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Abstract

Background: Metagenomic sequencing is a powerful technology for studying the mixture of microbes or the
microbiomes on human and in the environment. One basic task of analyzing metagenomic data is to identify the
component genomes in the community. This task is challenging due to the complexity of microbiome composition,
limited availability of known reference genomes, and usually insufficient sequencing coverage.

Results: As an initial step toward understanding the complete composition of a metagenomic sample, we studied
the problem of estimating the total length of all distinct component genomes in a metagenomic sample. We showed
that this problem can be solved by estimating the total number of distinct k-mers in all the metagenomic sequencing
data. We proposed a method for this estimation based on the sequencing coverage distribution of observed k-mers,
and introduced a k-mer redundancy index (KR/) to fill in the gap between the count of distinct k-mers and the total
genome length. We showed the effectiveness of the proposed method on a set of carefully designed simulation data
corresponding to multiple situations of true metagenomic data. Results on real data indicate that the uncaptured
genomic information can vary dramatically across metagenomic samples, with the potential to mislead downstream
analyses.

Conclusions: We proposed the question of how long the total genome length of all different species in a microbial

community is and introduced a method to answer it.

Keywords: Metagenomics, Sequencing coverage, Distinct k-mers, Genome length

Background

It is now widely known that microbiomes or the ecolog-
ical community of microbes living at a certain site of the
human host such as the gut can play important roles in
human health [1-5]. Metagenomic sequencing is a power-
ful technology for studying the microbiome by sequencing
DNAs from all the genomes of its component microbes
[5]. Since it is impossible to capture the full components of
a microbiome, a ‘metagenomic sample’ is actually a subset
of the target metagenome captured with the sequencing
process, as a sample from a population in statistics [6].
The basic task of a metagenomic study is to read out the
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underlying information about the microbiome from the
metagenomic sample.

For any genomic sequencing study, a fundamental prop-
erty we need to consider is the sequencing coverage,
which is the fraction of genomic materials that has been
captured and sequenced. This, however, has been largely
ignored in metagenomic studies [6]. The level of coverage
of a metagenomic sample is of key importance for recov-
ering the information about the microbiome. Variations
caused by coverage differences between metagenomic
samples can be wrongly attributed to biological reasons,
resulting in misleading conclusions [6].

The question of estimating the coverage of a sequenc-
ing sample has been attracting researchers’ attention since
the beginning of human genome project. In 1988, Eric S.
Lander and Michael S. Waterman introduced the famous
Lander-Waterman theory to show how well a genome can
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be recovered for a certain sequencing strategy [7]. It had
played a key role in guiding the design and completion of
the human genome project. Lander-Waterman theory was
specially designed for single genomic sequencing projects.
It is no longer suitable for most metagenomic data since
the relative abundances of component genomes in a
microbiome are very uneven and therefore the sequenc-
ing procedure violates the uniform distribution assump-
tion [8]. This is also true for other types of sequencing
projects like RNA-sequencing or ChIP-seq where dis-
tributions of components to be sequenced are uneven.
Methods were therefore introduced to estimate the cov-
erage or solve similar problems in such situations [8—12].
For example, Hooper et al. proposed a method to estimate
the total number of genomic bins in a metagenome by
assuming certain abundance distribution of the microbial
composition [8]. Rodriguez et al. assessed the abundance-
weighted coverage of a metagenomic sample by examining
the redundancy among individual reads [10]. Daley and
Smith introduced an empirical Bayesian method to pre-
dict the number of previously un-sequenced molecules
that would be observed if additional reads were provided
[9]. This method has been demonstrated powerful in dif-
ferent kinds of sequencing data such as ChIP-seq data and
RNA-seq data, but its effectiveness on metagenomic data
has not been studied.

