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Abstract

Background: Recent advances in genome analysis have established that chromatin has preferred 3D conformations,
which bring distant loci into contact. Identifying these contacts is important for us to understand possible interactions
between these loci. This has motivated the creation of the Hi-C technology, which detects long-range chromosomal
interactions. Distance geometry-based algorithms, such as ChromSDE and ShRec3D, have been able to utilize Hi-C
data to infer 3D chromosomal structures. However, these algorithms, being matrix-based, are space- and
time-consuming on very large datasets. A human genome of 100 kilobase resolution would involve ∼30,000 loci,
requiring gigabytes just in storing the matrices.

Results: We propose a succinct representation of the distance matrices which tremendously reduces the space
requirement. We give a complete solution, called SuperRec, for the inference of chromosomal structures from Hi-C
data, through iterative solving the large-scale weighted multidimensional scaling problem.

Conclusions: SuperRec runs faster than earlier systems without compromising on result accuracy. The SuperRec
package can be obtained from http://www.cs.cityu.edu.hk/~shuaicli/SuperRec.

Keywords: Hi-C, 3D chromosome structure, Multidimensional scaling, Chromosome conformation capture, 3D
genome

Backgound
Genome-wide sequencing studies, such as the Human
Genome Project (HGP) [1, 2], have deciphered the
genomic sequences of humans. We are now in a posi-
tion to reconstruct the 3D structure of the genome, that
is, the conformations of the chromosomes within the
nucleus. This will further our understanding of chromo-
somal interactions.
Recent discoveries through imaging analysis revealed

that, while chromosome conformations may vary from
cell to cell, they are not random [3, 4]. Hotspots of
interactions and transcriptions are unevenly distributed;
transcriptionally inactive segments prefer locations such
as on nuclear periphery, around nucleoli, or at nuclear
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substructures [5–16]. These observations all point to the
fact that gene expressions are highly associated with the
chromatin structure.
However, since imaging techniques are not yet able to

achieve high enough resolutions for genome-wide stud-
ies, researchers have sought to reconstruct the chromatin
structure from knowledge of the interactions between
genomic loci [17–23]. Valuable insights on gene regu-
lations, genome translocations, copy number variations,
genome stability, etc., have been derived, owing to the suc-
cess of these methods [24–31]. Among the technologies
for capturing interaction information, one called Hi-C has
been used prominently. The method produces a matrix,
called a contact map, which stores the normalized fre-
quencies between all pairs of genome loci (also referred
to in the literature as bins, regions or windows) at some
resolution.
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With these advances, it is reasonable to anticipate that
the community will amass a very large collection of chro-
mosome interaction data in the near future. These data
are expected to be collected under many different condi-
tions as well as resolutions, and for a variety of genomes,
large and small. Their processing and analysis will present
tremendous challenges to bioinformaticians [32].
A number of methods have been proposed for chromo-

some structure inferences from the contact maps. They
can either infer a mean structure from the contact map
[18, 19, 33–37] or solve multiple structures [28, 38–42].
Most of these methods operate on distance matrices,
which consume very large amounts of memory for
genomes with high resolution.
For our method, we assume the availability of high res-

olution data, which gives us more information at the
expense of a larger problem size. We anticipate that data
will be at the level of kilobase pairs (kbp). Existing strate-
gies have difficulties with such data. In particular, dis-
tance matrix-based methods require very large amounts
of memory to work; a resolution of one kbp for the human
genome would require terabytes of memory. Processing
time presents another issue.
The fastest method currently has a time complexity of

O
(
n3

)
[36], rendering them inefficient for data of large

sizes. In spite of the challenge, genome-scale 3D chro-
matin reconstruction has nonetheless been performed in
at least two studies [43, 44]. In the study by Diament el al.,
a sparse contact matrix was generated with only a sam-
pled portion of the Hi-C matrix, and the reconstruction
was performed with a reduced set of constraints. This
method becomes inefficient when the number of loci is
increased [43]. In the study by Segal et al., [44] existing
single chromosome structures were incorporated to form
a whole genome structure. Since the method is dependent
on existing tools such as ChromSDE for the inference of
single chromosome structures, they are constrained by the
efficiency of those tools.
In this work, we propose a progressive multi-

dimensional scaling (MDS) approach for structure
reconstruction from Hi-C data. We introduce a succinct
representation of the distance matrix to reduce space con-
sumption. The proposed approach progressively infer the
coordinates to allow more flexible control of runtime. On
the benchmark dataset which consists of simulated data
of 100 to 30,000 loci, our approach (implemented as a
program called SuperRec) performed 5 to 435 times faster
compared to ShRec3D. In particular, it demonstrated
a speedup of more than 400 times in reconstructing
a structure of 30,000 loci, a length sufficient for us to
analyze the longest human chromosome at a resolution of
10 kbp. When accessed with normalized root-mean-
square deviation (RMSD) (Additional file 1: S1),
Spearman’s rank correlation coefficient (SRCC) and

Pearson correlation coefficient (PCC), we found no loss
of accuracy in the results obtained by SuperRec.

