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Abstract

Background: One of the major challenges in microbial studies is detecting associations between microbial
communities and a specific disease. A specialized feature of microbiome count data is that intestinal bacterial
communities form clusters called as “enterotype”, which are characterized by differences in specific bacterial taxa,
making it difficult to analyze these data under health and disease conditions. Traditional probabilistic modeling
cannot distinguish between the bacterial differences derived from enterotype and those related to a specific disease.

Results: We propose a new probabilistic model, named as ENIGMA (Enterotype-like uNIGram mixture model for
Microbial Association analysis), which can be used to address these problems. ENIGMA enabled simultaneous
estimation of enterotype-like clusters characterized by the abundances of signature bacterial genera and the
parameters of environmental effects associated with the disease.

Conclusion: In the simulation study, we evaluated the accuracy of parameter estimation. Furthermore, by analyzing
the real-world data, we detected the bacteria related to Parkinson’s disease. ENIGMA is implemented in R and is
available from GitHub (https://github.com/abikoushi/enigma).
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Background
More than 100 trillion microbes live on and within
human beings and form of complex microbial commu-
nities (microbiota). Most microbes cannot be cultured
in laboratories, making it difficult to understand how
individual microorganisms mediate vital microbiome-
host interactions under health and disease conditions.
However, recent important advances in high-throughput
sequencing technology have enabled observation of the
composition of these intestinal microbes. For each sam-
ple drawn from an ecosystem, the number of occurrences
of each operational taxonomic units (OTUs) is measured
and the resulting OTU abundance can be summarized at
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any level of the bacterial phylogeny. Discovering recur-
rent microbial compositional patterns that are related to
a specific disease is a significant challenge, as individuals
with the same disease typically harbor different microbial
community structures.
Recent large-scale sequencing surveys of the human

intestinal microbiome, such as the USNIHHumanMicro-
biome Project (HMP) and the European Metagenomics
of the Human Intestinal Tract project (MetaHIT), have
revealed considerable variations in microbiota composi-
tion among individuals [1, 2]. Particularly, community
clusters characterized by differences in the abundance
of signature taxa, referred to as enterotypes, were first
reported in humans [3]. Later, other studies identified
enterotype-like clusters that may reflect features of the
host-microbial physiology and homeostasis in different
species [4, 5] or at different human body sites [6–9]. This
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microbial stratification has motivated the development
of methods for examining unknown clusters of microbial
communities.
Probabilistic modeling of microbial metagenomics data

often provides a powerful framework for characteriz-
ing the microbial community structures [10–12]. For
example, Knights et al. [10] applied a Dirichlet prior
to a single-level hierarchy and proposed a Bayesian
approach for estimating the proportion of microbial
communities. Holmes et al. [11] extended the Dirich-
let prior to Dirichlet multinomial mixtures to facili-
tate clustering of microbiome samples. Shafiei et al.
[12] proposed a hierarchical model for Bayesian infer-
ence of microbial communities (BioMiCo) to iden-
tify clusters of OTUs related to environmental factors
of interest.
However, such models are not suitable for discov-

ering enterotype-like clusters of microbial communi-
ties and associations between microbes and a spe-
cific disease for the following two reasons. First, the
frameworks of Knights et al. [10] and Holmes et al.
[11] do not explicitly address the association between
the microbial compositional patterns and environmen-
tal depend on the interest. Second, the framework of
Shafiei et al. [12] models the structure of each sam-
ple using a hierarchical mixture of multinomial dis-
tributions that are depends on the factors of interest.
Individual host properties such as body mass index,
age, or gender cannot explain the observed enterotypes
[3]. Thus, such enterotype-like clusters that describes
interindividual variability among humans do not always
to directly affect host probabilities such as diseases rang-
ing from localized gastroenterologic disorders to neuro-
logic, respiratory, metabolic hepatic, and cardiovascular
illnesses.
Here, we introduce a novel probabilistic model of a

microbial community structures, named as ENIGMA
(Enterotype-like uNIGram mixture model for Micro-
bial Association analysis), to address these problems.
ENIGMA includes the following contributions:

1. ENIGMA uses OTU abundances as input and
models each sample by the underlying unigram
mixture whose parameters are represented by
unknown group effects and known effects of interest.
The group effects are represented by baseline
parameters that change with a latent group of
microbial communities. One of the most important
features of our model is that the group effects are
independent of the effects of interest. This enables
the separation of interindividual variability and fixed
effects of the host properties related to disease risk.

