. These genes were also homeologs between the two
subgenomes of the tetraploid peanut.

To understand the evolutionary constraints acting on
the Arachis bZIP genes, we calculated Ka/Ks values for
each duplicated bZIP gene pair in two Arachis species
(Additional file 9). For most of these pairwise compari-
sons, the Ka/Ks values were less than 0.5 (only one pair-
wise comparison between duplicated AdbZIPs and only
two between duplicated AibZIPs were larger than 0.5).
This suggested that strong purifying selection acted on
the Arachis duplicated bZIPs to remove deleterious mu-
tations at the protein level.

Expression analysis of Arachis bZIP genes during peanut
seed development
To profile bZIP gene expression, we used our previously
published RNA-seq data [44], which documents gene

A

B

C

Fig. 4 Prediction of dimerization properties of the Arachis bZIP proteins. a Pie charts indicating the frequency of various amino acids in each of
the four positions (a, d, e, and g) in the Leu zipper of the Arachis bZIP domains. b Histogram of the frequency of Asn (N) in the a position of the
Leu zipper across all Arachis bZIP proteins. c Histogram showing the frequency of attractive or repulsive g↔e’ pairs per heptad across all Arachis
bZIP proteins. The g↔e′ pairs are classified into four groups according to the electrostatic charges at the g and e positions. The +/− attractive,
showed by orange box, indicates that the g position is basic and the following e position is acidic. The −/+ attractive, showed by skyblue box,
indicates that the g position is acidic and the following e position is basic. The basic repulsive (pink box) and acidic repulsive (green box) indicate
that the g and the following e positions have a similar charge, either both basic or both acidic
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expression in peanut seeds at different developmental
stages: 20, 40, and 60 days after flowering (DAF). Using
this data, we identified the FPKM values for all Arachis
bZIPs and all differentially expressed bZIPs across the
three developmental stages. With the exception of 24
bZIPs, which were not expressed at any developmental
stage, four groups including corresponding bZIP genes
with specific expression profile were recognized(Fig. 6a
and Additional file 10). The first group comprised 37
bZIPs that were up-regulated during early development
(20 DAF), but down-regulated thereafter (at 40 and 60
DAF). The second group comprised 15 bZIPs that were
up-regulated at 40 DAF, while the third group comprised
17 bZIPs that were down-regulated at 40 DAF. The
fourth group comprised 22 bZIPs that were highly
expressed across all three developmental stages. The
highly expressed bZIPs in group four were mainly distrib-
uted in clades A, C, and S. Several of these bZIPs were
homologous to genes that have been implicated in seed
development in other plants, such as Arabidopsis [4], rice
[8] and maize [7]. Here, 12 bZIPs, which were highly
expressed and homologous to previous well-studied genes
in seed development, were selected for qRT-PCR confirm-
ation, and found that the expression patterns determined
by RNA-seq were consistent with those found using
qRT-PCR (Fig. 6b).
In group A, AdbZIP33 and AibZIP28 were ortholo-

gous to Arabidopsis ABA insensitive 5 (ABI5), which is
associated with ABA-signaling as well as the regulation
of seed development and longevity in Arabidopsis [64]

and legumes [27]. Our RNA-seq and qRT-PCR results
showed that both orthologous ABI5 copies from the two
subgenomes of the tetraploid peanut were highly
expressed during development, suggesting the function
of these genes may be similar in peanut and Arabidopsis.
Our qRT-PCR results also indicated that the group A
genes AdbZIP42, AdbZIP48 and AibZIP31 were stably
expressed during development (Fig. 6b and Add-
itional file 11). These genes are homologous to ABFs
and AREB, which are involved in ABA-mediated seed
development, germination, and embryo maturation [65].
Three genes in group C (AdbZIP23, AdbZIP37, and Aib-
ZIP30) were also highly expressed, and are homologous
to the maize bZIP factor Opaque2. Opaque2 regulates
protein accumulation and amino acid and sugar metab-
olism in maize seeds [66–69]. In addition, the group S
genes AibZIP10, AdbZIP12, AdbZIP24, AdbZIP26, and
AdbZIP36 were extremely highly expressed in peanut
seeds (Fig. 6b and Additional file 11). Interestingly, the
group S genes AdbZIP24 and AdbZIP36 had a similar
expression pattern to the group C genes AdbZIP37 and
AibZIP30: a decrease in expression level as seed develop-
ment progressed.
We then further investigated the divergences in gene

expression between homeologous genes from the AA
and BB genomes of the tetraploid peanut. The heatmap
analysis indicated that the overall expression patterns
across seed development were similar for 31 pairs of
homeologous/orthologous genes from the AA and BB
genomes. We used the differential expression analysis