For the genomic sequences that have been captured
in a metagenomic sample, the basic information we
want to get is what types of microbes are there at
what abundances. This is referred to as taxonomy pro-
filing. A straightforward way of taxonomy profiling is to
map sequencing reads to reference genomes in known
databases. Known microbial genomes only represent a
small proportion of existing microbes. Even for the type of
well-studied communities like human gut, it’s typical that
around 30%—-60% of sequencing reads in a metagenomic
sample could not be mapped to any known microbial
genomes [13]. Furthermore, it has been observed that the
fraction of unmapped reads can vary dramatically across
different samples in the same study, say, ranging surprising
from 2 to 96% [14]. This type of between-samples varia-
tion is lost when relative abundances are calculated based
on mapped reads. Ignoring such loss of information can
be misleading in downstream analyses [5].

Mainly because of the incomplete coverage and the
existence of unmapped reads, the genomes that can be
profiled from a metagenomic sample are only a part of
all genomes that exist in the microbiome. It is therefore
desirable to make estimations on the genomes that have
been missed. Even if it is not possible to make accurate
estimations on the number of missed genomes and their
relative abundances, any educated guess about any prop-
erties of missed genomes can provide useful information
for the comparison of samples based on known genomes.
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In this paper, we study the problem of estimating the total
length of all distinct genomes in a metagenomic sample.
If we can estimate this with reasonable accuracy, we will
know a lot about the missed genomes by subtracting those
known and mapped genomes from the total. This is the
same question as estimating the actual coverage of the
unknown targeting whole microbiome by the observed
sequencing reads in the metagenomic sample. In prepa-
ration of this manuscript, a similar question has been
studied in [15], but the method requires both long reads
and short reads. For most cases where only short reads
are available, we found that this question can be solved
by solving the related question of estimating the number
of distinct k-mers in the metagenome if we have infi-
nite sequencing depth. A statistical model is introduced
to predict the number of distinct k-mers in a metagenome
that have not been included in the observed data. And
we define a k-mer redundancy index (KRI) that helps to
estimate the total genome length from total distinct k-
mer count. Since the underlying truth is unknown in any
real metagenomic data, we simulated a set of synthetic
metagenomic datasets for different situations of microbial
composition. Experiments on these data showed that the
proposed method works well.

Methods

Problem statements

The problem we study is to estimate the total length
of distinct genomes in a microbiome based on the
metagenomic sequencing data. A more accurate state-
ment of this problem in practice depends on the cri-
teria for two genomes to be identified as distinct from
each other. This is a complicated taxonomic ques-
tion considering the wide existence of strains and sub-
strains within each microbial species. To focus on the
key mathematic problem behind the question, we sim-
ply assume that genomes from the same species are
same while genomes from different species are distinct.
We will give further discussion about this later in the
“Estimating KR! of the distinct genome set” section.

Understanding DNA sequence as a collection of k-mers

A DNA sequence can be viewed as a collection of k-mers
by breaking the sequence into nucleotide substrings of
length k, as illustrated in Fig. 1a. From the k-mer perspec-
tive, we define total k-mer count (TKC), distinct k-mer
count (DKC) and k-mer redundancy index (KRI) as three
properties of a sequence. TKC is the number of all k-mers
obtained when breaking a sequence into k-mers. DKC is
the amount of distinct k-mers, i.e., the amount of remain-
ing k-mers after removing all replicates of k-mers. KR! is
defined as the ratio of TKC and DKC, which reflects the
degree of repetition of k-mers in the sequence. The values
of these three properties depend on the target sequence
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and the selection of k-mer size (k). For a given k, any
of the three properties can be obtained if the other two
are provided. For example, TKC = DKC % KRI, which
means TKC is achievable if we know DKC and KRI of a
k-mer collection. Obviously, for a sequence of length L,
TKC = L — k + 1, indicating that TKC can be roughly
taken as the sequence length if L > k, which is satisfied
when studying genomes using small k-mers. These simple
mathematical relations form the basic idea of our work.