Methods
This section presents our method in detail. First, we
model the sequence as a continuous linear polymer. We
show how the contacts fromHi-C can be transformed and
represented succinctly in the form of a distance matrix.
The reconstruction then works by assigning coordinates
to chromosome loci progressively. After all the coordi-
nates are assigned, we refine and sharpen the coordinates
iteratively through local search.

Structure modeling
In our algorithm, the chromosome is modelled as a con-
tinuous linear polymer, composed of many chromosomal
loci. For example, human chromosome 1 can be mod-
elled as ∼25,000 bins at a resolution (number of base
pairs per bin) of 10 kbp (kilo base pairs). We use each
bin to represent a locus within the chromosome. Dur-
ing the structure reconstruction step, the determination
of each locus’s location is simplified to that of determin-
ing the 3D position of the locus’s centroid. Although this
model omits the local structures at each locus, it is the
most widely accepted representation and is considered the
most accurate model achievable by the resolution of cur-
rent 3C-based techniques [35, 36, 41]. The 3D positions of
all the loci are referred to as a structure or a configuration.
In this work, we let n denote the number of loci.

Converting contact frequency to distance
To infer the 3D structures from Hi-C experimental data,
the pairwise distances between loci are first computed.
Most of the Hi-C protocols are cell population-based
experiments; they provide the average contact frequencies
across different cells. Every pair of loci i and j are associ-
ated with a number of m replicates by accumulating dif-
ferent structures, and the normalized contact frequency fij
can be inferred from Hi-C dataset. Many structure infer-
ence methods assume a power-law relationship between
contact frequency and 3D distance, allowing a contact(
fij

)
to be converted into a corresponding distance

(
dij

)

through the equation dij = 1/f α
ij . The power-law coeffi-

cient α varies across datasets and needs to be estimated
using other techniques. The special case where α = 1
is called an inverse frequency (IF). Given a fixed α and
the inferred structure X, the goodness of fit is calcu-

lated as
∑

fij>0

(
f ′
ij − fij

)2
where f ′

ij = 1/d(X)
1/α
ij . Similar

to ChromSDE, we assume that 0.1 � α � 3 (a range
covering most α in previous studies) and use a golden
section search to find the correct α through minimizing
the goodness function. We face several challenges with
this approach. First, Hi-C can only capture 2.5% of the
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contact loci, with large variations in the captured fre-
quencies; these contacts are moreover only reliable for the
physically close loci. The power-law relation dij = 1/f α

ij
also results in infinite distances for low frequency con-
tact pairs. While this can be remedied by enforcing an
upper bound on the distances, a criteria for deciding the
upper bound would be difficult to derive. Furthermore,
the distances converted with a power-law relationship are
not metric, rendering many computations that work for
metric relations unusable.
Recently, Lesne el al. solved these problems elegantly

using the shortest-pathmethod in graph theory [36]. They
modeled the contact matrix as a connected graph, in
which a vertex represents a locus and an edge is associated
with a distance as the inversion contact frequency of the
corresponding locus pair. The final distance between loci
i and j is modified with the shortest-path distance within
the graph. Not only is the shortest-path distance metric
and represents a tighter estimation of locus distance, the
approach also mitigates the problem due to low frequency
contact pairs.
Computing shortest-path distance is, however, both

time- and space-consuming since it requires the com-
putation of all-pairs shortest-paths. Hence we propose
a method to approximate this distance. We randomly
choose � (� � n) loci as pivots, and denote this set of loci
as P. After that, we compute the single source shortest-
path distances with each pivot locus as the source to all
the n loci. Denote the shortest distance from pivot p to
a vertex v as dp(v). With these shortest-path distances
from the pivots we approximate the remaining shortest-
path distances. Given a pair of loci i, j, if i or j is a pivot,
we can obtain their shortest distance from the computed
shortest-path distances. Otherwise, we use minp∈P dp(i)+
dp(j) to approximate the shortest distance between i and
j. By increasing the number of pivots, the approximate
shortest-path distance can be made arbitrarily close to the
true shortest-path distance.
To reduce the space consumption, while computing the

shortest-path distances, we adopt an adjacent list rep-
resentation for the distance matrix derived from Hi-C
dataset. Also, the approximated distances are not stored;
we merely store the � sets of shortest-path distances from
the pivots — the approximated distances are computed on
the fly. This data structure reduces the space complexity
fromO

(
n2

)
to O(ln+e) (e is the number of significant Hi-C

contacts) to store a distance matrix with n × n dimen-
sions. See Additional file 1: Figure S8 for a comparision of
run-time memory usage.

