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Abstract

Background: With the rapid increase in genome sequencing projects for non-model organisms, numerous genome
assemblies are currently in progress or available as drafts, but not made available as satisfactory, usable genomes. Data
quality assessment of genome assemblies is gaining importance not only for people who perform the assembly/re-
assembly processes, but also for those who attempt to use assemblies as maps in downstream analyses. Recent studies
of the quality control, quality evaluation/ assessment of genome assemblies have focused on either quality control of
reads before assemblies or evaluation of the assemblies with respect to their contiguity and correctness. However,
correctness assessment depends on a reference and is not applicable for de novo assembly projects. Hence,
development of methods providing both post-assembly and pre-assembly quality assessment reports for examining
the quality/correctness of de novo assemblies and the input reads is worth studying.

Results: We present SQUAT, an efficient tool for both pre-assembly and post-assembly quality assessment of de novo
genome assemblies. The pre-assembly module of SQUAT computes quality statistics of reads and presents the analysis
in a well-designed interface to visualize the distribution of high- and poor-quality reads in a portable HTML report. The
post-assembly module of SQUAT provides read mapping analytics in an HTML format. We categorized reads into
several groups including uniquely mapped reads, multiply mapped, unmapped reads; for uniquely mapped reads, we
further categorized them into perfectly matched, with substitutions, containing clips, and the others. We carefully
defined the poorly mapped (PM) reads into several groups to prevent the underestimation of unmapped
reads; indeed, a high PM% would be a sign of a poor assembly that requires researchers’ attention for further
examination or improvements before using the assembly. Finally, we evaluate SQUAT with six datasets, including the
genome assemblies for eel, worm, mushroom, and three bacteria. The results show that SQUAT reports provide useful
information with details for assessing the quality of assemblies and reads.

Availability: The SQUAT software with links to both its docker image and the on-line manual is freely available at
https://github.com/luke831215/SQUAT.
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Background
The ultra-high throughput provided at low cost by recent
next-generation sequencing technologies has triggered the
rapid growth of whole-genome sequencing projects,
especially for non-model organisms [1, 2]. Large-scale gen-
ome projects for broad taxa, such as the Genome 10 K
Project for vertebrate species [3], the Global Invertebrate
Genomics Alliance (GIGA) for marine invertebrate species
[4] and the latest Earth BioGenome Project that aims to se-
quence genomes of ~ 1.5 million known eukaryotic species
over a 10-year period [5], have brought new challenges in
assembling and analyzing the forthcoming de novo gen-
ome assemblies. One important challenge is regulating the
quality of sequencing data and assembly results.
Data quality assessment (DQA) of genome assemblies is

a process to statistically evaluate the input data and the
assembly results and then determine whether the data and
assembly results meet the quality requirements. DQA is an
important task for de novo genome assembly and is es-
pecially useful today, as massive genome assemblies are
in progress or available as drafts. Recent studies on the
quality related issues of genome assemblies have fo-
cused on two aspects: quality control of sequencing
data and quality assessment of assembly results. For the
Illumina platform, FastQC [6] provides quality control
checks in an HTML report that includes per-base qual-
ity, average read quality, GC content, sequence length,
duplication levels, and overrepresented sequences. NGS
QC Toolkit [7] provides various tools, including quality
control, trimming, format conversion, and statistics, for
quality check and filtering of high-quality data.
QC-chain [8] focuses on quality assessment and trim-
ming of raw reads, as well as identification and filtra-
tion of unknown contamination. ClinQC [9] integrates
several QC tools for clinical purposes. For quality
evaluation/assessment of assembly results, GAGE [10]
and GAGE-B [11] provide benchmark datasets along
with functions such as those evaluating the correctness
of assemblies if the reference genomes are given.
QUAST [12] is a quality assessment tool for evaluating
and comparing genome assemblies. It provides compre-
hensive metrics of assembly contiguity, i.e. the length
statistics of scaffolds, in HTML reports for de novo as-
semblies, and supports a GAGE mode if the references
are available.
The SQUAT tool aims to provide quality assessments

for both genome assemblies and their input reads, and
helps users to examine the correctness of de novo assem-
blies via cross-checking both the pre-assembly and
post-assembly reports. The pre-assembly module of
SQUAT computes quality statistics of sequencing reads
and presents the analysis results in a well-designed inter-
active HTML interface. Meanwhile, we divide reads into
three groups, i.e., high-, medium- and poor-quality reads