Similarly, a set of sequences can also be treated as a col-
lection of k-mers by breaking every single sequence into k-
mers. Therefore, a metagenomic sample, the metagenome
and the set of distinct genomes in a metagenome can all be
viewed as a collection of k-mers, respectively, as illustrated
in Fig. 1b.

Overview of our solution

From the k-mer perspective, our aim of estimating total
genome length of all distinct genomes in a metagenome
is equivalent to estimating TKC of the set of distinct
genomes (Fig. 1b). Since it is impossible to count TKC
of the true metagenome from the metagenomic sample
due to finite sequencing coverage and unknown genome
composition, we predict TKC of the distinct genome
set by estimating its DKC and KRI separately (Fig. 1c).
A metagenome and the corresponding set of distinct
genomes of all its components differ only in genome
abundances, they share the same distinct k-mers and
have equal DKCs. We estimate DKC of the metagenome
from the observed metagenomic data by modeling the

sequencing event as a Poisson sampling procedure. KR
of the distinct genome set can be estimated based on
known genomes detected in the metagenomic sample.
Finally, the total genome length, which is roughly equal to
TKC, can be achieved simply by taking the product of KR/
and DKC.

Predicting DKC of the metagenome

A metagenomic sample can be viewed as a subset of the
metagenome obtained by random sampling, as illustrated
in Fig. 1b. DKC of a metagenomic sample can be readily
obtained by counting k-mers in the sequences, either from
the original sequencing reads or from the assembled scaf-
folds. We need to estimate the number of k-mers in the
metagenome that have not been covered in the metage-
nomic sample. The frequency that a given k-mer i is
sequenced, denoted as x;, can be modeled as a Poisson dis-
tribution with an unknown parameter A;. The probability
that k-mer i will not been sequenced is e/, We call these
k-mers as uncaptured k-mers. Although the frequencies
of k-mers overlapping with each other are dependent,
such limited dependence can be well-approximated by
assuming independence [16, 17]. Therefore, we further
assume that A; independently and identically follow some
unknown distribution ©(A), the number of uncaptured
k-mers is

N f e Mdu(r) (1)
0
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where N is the DKC of the metagenome. Since both N
and (X)) are unknown, we are not able to calculate the
value of (1) directly. Fortunately, the frequencies of cap-
tured k-mers in the metagenomic sample also contain
information about N and w(X), which would help us to
estimate the value of (1). Let #; denote the number of k-
mers that appear j times in the metagenomic sample. The
expectation of #; can be written as

E(n) =N / e M/t du(n) )
0

If we take the observation #; as its expectation E(#;),
the mathematical problem of estimating the number of
uncaptured k-mers can be formulated as:

Given observations n1,ny,n3,...,n5, which follow

the formula
o0
nj=N / e M/ du(n)
0
where N and ©()) are unknown. Find the value of
o0
N / e duh)
0

To solve this mathematical problem, let (L) = Nie™*,
m; = (i + 1)!n;y1, the problem can be re-written as

Given observations mg, mi, mo, . ..
low the formula

, mpr—1, which fol-

ee]

mj = / No()dur)
0
where o (L) and 11().) are unknown. Find the value of

o

1
/ Xw()\)du(k)
0

This is a special type of Gaussian quadrature problem that
can be solved using the Golub-Welsch algorithm [9, 18].
The final estimation of (1) can be written as