A B

Fig. 5 Whole genome duplication (WGD)-derived Arachis bZIP genes. a The Ks distribution of paralogs from WGD-derived duplicated genomic
blocks in A. duranensis and A. ipaensis. b The duplicated bZIP paralogs derived from WGD were linked by blue (in A. duranensis) and green (in A.
ipaensis) lines. The bZIP orthologs between A. duranensis and A. ipaensis were linked by read lines
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method in combination with statistical methods to cal-
culate differences in gene expression between these gene
pairs for each sample. We found that 3 pairs of genes
(AdbZIP5 and AibZIP5, AdbZIP17 and AibZIP15,
AdbZIP46 and AibZIP41) were differentially expressed at
20 DAF, 3 pairs (AdbZIP3 and AibZIP1, AdbZIP4 and
AibZIP4, AdbZIP49 and AibZIP45) at 40 DAF, and 5
pairs (AdbZIP3 and AibZIP1, AdbZIP33 and AibZIP28,
AdbZIP37 and AibZIP30, AdbZIP10 and AibZIP10,
AdbZIP1 and AibZIP3) at 60 DAF. These results indi-
cated the overall expression conservation between two
genomes, but suggested that 20% of the genes had di-
verged in expression during the parallel evolution and
polyploidization of two genomes (Fig. 6c).

qRT-PCR expression profiles of Arachis bZIP genes under
salt stress
We used qRT-PCR to explore changes in bZIP gene
expression in response to salt-treatment (Fig. 7 and
Additional file 12). We were unable to clearly amplify 4
bZIPs with PCR. After peanut roots were treated with

salt for 1 h, 20 genes were significantly differentially
expressed; after 5 h, 27 genes were significantly differ-
entially expressed; and after 10 h, 41 genes were signifi-
cantly differentially expressed (Fig. 7j; Student’s t test:
P < 0.05). At each time point, many more genes were
up-regulated than were down-regulated (14 vs. 6 at 1 h;
21 vs. 6 at 5 h; and 34 vs. 7 at 10 h). Among these dif-
ferentially expressed bZIPs after salt treatment, many of
them were distributed in groups A and S (Fig. 7k), indi-
cating bZIPs in these groups play important roles in
sugar signaling and abiotic stress regulation [4, 70, 71].
Group A bZIPs possess the CKII and Ca2 + −dependent

protein kinase phosphorylation site motifs involved in
stress and/or ABA signaling, and these motifs are import-
ant for plant adaptation to various abiotic environmental
stressors [72]. Indeed, many group A genes are associated
with the salt stress response. In Arabidopsis, ABI5 and
ABFs/AREB are key ABA-dependent signal transduction
factors involved in abiotic stress tolerance [22, 73]. The
over-expression of GhABF2 significantly improved salt
stress tolerance both in Arabidopsis and cotton [74]. In