Assigning coordinates progressively
The structure reconstruction problem is often formulated
as: Given the pairwise distances (with errors) of all loci, to
find a 3D configuration X for those loci which satisfy the

distance constraints. Denote the distance between loci i
and j inferred from contact information as d̂ij, and denote
the Euclidean distance between loci i and j in a configura-
tionX as dij(X). The problem can be solved byminimizing
the following objective function:

min
∑ ∑

i≤j≤n

(
dij(X) − d̂ij

)2
(1)

which can be solved by multidimensional scaling (MDS)
[45]. Such an approach has been utilized by several groups
to reconstruct the chromatin structures [18, 24, 36, 42].
It performs well on Euclidean distance with small error.
However, the distances inferred from contact information
suffer from large errors, which are especially significant
in the larger distances due to the underlying mechanism
of Hi-C. This prompts us to adapt the formulation to a
weighted one:

min
∑ ∑

i≤j≤n
wij

(
dij(X) − d̂ij

)2
(2)

where a weight wij can be assigned to each loci pair i and j
according to their distance, dij, allowing us to give higher
weights to closer pairs. Similar to the earlier problem,
this problem has a solution through the use of WMDS
(weighted multidimensional scaling) [46].
However, the use of MDS and WMDS remains time-

and space-consuming, and will not scale on problems of
larger sizes. To solve this, we propose a progressive solu-
tion for the MDS and WMDS problem, namely, iMDS
(iterative MDS) and sMDS (scalable MDS). Both methods
relay on conducting MDS on subsets of loci.
Our proposed approaches are based on the following

insight: A distance matrix of size n × n contains
(n
2
)
vari-

ables. On the other hand, the inferred structures contain
3n− 6 free variables. That is, the distance matrix contains
information that may be considered redundant, which can
be potentially discarded without affecting the quality of
the inferred structure. Hence, our approach will reduce
these redundant values, which we expect to lower the
chances of errors. Besides this, our approach will also nat-
urally allow the assignment of larger weights to distances
that are more reliable. These will become apparent in the
subsequent subsections.

IterativeMDS (iMDS) for structure polish
In the same way as performed in SC-MDS [47], we ran-
domly split the set of loci into k overlapping subsets,
s1, . . . , si, . . . , sk , with small intersections Ii between si and
si+1. Then, classical multidimensional scaling [48] is per-
formed on each subset to obtain the local coordinates of
each locus. The subsets of loci are then combined by first
selecting s1 as the reference, and then combining each
si+1 to si iteratively until all the subsets are combined.
Our combination method differs from SC-MDS in that
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we incorporate the reflection of objects, which we now
describe.

Local structures recombination To combine si+1 into si
in iMDS, we use Ii as a set of anchors. Denote the local
coordinates for Ii in si and si+1 as PI and P′

I , respectively.
We want to superimpose P′

I onto PI with a rigid trans-
formation (a translation T and a rotation R) such as to
minimize the RMSD. This problem is known to be solv-
able in linear time [49]. In order to solve the reflection
problem, P′

I and its mirror were both superimposed to PI .
In the case that the RMSD between the mirror of P′

I and
PI is smaller than that between P′

I and PI , the coordinates
in si+1 are replaced with those in the mirror of si+1.

RMSD = min
N∑

i=1

√∥∥p′
i − (Rpi + T)

∥∥2 (3)

After obtaining T and R, we apply them to the coordinates
of si+1 such that si+1 and si would have the same frame
of reference. This integrates si+1 into si. In addition, we
average PI and the transformed coordinates of P′

I by R and
T to update the coordinates of Ii.

Successive subsetting and combination As discussed in
[47], grouping only neighboring loci is not as beneficial as
grouping both close and distant loci. Hence, we randomly
split all loci into k overlapping subsets. In order to com-
bine two 3D sets successfully, we need to select at least
4 points not lie on the same plane (points on the same
plane cannot identity a structure in 3D space), addition-
aly, a small number of loci may lead to a poor estimation
of the rotation and translation matrix. Hence, we need to
choose enough loci in Ii. In practice, we set the number
of loci in Ii as 50, which is large enough for successive
combinations in a three dimensional space. The perfor-
mance of random subsetting and intersection is described
in Additional file 1: S2.
Due to Hi-C’s mechanism, the distances d̂ measured

have different degrees of reliability, which may aversely
affect MDS and iMDS. This situation worsens when noise
is elevated. To address this, we propose a scalable MDS to
polish the structure obtained by iMDS.