o0 M
_A ~ %
N/ e "du(h) = '_El Ai (3)
0 =

where «; and A; are decided by the Golub-Welsch algo-
rithm taking mq, m1,ma,...,my—1 as the input. DKC
of the metagenome is finally achieved by adding this
estimated uncaptured number of k-mers to DKC of the
metagenomic sample. The variability and reliability of the
estimation can be reflected by the confidence interval
achieved by the bootstrap method.
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Estimating KR! of the distinct genome set
To precisely estimate KR! of the set of distinct genomes of
a metagenome, one needs to know all different genomes
in the metagenome, which is usually unachievable due the
existence of many unknown microbes. To deal with this
problem, we reasoned that KRI of a genome set can be
well estimated use only part of the genomes in it. There-
fore, we can use known genomes detected in a metage-
nomic sample to estimate the KRI of the whole distinct
genome set. In practice, we first apply MetaPhlan2 [19]
and GOTTCHA [20] on the metagenomic data to iden-
tify known species in the metagenome. For each detected
species, we select one of its reference genomes from the
database [9] to form a genome set. An alternative way to
form the genome set is to take the assembled scaffolds
as detected genomes. We estimated the KR/ of this set of
detected genomes as the KRI of the distinct genome set.
The way of selecting known genomes to estimate
KRI actually decides the criteria of identifying distinct
genomes in our work. Since we select only one genome
for each detected species to estimate the KRI of the set
of distinct genomes, the estimation is restricted to species
level, even if two strains of the same species were detected
in the metagenomic sample. If we include genomes for all
detected strains in the KRI estimation, the estimation will
be at strain level.

Implementation of the method

We first adopt Pollux [21] to correct the sequencing error
in the metagenomic samples. Counting all k-mers in a
metagenomic sample can be computationally heavy. We
employ jellyfish2 [22], one of the fastest k-mer count-
ing approaches, for the k-mer counting step. We use the
Golub-Welsch algorithm implemented in preseq [9, 17]
to estimate the distinct k-mer count. MetaPlan2 [19] and
GOTTCHA [20] are used to identify the known species
from the metagenomic sample. Genomes for those known
species are selected from existing database [23] to esti-
mate the KRI for the whole community.

Simulated metagenomic datasets

Due to the complexity of real-world microbiome compo-
sitions, it is hard, if possible, to find real metagenomic
data that have complete true answer of all components.
To test the performance of our method, we simulated
several microbial communities of different situations and
generate synthetic metagenomic samples. We simulated
communities with 10 species and 50 species as represen-
tatives of a simple case and a more complicated case. We
used three types of composition abundance distributions
to form microbial communities of low, medium and high
complexities (LC, MC and HC) following the way of a pre-
vious simulation study [24]. LC, MC and HC are defined
based on the number of dominant microbe who has a high
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relative abundance. LC has only one dominant microbe.
MC has two or more dominant species. HC has no dom-
inant species. The fraction of information captured by
the metagenomic data is of key importance for estimat-
ing the total genome length. To reflect this property of
a metagenomic sample, we define initial coverage as the
fraction of distinct k-mers in the set of distinct genomes
of the target community included in the sequencing data.
For each community, metagenomic samples of different
reads numbers were generated to simulate the situation
of different sequencing depths and the initial coverages
of the community. To check how robust the method is
to random effect, we use three random seeds to generate
samples for the same parameters. In total, 225 metage-
nomic samples with 10 species and 243 samples with 50
species were generated with an in-house simulation tool
[25]. Beside the error-free samples, we also generated a set
of metagenomic samples with sequencing errors for each
community.

We did some simple simulations to show that KR! of a
genome set can be estimated using part of all genomes.
We simulated four metagenomes with 10, 50, 100 and
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200 species, respectively. For each metagenome, we ran-
domly select 60% of its component genomes as known
ones to estimate the KRI of the whole metagenome.
Although in real world, the known microbes are not ran-
domly selected from the nature, the order in which they
were known has nothing to do with their sequence con-
tents. Therefore, we believe such random selection is
reasonable.

Real metagenomic datasets

We select two datasets to conduct our method on.
One dataset contains 65 oral metagenomic samples from
Human Microbiome Project (HMP) [26] and the other
consists of 145 human gut metagnomic samples, includ-
ing 71 from normal people and 74 from type 2 diabetes
patients [27].