for overall assessment. The classification criteria are based
on the MinimalQ measure for read subset selection [13]
and a new measure by generalization of MinimalQ de-
scribed in Methods. The post-assembly module of SQUAT
performs read mapping and classifies reads into several
groups based on read-to-scaffold relationship; further, it
assists users in identifying poorly mapped (PM) reads by
including not only unmapped reads, but also reads with
high clip ratio or high mismatch ratio via further analyses
described in Methods. We present the tables and charts of
the aforementioned classification and analyses, integrated
with QUAST results, in well-designed HTML interface. In
the Results, we have evaluated SQUAT against six data-
sets. Eel, mushroom, and worm datasets are from de novo
genome projects in progress, which are being led by our
institute. We also analyzed three bacterial datasets listed
in the SPAdes’s GAGE-B report [14, 15]. The results show
that SQUAT can successfully differentiate the quality of
those datasets, even though we only used one million
randomly-sampled reads. In addition, the results can help
to explain why some datasets have serious clips and/or
mismatches in the reads.

Methods
The SQUAT assessment procedure
The workflow of SQUAT assessment is shown in
Fig. 1. The whole process takes sequencing reads and
their assembly as input and generates both pre-as-
sembly and post-assembly HTML reports to help
users examine their data from different perspectives.
To begin with, we randomly sample one million en-
tries of reads from the original dataset for a quick
examination. Note that users can change the default
sample size of ‘one mega’ or bypass the sampling
process, as shown in the manual. The pre-assembly work-
flow is shown on the left side of Fig. 1. The quality statis-
tics module takes the sampled reads as input and
generates tables and distributions in the HTML report for
evaluating the base quality and read quality in detail. It
also presents a pie chart on top of the report to show the
proportions of poor-, medium- and high-quality reads for
overall assessments.
The post-assembly workflow, depicted in the middle

and right parts of Fig. 1, firstly maps the sampled
reads onto the input scaffolds of genome assembly by
a local aligner BWA backtrack [16] and an
end-to-end aligner BWA MEM [17]. Then, the Analysis
module 1) categorizes the reads into seven groups, as shown
in Fig. 2 and Table 1 (will be described later in the
sub-section Post-assembly analysis), and 2) generates the
percentage of poorly-mapped reads by considering not only
unmapped reads, but also reads with abnormal densities of
substitutions and clips.
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Pre-assembly analysis
The pre-assembly report assesses sequencing reads based
on base quality scores. We analyze the sequencing reads
of the dataset by computing the base quality scores of
each read. According to Fang’s work [13], reads with low
minimal quality values (MinimalQ) are more likely to

cause mis-assemblies. Therefore, we identify the Mini-
malQ, i.e., the minimal quality score of bases of each read
to get a sense of the sequencing quality.
The flow of the pre-assembly analysis is as follows.

First, we compute the basic statistics of the input
FASTQ file, including numbers of bases and reads, min/

Fig. 2 Classification of reads by read mapping analysis. The descriptions and icons of these read labels are shown in Table 1

Fig. 1 SQUAT assessment workflow
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max/average length of reads, frequencies of DNA alpha-
bets and distribution of GC contents of the reads. Then
we compute the quality statistics, including distribution
of base quality scores, distribution of reads’ MinimalQ
values, and cumulative distribution of reads’ high-quality
portions. We define %HighQ(q) for a read as follows:

%HighQ qð Þ ¼ number of bases with quality scores≥q
number of all bases

For example, if a set of reads satisfies the equation
%HighQ(20) = 100%, then for each read of the set, 100%
of the bases have quality scores of Q20 & above, which
is equivalent to MinimalQ ≥ 20. We can also find reads
satisfying the equation %HighQ(15) ≥ 90%, i.e., more

than 90% of their bases with Q15 & above, to select
reads with better-than-poor quality.
To get a summary of the quality statistics, we

categorize reads into three groups. The categorization
process of poor-, medium- and high-quality reads is as
follows: First, reads having every base scored Q20 &
above are labeled as high-quality and the classification
criterion is based on the MinimalQ measure for read
subset selection [13]. Then, we label reads with more
than 10% of bases having quality scores less than Q15 as
poor-quality reads. Reads falling into neither category
are labelled as medium-quality. Finally, we visualize the
distributions of basic statistics, quality statistics and the
categorization results in a well-designed HTML format as
shown in Additional file 1.