Incorporating different distances
The structure from iMDS is further improved to better
agree with the data from Hi-C experiments. In Eq. 2, a
weight wij was introduced for each distance d̂ij fromHi-C.
Since shorter distances are more reliable than the longer
ones, we set wij = d̂−2

ij [42] to decrease the influence from
the longer distances. We found this weighting scheme to
be more robust than other schemes such as wij = 1 and
wij = 1/d̂ij [35, 36] (Additional file 1: S3).

However, computing WMDS for our framework
remains infeasible for large data sets due to time and
space complexities. We propose a scalable MDS approach
here to address this issue. As far as we know, our approach
is among the very few that are currently available for
large-scale WMDS.

ScalableMDS
Our proposed scalable MDS is an iterative procedure
which employs WMDS as a subroutine. At each iteration,
we permute the loci randomly, and partition them by the
permuted order into sets of size k each. Then, we apply
WMDS to each resultant set, S say. Denote the loci coor-
dinates in S before executing WMDS and after as PS and
P′
S respectively. We apply RMSD to discover the optimal

superposition that maps each locus in P′
S to itself in PS.

Then, we update the coordinates for the locus to its aver-
age values from PS and P′

S after the superposition. After
we iterate through every set S, we restart the process for
another round. This is repeated until the coordinates of
the loci converge. The performance of random subsetting
and iteration is described in Additional file 1: S2 and the
sensitivity analysis of parameter settings is described in
Additional file 1: S4.
WMDS is an iterative algorithm, the time complexity in

each iteration is O
(
n3

)
. In comparsion, the time complex-

ity of sMDS for updating all loci once is O
(
nk2

)
. Though

sMDS need more iterations than WMDS (10 times more
in practice), sMDS is faster.

Simulated contact maps
Binary contactmap
We used known 3D structures as the basis for our simu-
lation. For a given 3D structure, we constructed a binary
matrix to store the pairwise contact information, with the
top k nearest pairs of loci set to 1 and others set to 0.

Poisson distributionmodel
For a given 3D structure with pairwise distance dij, We
generated the M(i, j) entry of a simulated contact map M
as a Poisson-distributed random number nij. The param-
eter λij is defined as λij = β/dα

ij based on the power-
law conversion of distance and contact frequency. β is a
tunable parameter to control the signal coverage of the
contact map.

Data preparation
In silico genome structure
The in silico nucleus with 1 and 16 chromosome(s)
(Additional file 1: Table S1) used to test our software
were generated using a polymer model. The coordinates
were taken from the Langevin dynamics simulation after
it has reached thermal equilibrium. After that, we con-
structed Poisson distribution-based contact maps and
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binary contact maps for the in silico structures. In addi-
tion to the contact matrices corresponding to in silico
chromosomes, we also included contact maps generated
from Poisson distribution model at different signal cover-
age levels of the regular helix structure used as benchmark
dataset by Zou et al. [37] as well as the structure of
chromosome 2 reconstructed from a real Hi-C dataset
(mESC).

Hi-C experimental dataset
In this study, we used Hi-C data from two cell lines mESC
and GM12878. These raw sequence data are transformed
into contact map with Juicer [50]. The matrix balanc-
ing method described in [51] was used to normalize the
contact matrix in order to remove biases in Hi-C dataset.

Results and discussion
We implemented our proposed approach in a package
named SuperRec. We compared SuperRec with public
publicly available softwares on a ubuntu 16.04 server
equipped with two Intel(R) Xeon(R) E5-2620 CPUs, and
256 GB memory. All softwares were executed with sug-
gested configurations, default setting were used when
there is no recommended configuration.

The approximated shortest-path distances are reliable
We first assessed the quality of our approximation of
the shortest-path distance. Figure 1 visualizes the Hi-C
dataset SRX764938 (GM12878) [52] of human. Initially,
there are many distances of small values derived from
power-law conversion that are indistinguishable from
each other (Fig. 1a). After using the shortest-path dis-
tances to refine the power-law converted distances, the
local distances along the genome became significantly
closer than the longer-range ones as expected (Fig. 1b).
An effective solution here is to use the shortest-path dis-

tance refinement approach to infer the spatial distances.

However, the approach is time- and space-consuming,
requiring time cubic to the number of loci; the very large
number of loci to compute for renders it infeasible.
To overcome this we approximated the shortest-path

distances through the use of pivots as described earlier.
To assess the effects of the accuracy loss, we attempted
to reconstruct the 3D configuration from the approxi-
mated distances of an in silico dataset with 10,000 loci.
We repeated this for a range of different number of piv-
ots from 1 to 10,000 to examine how having more pivots
would affect the result; the case of using 10,000 pivots is
the same as when the actual shortest-path distances are
used.
We first assessed the accuracy loss due to approximation