Results

Results on simulated metagenomic datasets

We tested our method on all synthetic metagenomic
samples. Fig. 2 shows how well the number of distinct
k-mers (DKC) in a community can be estimated from

o seedl
o seed2

o seedd

Relative Error
7
|
/ I
|
|
A
I
I
I
!
!
|
I
|
I

seear
5| [Wseecz
seeds

5
A
364071, =
1 5
20407
1e07{
Eoes00{
§seror] -
X
e LA N [
£
Boesor]
a
Frewors
®
£ oe+00{
Bses07{ ]
aes07]
30407y
20407
1e407]
0e+00{
i 2 3 a 5 3
Number of Total Reads (million)
60408

W

o

g ) VR S —

g
Initial Coverage

Estimated Distinct K-mer Count

4e+08.

75 % T EJaT
Number of Total Reads (million)

Fig. 2 Different microbial communities are simulated to test the performance of the proposed method. (a) Results for microbial communities with
10 species. The three histograms on the left show the abundance distributions of different simulated communities. The middle panel shows the
estimation results of distinct k-mer count. Each bar represents an estimation result based on a synthetic metagenomic sample and the error bar
shows the 95% bootstrap confidence interval of the estimation. The black dash line is the true distinct k-mer count. The right panel shows how the
relative error goes as the initial coverage increases (k = 20). (b) The same as (a) except that the species number is 50. (Note that some of the samples
with 10 species are not shown in the barplot, see Additional file 1: Figure S1 for all samples with 10 species)

Al
=8
=
=
B
B
=}
B
[
=1
(=
=
=
=
-
=
=
=a
=
=0

ik

- seed1
o seed2
o seedd

Relative Error

seed1
5 seed2
seed3

0.75

050
Initial Coverage




Hua and Zhang BMC Genomics 2019, 20(Suppl 2):183

a metagenomic sample. The whole figure contains two
parts, showing results for communities with 10 species
and 50 species, respectively. Each part consists of three
panels, displayed from left to right. Further explanations
about each panel are given in the figure caption. As
expected, the overall prediction in samples with 10 species
is better than in samples with 50 species. Communities
with high complexity achieve best prediction accuracy
among those three kinds of abundance distributions. This
agrees with the intuition that the more even the abun-
dance distribution is, the better the prediction will be.
The performances on communities with medium com-
plexity are the worst. This is because the two dominant
species make up more than 70% of the community, which
means that most of the reads are sequenced from them.
Since less than 30% of the reads come from the rest of
all species, only a small part of information about their
genomes is reflected in the sequencing data, leading to
the bad performance, especially when sequencing depth
is low. We also show how the performance goes when the
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initial coverage increases. The performance is measured
by relative error, defined as the difference between esti-
mated value and the true value divided by the true value.
In general, the performance gets better as the initial cover-
age increases. Another interesting observation is that, for
most cases, Golub-Welsch algorithm gives a good estima-
tion which trends to be no larger than the ground truth,
and the corresponding bootstrap confidence interval is
usually small. For the exaggerated estimations, Golub-
Welsch algorithm is more likely to give a large bootstrap
confidence interval. Therefore, Golub-Welsch algorithm
provides a reliable estimation of the lower bound of DKC,
as suggested in preseq [9].

Effects of K and sequencing errors

To see how the parameter k affects the results, We
chose different k to do the estimation for a simulated
metagenomic sample (50 species, high complexity, 25 mil-
lion reads). Results show that the estimation is robust to
the selection of k (Fig. 3c).
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Despite the good performance on error-free sequencing
data, the Golub-Welsch algorithm can given bad predic-
tion when the sequencing data contains errors (Fig. 3a).
Sequencing errors introduce novel k-mers that should not
exist in the data. A higher fraction of low-count k-mers
will be considered by the algorithm as the implication
of more low-abundant microbes. Therefore, sequencing
errors lead to exaggerated estimation of total distinct
k-mers and this exaggeration grows as the sequencing
depths increases (Fig. 3a, green bars). To solve this prob-
lem, we use Pollux [21] to correct the sequencing error
before counting k-mers. Results on simulation data show
that the performance can be under control after correct-
ing the sequencing errors (Fig. 3a, blue bars).