Table 1 Summary of post-assembly read label tagging with icons
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Post-assembly analysis
For the post-assembly report, we ask users to input the path
of a sequencing read file and its assembly as a reference, and
map them to the assembly twice using different alignment
algorithms: BWA-MEM and BWA-backtrack. After the
mapping process, we extract alignment information from
the generated SAM file to perform detailed analysis and
compute the percentage of poorly-mapped reads (PM%). By
default, the dataset will pass the assessment if it contains less
than 20% of poorly-mapped reads (PM% < 20%). We in-
tegrate our results and analysis with the assembly
evaluation by QUAST into several tables and figures in
the report. The rest of this section illustrates how each
step of post-assembly analysis works in detail.

Read label tagging
The designated process of read label tagging during the
phase of read mapping is shown in Fig. 2. We first screen
out the reads containing Ns (i.e., ambiguous result of
base-calling) and label them with type N. Then, the rest of
the reads that have no Ns will be labeled by read mapping.
The mapping step of our proposed procedure aims to in-
spect the similarity between reads and their corresponding
location on the assembly and reports the alignment infor-
mation in SAM format. After finishing this step, reads are
tagged with six other types of labels alongside type N.
First, for the reads that cannot be mapped to the assembly
(i.e., failed to map), a type of F is tagged.
The remaining untagged reads are the reads that are

mapped to the assembly at least once. The reads that
occur in multiple locations, called repeats, are labeled as
type M. For the unique reads (i.e., reads that occur once
on the assembly), we then check if the mapping includes

any error. The alignment without any errors is a perfect
match and labeled as type P. For those with at least one
substitution error, a type of S is tagged. Otherwise, if a
read contains clips on either side of the alignment, it will
be labeled as type C. The rest of the reads, which nor-
mally contain insertion or deletion errors, are then
assigned to type O (others). For the sake of posterior
lookup, we summarize these read labels with icons and
descriptions in Table 1. The detailed classification flow is
given in Additional file 2.

Alignment algorithms
For read mapping, we adopt two strategies: BWA-MEM
and BWA-backtrack. BWA-MEM performs local align-
ment and may produce multiple alignments for a different
part of a query sequence. It is designed for longer se-
quences ranging from 70 bp to 1 Mbp. On the other hand,
BWA-backtrack is more suitable for short reads because it
tries to map the whole sequence (end to end strategy).
However, the latter algorithm cannot tolerate as many se-
quencing errors as the former.

Analysis modules
The analysis modules used by SQUAT operate upon
different read labels in an attempt to differentiate
poorly-mapped reads from the good ones. To con-
struct an overview of read mapping quality, we plot a
label distribution bar chart to summarize the overall
alignment condition in one place, as shown in Fig. 3. To
begin with, perfectly-matched (type P) and multi-mapped
reads (type M) are considered highly-mapped, while un-
mapped reads (type F) are poorly-mapped. Next, on top of

Fig. 3 Label distribution barchart of the mushroom dataset. The poorly-mapped ratio (PM%) of Mushroom dataset is 8.8% on the left with
BWA-MEM and 16.3% on the right with BWA-backtrack
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the label distribution derived from the process of read label
tagging, we derive three metrics, mismatch ratio, clip ratio,
and N ratio to represent the percentage of poorly-mapped
segments in sequences tagged as S, C, and N respectively.
The clip ratio, for example, is computed as follows:

Clip ratio ¼ total length of clips=read length

We then specify a threshold to partition the clipped
reads into two groups. For example, the threshold value
for the clip ratio distribution of Mushroom in Fig. 4 is

set at 0.3, and the reads distributed on the right of the
threshold are identified as poorly mapped, while the
other half are high-quality reads whose clip ratios are
below the threshold.
As for the bar chart, we use bars of positive and negative

values to represent the percentage of high and poor map-
ping quality reads accordingly. Thus, the sum of the nega-
tive values in a bar chart is defined as the poorly-mapped
ratio (PM%) of the dataset. Because two alignment
algorithms are used to manipulate two PM% values, we
average the two statistics to obtain the final PM%. For the
Mushroom dataset, the final average PM% is 12.5%.