through two parameters: Approximation Ratio (AR) and
Exact Matching Rate (EMR). The approximation ratio is
defined to be the ratio between the actual all-pair shortest-
path length and the approximated all-pair shortest-path
length. We obtained favorable AR values of 0.93 for 100
pivots, and 0.98 for 500 pivots. With 1000 pivots, the
approximation ratio became more than 0.99 (Fig. 2a).
The exact matching rate is defined to be the rate of the
approximated shortest paths lengths that are equal to the
corresponding actual shortest-path length. We obtained
EMR of 0.85, 0.93 and 0.98 with 500, 1000, and 20,00
pivots, respectively (Fig. 2b). Additionaly, both EMR and
AR show very small variances in our repeated analysis
(Additional file 1: Figure S9).
We next examined if the quality of our reconstruction

would be affected when the approximated shortest-path
distances are used instead of the actual shortest-path dis-
tances. We conducted experiments on the same data with
10,000 loci, and with varying number of pivots from 1
to 10,000. The PCC between pairwise distance calculated
from reconstructed and true structures was found to be
0.89 when 50 pivots are used. These values converge to
0.95 when more than 100 pivots are used. Similarly, the

(a) (b)
Fig. 1 Pairwise distances within each chromosome: a distances converted with power-law conversion, b power-law converted distances with the
refinement of all-pair shortest-path distance
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Fig. 2 Accuracy of approximate shortest-path distance: Approimation
ratio calculated as the ratio of sum of all-pair shortest-path distance;
Number of matched pairs of distance between approximate
shortest-path distance and real shortest-path distance

SRCC between pairwise distances calculated from recon-
structed and real structures converge to 0.965 when more
than 100 pivots are used. The normalized RMSD between
reconstructed and real structure varies from 0.17 to 0.27
throughout the experiment (Fig. 3); these values are con-
sidered small since they are the aggregate of 10,000 loci.

Fig. 3 Accuracy analysis of a reconstructed structure using various
numbers of pivots to compute the shortest-path distance. For cases
with more than 500 pivots, the difference between structures from
accurate shortest-path distances and those from approximated
shortest-path distances is negligible. Normalized RMSD, PCC as well
as SRCC measurements are consistent

These show that there is no significant degradation of
result from the use of the approximated shortest-path
distances. In our experiment, SuperRec performs well
when using 10% or more loci as pivots (Additional file 1:
Figures S6, S7), and we suggest using at least 10% loci as
pivots when using SuperRec.

SuperRec is fast
To compare the speed of SuperRec with existing meth-
ods, we simulated chromosomal structures with differ-
ent numbers of loci up to 30,000 (Additional file 1:
Table S1). The corresponding binary contact informa-
tion were inferred with in silico structures as described
in Method. These binary contact data were further ana-
lyzed with SuperRec using 10% loci as pivots as well
as ChromSDE, HSA [37], and ShRec3D. Figure 4 shows
the computation time plotted against the number of
loci. SuperRec achieves significant improvements when
handling thousands of loci. For large dataset with 2000
loci and more, SuperRec performed between 5 to 435
times faster than its alternatives. In one instance with
30,000 loci, SuperRec took only 43 min, whereas ShRec3D
required more than 13 days. ChromSDE and HSA would
require a few hours to complete on cases with more
than 1000 loci Hence, we stopped the comparison with
ChromSDE and HSA on the larger cases.

SuperRec is accurate
Whereas we have used only synthetic data in our speed
benchmark test, the quality assessment of our algorithm
was performed using both synthetic data and actual Hi-C
experimental data. We first performed the reconstruction
from the synthetic contact matrix used (Additional file 1:
Table S1) using HSA, ChromSDE, ShRec3D, and Super-
Rec. To achieve a fair and comprehensive comparison,
three different measurements were calculated: (1) nor-
malized RMSD of each pair of reconstructed structure
and original structure, (2) PCC and (3) SRCC between
the original and the reconstructed distances (Fig. 5). On
Poisson distribution-based contact map datasets, all algo-
rithms achieved comparable and accurate results under all
three kinds of measurement, consistently reporting cor-
relation coefficients greater than 0.90. The corresponding
normalized RMSDs reported are small compared to the
number of loci, except for HSA with 400 and 500 loci.
On binary contact maps datasets, SuperRec and ShRec3D
achieved comparable and accurate results under all three
kinds of measurement, consistently reporting correlation
coefficients greater than 0.90. The corresponding nor-
malized RMSDs reported are also small compared to the
number of loci. In contrast, the performance of HSA and
ChromSDE is dissatisfactory due to their inability to han-
dle binary contact map. This shows that SuperRec is as
accurate as these state-of-the-art algorithms.
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Fig. 4 Time usage for reconstructing chromosomal structures