Comparison between different methods

Besides Golub-Welsch algorithm, we also applied the
major algorithm rational function approximation (RFA)
in preseq on the simulated metagenomic samples with
50 species (Additional file 1: Figure S2) and compared its
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performance with Golub-Welsch algorithm. Both meth-
ods achieve a good performance and each present their
own strength (Additional file 1: Figure S3). RFA outper-
forms Golub-Welsch algorithm in the median complexity
communities (two species with a total relative abundance
higher than 70%), indicating a stronger ability of extrap-
olation. For communities with high complexity or low
complexity, Golub-Welsch algorithm makes stable and
accurate results with only few exceptions. RFA also gives
a good result, but with a slight trend to exaggerate the
estimation.

Estimating KRI using known species

There’s a gap between distinct k-mer count (DKC) and
total genome length or TKC. We use KRI to bridge this gap
as introduced above. For simulated metagenomic samples,
GOTTCHA succesfully identified most species therefore
led to a perfect estimation of KRI. We did some sim-
ple simulations to show that KRI of a genome set can be
estimated using part of all genomes. In general, KRI of
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the community increases as there are more species in the
community, as shown in Fig. 3b. The result shows that KR
of a community can be well estimated use only part of the
species, which demonstrates the feasibility of estimating
KRI of a community based only on known species.

Results on real metagenomic datasets

We applied our method on the two selected datasets
(Figs. 3d and 4). One general observation in the results
is that, the number of uncaptured k-mers can differ a lot
between samples, even when the observed k-mer counts
are similar (Figs. 3d and 4a). Further comparison between
normal samples and T2D samples shows that the pre-
dicted distinct k-mer counts present significant difference
while observed k-mer counts do not (Fig. 4c and d). In
the original study, it was reported that the difference
of within-sample diversity (entropy of gene abundance)
between normal group and T2D group is not significant
[27]. Since the gene abundances were calculated based
only on extracted sequence data, chances are that the sig-
nificance had been masked by ignoring the difference in
the 'unseen’ information.

Conclusion and discussion

In this paper, we proposed the question of ‘how long the
total genome length of all different species in a micro-
bial community is’ and introduced a method to answer
it. This is an important step toward the estimation of
unknown and unseen component genomes in a micro-
biome. We invented a k-mer-based strategy to liberate
the reliance on the limited microbial reference genomes
so that unknown species can be included in the estima-
tion. To explore the information that has not been directly
captured in the metagenomic sample, we developed a sta-
tistical method to estimate the number of uncaptured
k-mers. Distinct k-mer count was multiplied by the k-mer
redundancy index (KRI), an index defined to reflect the
repetition of k-mers and estimated from known species,
to get the total genome length. Performance on the sim-
ulation data shows that the proposed method works well,
and the precision of the estimation is mainly affected by
factors including the sequencing error, the initial cover-
age of the community and the complexity of the microbial
diversity.

Extracting information from the metagenomic data is
the foundation of downstream analysis. The complex
nature of microbial community and inadequate microbial
diversity represented in existing databases make it chal-
lenging to extract the full information. A metagenomic
sample can capture only part of the information about
the microbial community due to its complexity, among
which only part can be extracted due to the limited known
references. Ignoring these ‘uncaptured’ and ‘unknown’
information can mislead downstream analyses. In the
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work of estimating total genome length, we adopted the
reference-free strategy to include the ‘unknown’ informa-
tion and a statistical model was employed to estimate the
‘uncaptured’ part so that the completeness of the extracted
information can be pursued to the maximum. The exper-
iments on simulated data showed the feasibility of the
proposed method and results on real datasets revealed
that downstream analyses may be biased if 'unseen’ infor-
mation is ignored. Further studies are needed in the future
to explore ways by which the estimated total metagenome
length can help to better extracting information about
unknown or uncaptured species from the metagenomic
data and comparing metagenome samples.
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