Fig. 4 Clip ratio distribution of the mushroom dataset. The threshold value is set at 0.3 by default

Fig. 5 Alignment score distribution for the mushroom dataset. a Distribution of reads with no errors (type P). b Distribution of reads with substitution
errors (type S). c Distribution of reads containing clips (type C). The majority of the alignment scores of reads goes from P, S, to C in decreasing order
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Alignment score
For each alignment, BWA also records an alignment
score to represent the similarity between a read and its
mapped area on the assembly. The score increases with
the number of matches and is penalized by the number of
mismatches and gaps. Therefore, a higher alignment score
implies a better alignment result. We extract alignment
scores from the SAM file and plot the distribution for P, S,
and C reads in the report, as in Fig. 5. The median values
of the alignment score decline from P to S to C.

Results
Datasets
We evaluate SQUAT with six datasets, three of which are
generated by next-generation sequencers. They belong to
the realm of de novo genome assembly and are denoted as
Mushroom, Eel, and Worm. For Eel and Worm, we further
divide the data according to the insert size. The name of
each dataset is therefore followed by the corresponding in-
sert size, e.g., Worm 1300. The other three are bacterial
datasets from GAGE-B [11, 15], denoted as D1, D2, and D3.
The profile of our experimental dataset is shown in Table 2.
We also incorporate a trimming step by TrimGalore [18] to
remove adapters, vectors, or primers used in these datasets.

Implementation resources
In the experiment, we incorporate BWA [16, 17] (ver-
sion 0.7.15) for mapping sequences to their assembly or
reference genome and generate a SAM [19] file follow-
ing each process. To assemble the reads of the three
bacteria in Table 2, we use SPAdes [14] (version 3.11.1).
Tools for the assemblies of eel, worm, and mushroom
include ALLPATHS-LG [20], SSPACE [21] and GapClo-
ser [22]. Finally, we use QUAST [12] (version 4.6.3) to
evaluate genome assemblies with various metrics such as

– Number of scaffolds
– Length of Max/N25/N50/N75/L80/L90/L99 scaffold
– Number of unknown base N’s per 100 kbp
– GC percentage

Pre-assembly statistics
The results of pre-assembly quality assessments for each
dataset are summarized in Table 3. For D1 dataset, the
percentage of bases with Q30 & above is 40.4%, which is
the lowest in Table 3; meanwhile, the percentages of poor-
and high-quality reads are 96.1 and 1.5%, respectively.

Post-assembly report interface
Figure 6 displays a screenshot of the post-assembly report
interface. We first show the percentage of poorly-mapped
reads (PM%) as a summary statistic. Subsequently, the
basic statistics of sequencing data and assembly are listed.
For sequencing reads, we record information, such as
number of sequences, sample size, and sequence length.
For the assembly, we compute number of scaffolds, as-
sembly size, N50 scaffold length, and several other evalu-
ation metrics computed by QUAST.
On the left side of the report, we also include the

description for each read label and specify the thresh-
old values that determine the sequencing quality as
reference for users while they scroll down the web-
page to look for further analysis.
In summary, the report will lay out two tables and nine

figures to perform complete analysis including label distri-
bution, mismatch ratio, clip ratio, alignment score, and an
overall PM% based on BWA-MEM and BWA-backtrack.
Examples of post-assembly HTML reports are given in
Additional file 3.

Post-assembly statistics
The profiles of read label for all the datasets based on
BWA-MEM are shown in Table 4. Note that there is
no reference genome in a de novo assembly; thus, here
we use scaffolds assembled from the reads as reference
for read mapping. Take Mushroom for example; out of
the 197 million reads, 12.5% of reads are considered
poorly-mapped and 49.8% are classified as perfectly-
matched (type P), while 30.1% contain substitution errors
(type S). For the rest of the uniquely-mapped reads, 5.0%
contain clips (type C), and 1.3% have other errors

Table 2 The sequencing datasets used in the experiment

Dataset Mushroom Eel Worm D1 D2 D3

Scientific Name Termitomyces
eurhizus

Anguilla
japonica

Aeolosoma
Viride

R. Sphaeroides M. abscessus V. cholerae

Accession number unpublished PRJEB25708 unpublished SRR522246 SRA043447 SRA037376

# reads (M) 196.8 306.3 98.2 16.3 8.7 7.0

Assembly size (Mbp) 77.0 1022.0 741 4.6 5.6 5.0

Sequencing depth ~ 250 ~ 160 ~ 230 245.2 194.3 195.7

Read length 25–251 35–201 35–301 25–251 25–251 25–251

Reference Genome
(NCBI accession number)