(a) (b)
Fig. 5 Accuracy measurement by normalized RMSD, PCC and SRCC vs different numbers of loci. For structures with large number of loci, the SRCC
and PCC is almost one, which indicated the reconstructed structures are close to the original structures. We stopped ChromSDE, and HSA
computation beyond 500 loci due to the high runtime: a Poisson distribution-based contact maps; b Binary contact maps
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Fig. 6 The upper right and bottom left are two structures with 16 chromosomes and 10,000 loci: the upper right corresponding to a reconstructed
structure by SuperRec with 1000 pivots, while the bottom left is the corresponding original structure. The upper left and bottom right heatmaps are
plotted using pairwise distances inferred from reconstructed and real structures respectively

Figure 6 shows two structure: an in silico structure with
10,000 loci, and the structure reconstructed by SuperRec.
The two structures are highly similar except for the pur-
ple highlighted region. The discrepancy is likely due to the
relative sparsity of loci in the highlighted region, which
resulted in the loci of that region to have fewer contacts
with others, thus complicating the inference. On the other
hand, we note that the polymer connectivity is preserved
in our reconstructed structure (Fig. 7).
In addition to the comparison based on synthetic chro-

matin structures, we also reconstructed the structure of
the regular helix from contact matrices at different signal
coverage levels with HSA, ShRec3D, ChromSDE as well as
SuperRec. Evaluating by the normalized RMSD between
reconstructed structure and real structure, we find our
method to be effective and robust (Additional file 1:
Table S2).
We also performed the analysis with an in situ Hi-

C dataset (GM12878) [52] of human at 1MB resolution.
The chromosome (Fig. 8) reconstructions were performed
with the usage of intra-contact matrices. Since the under-
lying structure of the Hi-C dataset is unknown, to evaluate
the accuracy of the reconstructed structures we com-
pared the pairwise distances from the reconstructions
with the all pair shortest-path distances calculated from

Fig. 7 Polymer connectivity: Histogram of distances between
neighboring loci along chromosomal sequence (blue) and all
pairwise distances (red) computed from a reconstructed
configuration of 10,000 loci
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Fig. 8 3D visualization of human autosomes and X chromosome based on Hi-C data (SRX764938) [52] at 1MB resolution, only intra-contact
frequency account for those reconstructions

contact frequency. The similarity is then expressed using
correlation coefficients (Table 1). ShRec3D and Super-
Rec achieved similar performances when handling chro-
mosome level reconstruction. At genome-wide level of
number of loci, SuperRec slightly outperformed ShRec3D.

Validations and comparisons using FISH data
We also compared the methods’ performance in inferring
3D chromatin structures using known distances derived
from public 3D-FISH data for the cell lines mESC [53].
We selected six pairs of genomic loci from chromosome 2
or chromosome 11 for validation, with distances derived
from FISH probes at 40-kb resolution. We inferred struc-
tures of chromosome 2 and chromosome 11 with HSA,
BACH, ShRec3D and SuperRec with Hi-C contact data
at 40-kb resolution. Single-track HSA, multi-track HSA
and BACH were executed with the raw contact maps
of NcoI and HindIII. ShRec3D and SuperRec were exe-
cuted with the normalized contact maps of NcoI and
HindIII. In addition, a modifed version of ShRec3D with
a fixed α for distance conversion was included in our
analysis. PCCs between the predicted distances from
reconstructed structures and distance from 3D-FISHwere
calculated. Since each FISH locus spans two neighboring

loci in the structures derived from Hi-C dataset, differ-
ent combinations of neighbor loci at the two ends of FISH
probed pair were used to compute the distances from 3D
structures, and a range of PCCs for each FISH data set
were obtained. The PCCs of SuperRec and multi-track
HSA are most robust and significantly higher than those
of other approaches (Fig. 9).

Application to sparse contact map
We carried out reconstructions using SuperRec on sim-
ulated contact maps of chromosome 2 (mouse) at
different signal coverages (from 10 to 90%), and 10
simulated contact maps were generated at each sig-
nal coverage. SuperRec works well for both sparse
and dense contact map when accessed with PCC and
SRCC between distances from reconstructed struc-
ture and true structure. PCC ranges between 0.60
and 0.75, SRCC ranges between 0.65 and 0.80 at
10% signal coverage. The correlations increased with
increasingly high signal coverage, with both PCC and
SRCC approaching 0.9 when signal coverage reaches
above 50 (Fig. 10). This demonstrates SuperRec’s abil-
ity in handling Hi-C contact maps from low to high
coverage.
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Fig. 9 Box plots of PCCs between FISH measured distance and predicted distances by different Hi-C dataset of mESC at 40-kb resolution. BACH-h
BACH with contact map of HindIII, BACH-n BACH with contact map of NcoI, HSAmulti-track HSA, HSA-h HSA with contact map of HindIII, HSA-nn HSA
with normalized contact map of NcoI, HSA-hn HSA with normalized contact map of HindIII, HSA-n HSA with contact map of NcoI, ShRec3D-h
ShRec3D with normalized contact map of HindIII, ShRec3D-h(α)modified ShRec3D with given α on normalized contact map of HindIII, SuperRec-h
SuperRec with normalized contact map of HindIII, and SuperRec-n SuperRec with normalized contact map of NcoI