A

C

B

Fig. 6 Arachis bZIP gene expression during peanut seed development. a Four groups (groups I - IV) including corresponding bZIP genes with
specific expression profile were recognized. In each subgroup, the gray lines indicated the expression values of bZIPs at DAF20, DAF40 and
DAF60. The red line show the average FPKM of all bZIP genes. b qRT-PCR verification of 12 bZIP genes expressed during seed development. The
relative gene expression levels as measured by qRT-PCR (orange histograms) and by RNA-seq (blue lines) are shown. Results are based on three
biological replicates; error bars represent SE. c Expression pattern of bZIP A. duranensis and A. ipaensis orthologs during seed development. The
similar (denoted as Y) or diverged (denoted as N) expression pattern between orthologs were indicated
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Fig. 7 Arachis bZIP gene expression levels in peanut roots after 0, 1, 5, and 10 h of salt treatment. a–i bZIP gene expression levels in different
groups. *: P < 0.05. j The number of significantly differently expressed bZIP genes in each group. k The number of significant differently expressed
bZIP genes after 1, 5, and 10 h of salt treatment
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tomato, slAREB1 and slbZIP1 knockout increased salt stress
tolerance, while slAREB1 and slbZIP1 over-expression re-
duced salt stress tolerance [75, 76]. Here, genes AdbZIP42
and AibZIP35 were significantly up-regulated in response
to salt stress, and these genes are homologous to ABFs,
GhABF2, slAREB1, and slbZIP1. In addition, these genes
have been reported to be phosphorylated by the
ABA-activated SnRK2 protein kinases [77–80], suggesting
phosphorylating ABA response element-binding factors
may be critical for the ABA-mediated salt stress response.
The group B genes AdbZIP45 and AibZIP40 were

up-regulated after 10 h of salt stress, and these genes are
homologous to AtbZIP17, which could improve the ex-
pression of several salt stress response genes in Arabi-
dopsis [28]. Seven group G bZIP genes (AdbZIP7,
AdbZIP15, AdbZIP19, AdbZIP50, AibZIP17, AibZIP21,
and AibZIP38) were homologous to Arabidopsis Atb-
ZIP41 and tomato slbZIP38, and these genes have both
been shown to negatively regulate salt stress [29]. Of
these seven genes, AdbZIP15 was significantly
down-regulated after 1 h and 5 h of salt stress treatment,
while AdbZIP19 and AibZIP17 were significantly
up-regulated after 10 h of salt stress. Thus, AdbZIP15,
AdbZIP19 and AibZIP17 might confer resistance to salt
stress. AdbZIP15 might be a negative regulator of salt
stress, as its expression pattern was similar to that of
slbZIP38 in response to salt stress.
The group S genes AdbZIP24 and AdbZIP36 were

homologous to AtbZIP1, AtbZIP53, MtbZIP2, and
MtbZIP26, and the expression patterns of these genes in
response to salt stress were similar (Fig. 7). In particular,
AdbZIP36 was significantly up-regulated after 10 h of
salt stress. Two homologous genes in Arabidopsis, Atb-
ZIP1 and AtbZIP53, were shown to reprogram the pri-
mary carbohydrate and amino acid metabolism to help
roots adapt to salt stress [30]. The homologs MtbZIP2
and MtbZIP26 are also transcriptionally induced by salt
treatment, and improve plant tolerance to salt stress
[32]. Notably, the expression pattern of AdbZIP36 was
similar to those of AtbZIP1, MtbZIP2, and MtbZIP26 in
Arabidopsis and M. truncatula [30, 32], suggesting that
AdbZIP36 might be a positive regulator of tolerance to
salt stress in the peanut. In summary, our study of ex-
pression analysis has identified several candidate peanut
bZIPs, which may be associated with the salt-stress re-
sponse, as targets for future research.

Conclusions
Despite the importance of bZIP transcription factors for
plant growth, development, and abiotic stress responses,
little is known about the bZIP gene family in peanut.
Here, we used the previously published peanut reference
genome to perform a comprehensive analysis of peanut
bZIPs, including sequence identification, phylogenetic

construction, motif composition characterization, gene
structure analysis, and determination of DNA-binding-site
specificity and dimerization properties. We also investi-
gated evolutionary expansion of the bZIP gene family.
bZIP genes were clearly divided into phylogenetic clades.
These clades were supported by various group-specific se-
quence characteristics, including exon/intron structure,
intron phases in domain, MEME motif composition,
DNA-binding specificity, and dimerization properties. By
analyzing changes in bZIP gene expression during seed
development and in response to salt stress, we character-
ized the overall expression patterns for different groups of
bZIPs. We also identified several candidate bZIP proteins
that may be important for seed development and the salt
stress response. The information generated in this study
could facilitate further research on bZIP gene family and
other gene families in peanut.
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