N/A N/A N/A R.sphaeroides 2.4.1 M.abscessus
ATCC 19977

V.cholerae 01 biovar
eltor str. N16961
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(type O). Another 6.6% of reads are tagged as un-
mapped (type F), 6.1% of reads are multi-mapped (type M),
and 1.2% of reads contain Ns (type N).
Of all datasets, D3 holds the lowest PM% (4.3%) and

the highest percentage of reads with a perfect match
(type P), representing over 70% of reads. On the other
hand, Worm 1300 and D1 are estimated to have the
highest PM% at 35.9 and 59%, respectively.
Worm 1300 contains the largest portion of reads with

substitution errors (type S) and failed-to-map reads (type F)
compared with other species. The signature of a low PM%
can also be observed through its assembly quality. As
shown in Table 5, the N50 scaffold size of Worm is far
worse than the other two de novo genome assemblies. The
relatively poorly-assembled scaffolds have allowed more
than 20% of unmapped reads, as well as 44.5% of reads with

substitution errors. As for D1, its inferior PM% could result
from the fact that it consists of mostly reads contain-
ing clips (type C), at 81.2%, rendering the reads poor
in mapping quality. But D1 has the highest sequen-
cing depth than D2 and D3 (Table 2). Table 6 shows
the assembly evaluation results of D1, D2 and D3.

Combined analysis of both pre- and post-assembly
statistics
By looking at the D1 column in both Table 4 and 3, we
found the D1 dataset contains 81.2% of type C, 8.5% of
type S and 4.9% of type F, where the sum is 94.6%.
Meanwhile, D1’s percentage of poor-quality reads is
96.1%. Thus, the 96.1% of poor-quality reads in the
pre-assembly report can explain why D1 has such highly
clipped reads.

Table 3 Summary of the pre-assembly reports for each dataset

Measure % Mush -room Eel 1300a Eel 500 Eel 400 Worm 1300 Worm 620 D1 D2 D3

% of bases with Q30b 89.4 88.0 93.6 92.6 68.6 87.6 40.4 69.0 83.6

% of high-quality readsc 21.9 51.4 66.5 60.7 0.1 3.2 1.5 14.6 30.6

% of medium-quality readsd 68.5 42.0 31.4 36.9 95.0 93.7 2.4 49.5 51.6

% of poor-quality readse 9.6 6.6 2.1 2.4 4.9 3.1 96.1 35.9 17.8
aThe number indicates the insert size of the specie
bThe percentage of bases with quality values ≥ 30
cThe percentage of reads that all of their base with Q20 & above
dThe percentage of reads that are not high-quality or poor-quality
eThe percentage of reads that more than 10% of their bases with Q14 or less

Fig. 6 Post-assembly report interface
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In addition, the combined analysis may help to take
proper actions to improve assemblies. Take the datasets
with PM% > 20% in Tables 3 and 4 as examples, D1 data-
set has a high percentage of poor-quality reads and
clipped reads, and it may need to sequence the genome
again to improve the read quality. A low percentage of
high-quality reads and perfectly-mapped reads (e.g., the
two worm datasets), it may need to sequence more reads
with better quality.

Time complexity and performance
SQUAT has four major modules, including random
sampling, read quality analysis, read mapping and map-
ping analyzer. We also integrate QUAST in SQUAT.
The time complexity of the random sampling is O(fas-
tq_size + sampled_fastq_size). The read quality analysis
costs O(sampled_fastq_size). For example, for a wheat
fastq file (SRR5815659_1) containing 394 million
150-bp reads, where the total bases are 59 Gbp and the
file size is 152 GB, the random sampling took ~ 40 min
and the read quality analysis took ~ 29 min to process
the whole fastq file on a virtual machine with one core
and 2 GB RAM. For the one million sampled reads, the
read quality analysis took ~ 3 s. The runtime of read
mapping module that uses both BWA MEM and BWA

backtrack is related to the sampled fastq size, the as-
sembly size and the number of read hits in the sam file
(denoted as #read_hit_in_sam). The actual runtime can
be a few tens of minutes to hours, depending on the
portion of repeat regions in genomes and the genome
size. The time complexity of mapping analysis is
O(#read_hit_in_sam). SQUAT also supports
multi-threading in BWA alignment and QUAST evalu-
ation. For example, SQUAT took ~ 12.6 min for the D1
dataset and ~ 22 min for the D2 dataset using two cores
and ~ 2.3 GB RAM, but it took ~ 10 h using 32 cores
and ~ 14.3 GB RAM for the wheat fastq because the
wheat genome assembly is large, hexaploid, and highly
repetitive. The details of the runtime experiments are
given in Additional file 4.