(a) (b)
Fig. 10 Box plots of PCC (a) and SRCC (b) between true distances and predicted distances by simulated contact maps at different signal coverage



Zhang et al. BMC Genomics 2019, 20(Suppl 2):186 Page 140 of 185

Conclusion
In this study, we devised a novel method for 3D
chromatin reconstruction from chromosomal contacts,
and implemented it into a complete software solution
called SuperRec. We tested SuperRec on both synthetic
and real Hi-C datasets. SuperRec achieved significant
improvements in the analysis of longest human chro-
mosome, completing the reconstruction at a resolution
of 10 kbp within hours without loss of accuracy in the
results.

Additional file

Additional file 1: Large Scale 3D Chromatin Reconstruction From
Chromosomal Contacts - Supplementary materials. This file contains the
supplementary text and figures mentioned in the text. (PDF 6926 kb)
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16. van Koningsbruggen S, Gierliński M, Schofield P, Martin D, Barton GJ,
Ariyurek Y, den Dunnen JT, Lamond AI. High-resolution whole-genome
sequencing reveals that specific chromatin domains from most human
chromosomes associate with nucleoli. Mol Biol Cell. 2010;21(21):3735–48.

17. VanBerkumNL, Lieberman-AidenE, Williams L, ImakaevM, Gnirke A, Mirny LA,
Dekker J, Lander ES. Hi-c: amethodtostudythethree-dimensional architecture
of genomes. J Vis Exp. 2010;39:e1869. https://doi.org/10.3791/1869.

18. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J,
Fields S, Blau CA, Noble WS. A three-dimensional model of the yeast
genome. Nature. 2010;465(7296):363–7.

19. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T,
Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al.
Comprehensive mapping of long-range interactions reveals folding
principles of the human genome. Science. 2009;326(5950):289–93.

https://doi.org/10.1186/s12864-019-5470-2
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
http://www.cs.cityu.edu.hk/~shuaicli/SuperRec/
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-20-supplement-2
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-20-supplement-2
https://doi.org/10.3791/1869


Zhang et al. BMC Genomics 2019, 20(Suppl 2):186 Page 141 of 185

20. Rodley C, Bertels F, Jones B, O’sullivan J. Global identification of yeast
chromosome interactions using genome conformation capture. Fungal
Genet Biol. 2009;46(11):879–86.

21. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M,
Parrinello H, Tanay A, Cavalli G. Three-dimensional folding and functional
organization principles of the drosophila genome. Cell. 2012;148(3):
458–72.

22. Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen C-A, Schmitt AD,
Espinoza CA, Ren B. A high-resolution map of the three-dimensional
chromatin interactome in human cells. Nature. 2013;503(7475):290–4.

23. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED,
Tanay A, Fraser P. Single-cell hi-c reveals cell-to-cell variability in
chromosome structure. Nature. 2013;502(7469):59–64.

24. Ay F, Bunnik EM, Varoquaux N, Bol SM, Prudhomme J, Vert J-P, Noble WS,
Le Roch KG. Three-dimensional modeling of the p. falciparum genome
during the erythrocytic cycle reveals a strong connection between
genome architecture and gene expression. Genome Res. 2014;24(6):
974–88.

25. De S, Michor F. Dna replication timing and long-range dna interactions
predict mutational landscapes of cancer genomes. Nat Biotechnol.
2011;29(12):1103–8.

26. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B.
Topological domains in mammalian genomes identified by analysis of
chromatin interactions. Nature. 2012;485(7398):376–80.

27. Homouz D, Kudlicki AS. The 3d organization of the yeast genome
correlates with co-expression and reflects functional relations between
genes. PloS ONE. 2013;8(1):54699.

28. Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L. Genome architectures
revealed by tethered chromosome conformation capture and
population-based modeling. Nat Biotechnol. 2012;30(1):90–8.

29. Lemieux JE, Kyes SA, Otto TD, Feller AI, Eastman RT, Pinches RA,
Berriman M, Su X-z, Newbold CI. Genome-wide profiling of chromosome
interactions in plasmodium falciparum characterizes nuclear architecture
and reconfigurations associated with antigenic variation. Mol Microbiol.
2013;90(3):519–37.

30. Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, Schulz TC, Robins AJ,
Dalton S, Gilbert DM. Evolutionarily conserved replication timing profiles
predict long-range chromatin interactions and distinguish closely related
cell types. Genome Res. 2010;20(6):761–70.

31. Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J,
Lee L, Lobanenkov VV, et al. A map of the cis-regulatory sequences in the
mouse genome. Nature. 2012;488(7409):116–20.