Comparison of main features with other tools for quality
assessment of de novo assembly and sequencing data
First, we compare the main features of SQUAT with other
tools for quality assessment/evaluation of de novo

Table 4 Profile of tagged labels and PM% for each dataset

reads %a Mushroom Eel 1300b Eel 500 Eel 400 Worm 1300 Worm 620 D1 D2 D3

P 49.8 39.3 34.9 33.4 6.8 17.6 3.5 54.5 71.1

S 30.1 28.7 33.1 34.7 44.5 41.0 8.5 28.4 22.6

C 5.0 3.7 6.1 6.0 12.0 10.4 81.2 15.9 5.4

O 1.3 3.8 8.3 8.1 4.8 6.6 0.2 0.1 0.2

M 6.1 14.2 10.1 10.4 11.1 11.0 0.5 0.0 0.1

F 6.6 6.9 6.9 6.9 20.8 13.1 4.9 0.9 0.5

N 1.2 3.5 0.1 0.1 0.0 0.2 1.3 0.2 0.2

PM% 12.5 12.0 14.9 15.0 35.9 26.1 59 11.4 4.3
aThe profile is based on BWA-MEM algorithm for greater tolerance in varied read length except PM%. PM% is based on the average score of BWA MEM and BWA
backtrack, and considers both the fail-to-map reads and low-score clip reads as shown in Methods
bThe number indicates the insert size of the specie

Table 5 Assembly evaluation of the de novo assembly datasets

Dataseta Mushroom Eel Worm

#Scaffoldsb 800 7804 7280

Assembly size (Mbp) 77 1022 740

Max Scaffolds (Kbp) 2357 14,119 1562

N25 (Kbp) 959 4137 239

N50 (Kbp) 587 2148 138

N75 (Kbp) 293 954 78

L99 453 3474 6995

GC% 46.34 42.37 31.43
aThese de novo assembly datasets don’t normally have reference genomes
bThe scaffolds are assembled by All-paths LG and evaluated by QUAST

Table 6 Assembly evaluation of the three GAGE-B datasets

Dataseta D1 D2 D3

#Scaffolds 109 912 1848

Assembly size (Mbp) 4.6 5.6 5.0

N50 (Kbp) 552 313 350

Max Scaffolds (Kbp) 1233 1346 737

NG25 (Kbp) 1233 1346 555

NG50 (Kbp) 552 313 356

NG75 (Kbp) 204 173 232

LG99 22 23 80

GC% 68.66 61.65 44.66

Indels ≥5 7 10 6

Inversions 0 0 0

Relocation 4 2 4

Translocation 1 0 1
aThe scaffolds are assembled by SPAdes and evaluated by QUAST in GAGE mode
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assembly in Table 7, including QUAST [12], REAPR [23]
and BUSCO [24]. Each aforementioned tool has its own
unique features and solves different problems. QUAST
can be used with or without a reference genome. For de
novo assemblies, QUAST provides comprehensive metrics
and plots for evaluating assembly contiguity beyond N50,
including Nx plot, GC plot and cumulative plot of largest
contigs. Meanwhile, users can compare multiple assem-
blies in a unified HTML interface. REAPR maps reads to
assemblies and performs base-by-base analysis to compute
fragment coverage distribution (FCD). It then uses FCD to
identify scaffolding errors for improving assembly correct-
ness. BUSCO analyzes the coverage of single-copy ortho-
logues to evaluate assembly completeness. SQUAT
focuses on the two-way quality assessment of assemblies
and sequencing reads for examine assembly quality/cor-
rectness and provides detailed graphical reports to aid in
tracing the reasons for poor assembly results. SQUAT also
integrates QUAST into the reports.
The pre-assembly quality assessment procedure is