32. Gibcus JH, Dekker J. The hierarchy of the 3d genome. Mol Cell.
2013;49(5):773–82.

33. Baù D, Sanyal A, Lajoie BR, Capriotti E, Byron M, Lawrence JB, Dekker J,
Marti-Renom MA. The three-dimensional folding of the α-globin gene
domain reveals formation of chromatin globules. Nat Struct Mol Biol.
2011;18(1):107–14.

34. Ben-Elazar S, Yakhini Z, Yanai I. Spatial localization of co-regulated genes
exceeds genomic gene clustering in the saccharomyces cerevisiae
genome. Nucleic Acids Res. 2013;41(4):2191–201.

35. Zhang Z, Li G, Toh K-C, Sung W-K. 3d chromosome modeling with
semi-definite programming and hi-c data. J Comput Biol. 2013;20(11):
831–46.

36. Lesne A, Riposo J, Roger P, Cournac A, Mozziconacci J. 3d genome
reconstruction from chromosomal contacts. Nat Methods. 2014;11(11):
1141–3.

37. Zou C, Zhang Y, Ouyang Z. Hsa: integrating multi-track hi-c data for
genome-scale reconstruction of 3d chromatin structure. Genome Biol.
2016;17(1):40.

38. Hu M, Deng K, Qin Z, Dixon J, Selvaraj S, Fang J, Ren B, Liu JS. Bayesian
inference of spatial organizations of chromosomes. PLoS Comput Biol.
2013;9(1):1002893.

39. Rousseau M, Fraser J, Ferraiuolo MA, Dostie J, Blanchette M.
Three-dimensional modeling of chromatin structure from interaction
frequency data using markov chain monte carlo sampling. BMC
Bioinformatics. 2011;12(1):414.

40. Tjong H, Gong K, Chen L, Alber F. Physical tethering and volume
exclusion determine higher-order genome organization in budding
yeast. Genome Res. 2012;22(7):1295–305.

41. Trieu T, Cheng J. Large-scale reconstruction of 3d structures of human
chromosomes from chromosomal contact data. Nucleic Acids Res.
2014;42(7):52.

42. Varoquaux N, Ay F, Noble WS, Vert J-P. A statistical approach for inferring
the 3d structure of the genome. Bioinformatics. 2014;30(12):26–33.

43. Diament A, Tuller T. Improving 3d genome reconstructions using
orthologous and functional constraints. PLoS Comput Biol. 2015;11(5):
1004298.

44. Segal MR, Bengtsson HL. Reconstruction of 3d genome architecture via a
two-stage algorithm. BMC Bioinformatics. 2015;16(1):373.

45. Kruskal JB. Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika. 1964;29(1):1–27.

46. Borg I, Groenen P. Modern multidimensional scaling: theory and
applications. J Educ Meas. 2003;40(3):277–80.

47. Tzeng J, Lu HH, Li W-H. Multidimensional scaling for large genomic data
sets. BMC Bioinformatics. 2008;9(1):179.

48. Torgerson WS. Multidimensional scaling: I. theory and method.
Psychometrika. 1952;17(4):401–19.

49. Arun KS, Huang TS, Blostein SD. Least-squares fitting of two 3-d point
sets. Pattern Anal Mach Intell, IEEE Trans. 1987;PAMI-9(5):698–700.

50. Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES,
Aiden EL. Juicer provides a one-click system for analyzing loop-resolution
hi-c experiments. Cell Syst. 2016;3(1):95–8.

51. Knight PA, Ruiz D. A fast algorithm for matrix balancing. IMA J Numer
Anal. 2013;33(3):1029–47.

52. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson
JT, Sanborn AL, Machol I, Omer AD, Lander ES, et al. A 3d map of the
human genome at kilobase resolution reveals principles of chromatin
looping. Cell. 2014;159(7):1665–80.

53. Eskeland R, Leeb M, Grimes GR, Kress C, Boyle S, Sproul D, Gilbert N,
Fan Y, Skoultchi AI, Wutz A, et al. Ring1b compacts chromatin structure
and represses gene expression independent of histone ubiquitination.
Mol Cell. 2010;38(3):452–64.


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Backgound
	Methods
	Structure modeling
	Converting contact frequency to distance
	Assigning coordinates progressively
	Iterative MDS (iMDS) for structure polish*1pt
	Local structures recombination
	Successive subsetting and combination

	Incorporating different distances
	Scalable MDS

	Simulated contact maps
	Binary contact map
	Poisson distribution model

	Data preparation
	In silico genome structure
	Hi-C experimental dataset


	Results and discussion
	The approximated shortest-path distances are reliable
	SuperRec is fast
	SuperRec is accurate
	Validations and comparisons using FISH data
	Application to sparse contact map

	Conclusion
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