lightweight, and its reports are mainly for cross-checking
with post-assembly reports. When comparing various
features with other QC tools as listed in the ClinQC [9]
paper, which has 20 features in a table, most of the fea-
tures are not included in SQUAT, except three features,
including virtual machine (we provide a docker image),
graphical QC report, and GC content assessment. How-
ever, SQUAT’s pre-assembly analysis is lightweight and
fast because it is written in C++ and can process 1 mil-
lion 150-reads in a few seconds with ~ 3MB memory.
Its quality metrics come from a generalization of the
MinimalQ method [13], which is useful for selecting
high-quality read subsets to improve genome assem-
blies of high-depth NGS data. The generalized pro-
grams of pre-assembly read subset selection are written
in C++ and included in SQUAT’s GitHub project (at
library/preQ/). In addition, users can combine the read
categorization results from both pre-assembly and
post-assembly reports to evaluate assemblies with fur-
ther actions as mentioned in the section of combined
analysis.

Discussion
In this paper, we present the application and procedure
of a Sequencing Quality Assessment Tool (SQUAT)
featuring pre-assembly and post-assembly analysis. Our
tool assists users to examine their sequencing reads
from the perspective of base quality scores and align-
ments against the assembly. We test our tool on six
datasets and reveal their sequencing quality through
detailed examination. There also exists great potential
for further advancement and application, as outlined
below.

Map reads to a reference genome
With regards to species for which a finished genome is
available, it is feasible to map sequencing reads to the
reference genome for another version of read labeling.
As reference-mapping is usually the gold-standard for
genome assembly, we can use it as a reference point to
examine where the main cause of poor PM% comes
from by weighing up the PM% difference between map-
ping reads to the assemblies and the reference genome.
In addition, different paired-end or mate-pair libraries
can be mapped to the reference genome to generate re-
ports for comparison.

Genome assembly with subset selection based on read
labels
On top of read label tagging, we also integrate a feature
in SQUAT to return a subset of reads containing only
certain specified types of reads. For instance, since reads
labeled with P and M are usually highly-mapped to as-
semblies, they may be more ideal for genome assembly.
Therefore, this tool can be utilized to implement subset
selection suitable for the users.

Paired-end version and 10X data
So far, only single-end read mapping is available for
SQUAT. Namely, no paired-end information is required. In
BWA, we can also generate alignments in SAM format
given paired-end libraries. However, a different scheme of
read label tagging and analysis needs to be designed to fit

Table 7 Comparison of main features with other tools for quality assessment of de novo assembly

Feature\Tools SQUAT QUAST REAPR BUSCO

Categorization of read-to-assembly mapping relationship √

Distributions of alignment scores, mismatch ratios, and clip ratios of read mapping results √

Evaluation of assembly quality by identification of poorly/properly mapped reads of different types √

Comprehensive metrics for evaluating assembly contiguity. Nx-like plots and cumulative plots √

Comparison of multiple assemblies √

Identification of scaffolding error by fragment coverage distribution √

Evaluation of assembly completeness by single-copy orthologues √

Built-in light-weight assessment of read quality by categorizing reads into poor−/medium−/high- quality groups √
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interleaved read files into the process. In the future, we will
place the emphasis on quality assessment of paired-
end reads. The current version of SQUAT can perform
quality assessment of 10X chromatin-linked reads and
the assembly, but it ignores paired-end barcode infor-
mation. We plan to support paired-end 10X linked
reads with barcode analysis.

Scalability for handling big data of NGS
The scalability issue is important due to the increasingly
big data of NGS. The performance bottleneck of SQUAT is
the read mapping step despite the step is multi-threading.
We think there are two ways to cope with the issue. First,
we can use faster read mapping tools, e.g., Kart [25] and
minimap2 [26], which are ~ 4 or more times faster than
BWA MEM in short read mapping. Second, we can use
distributed parallel read mapping tools, e.g., Hadoop-based
BigBWA [27] and Spark-based SparkBWA [28]. We plan
integrate SQUAT with Kart soon and support distributed
parallel in future work.

Conclusions
SQUAT is an efficient tool for assessing both the qual-
ity of sequencing reads and the quality of their genome
assembly via read mapping analysis and classification.
We carefully defined the poorly mapped (PM) reads
into several groups to prevent the underestimation of
unmapped reads; indeed, a high PM% would be a sign
of a poor assembly that requires researchers’ attention
further examination or improvements before using the
assembly. We have evaluated SQUAT with six datasets,
including eel, worm, mushroom, and three bacteria,
and the results show that SQUAT reports provide use-
ful information for assessing the quality of assemblies
and reads.
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