2. ENIGMA is regarded as Bayesian learning for
detecting associations between a community

structure and factors of interest. Our model can be
used to simultaneously learn how enterotype-like
clusters of OTUs contribute to the microbial
structure and how microbial compositional patterns
may be related to known features of the sample.

3. We provide an efficient learning procedure for
ENIGMA by using a Laplace approximation to
integrate latent variables and estimate the evidence
of the complete model and credible intervals of the
parameters. The software package that implements
ENIGMA in the R environment is available from
https://github.com/abikoushi/enigma.

We describe our proposed framework and algorithm
in the “Methods” section. We evaluate the performance
of ENIGMA using simulated data in terms of its accu-
racy to estimate parameters and identify clusters in the
“Simulation study” section. We apply ENIGMA to clini-
cal metagenomics data and demonstrate how ENIGMA
simultaneously identifies enterotype-like clusters and gut
microbiota related to Parkinson’s disease (PD) in the
“Results on real data” section.

Methods
The key idea of ENIGMA is to adjust for the effects of
the enterotype and evaluate the increases and decreases
of bacterial abundance associated with environmental fac-
tors. Figure 1 shows a conceptual view of ENIGMA.
The formal definition of the model is described in
the following Mode section. Here we introduce several
notations.
Suppose that we observe microbiome count data of

K taxa for N samples with M individual host prop-
erties, (ynk , xnm) (n = 1, . . . , n; k = 1, . . . ,K ;m =
1, . . . ,M) where ynk ∈ N represents the abundance
of the k-th taxa in the n-th sample and xnm repre-
sents a binary variable such that xnm = 1 if the n-
th sample has the m-th host property and is otherwise
xnm = 0. Here the word taxa can represent any level
of the bacterial phylogeny, e.g., species, genes, family,
order, etc.

Model
Figure 2 shows a plate diagram of the proposed model
for metagenome sequencing, where yn is the read count
vector of the n-th sample, xn is the vector of the host
properties of the n-th sample and zn ∈ {1, . . . , L} is a
latent class of the n-th sample. Our model is a simple
extension of the unigram mixture model. We assume that
each sample is generated from a multinomial distribu-
tion with the parameter vector pn = (pn1, . . . , pnK )�.
The elements of pn and pnk (k = 1, . . . ,K) are prob-
abilities of the occurrence of the K taxa for the n-th
sample. We also assume that pnk can be influenced
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Fig. 1 A conceptual view of ENIGMA

independently by the environmental factor on the taxa
that is common to all latent classes and the interindi-
vidual factor on the latent enterotype-like classes. More
specifically, the generative process of ENIGMA is defined
as follows:

yn|zn, xn,β ∼ Multinomial
(
pn

)

pn = softmax
(
γ zn + xnB

)

zn|π ∼ Categorical(π)

π |α ∼ Dirichlet(α)

βm ∼ NormalK
(
OK , σ 2IK

)

γ l ∼ NormalK
(
OK , τ 2IK

)
(1)

where γ l is baseline parameter (K-dimensional vector)
that changes with the latent class, M × K matrix B =
(βmk) is effect of a environmental factor common to all
enterotype-like clusters, βm is a m-th row-vector of B,
π = (π1, . . . ,πL) is a mixing ratio of components, OK
is a K-dimensional zero matrix and IK is K-dimensional
identity matrix. Here, the softmax function is defined by
softmax(x) = exp(x)

∑K
k=1 exp(xk)

for a vector x = (x1, . . . , xK )�

using an element-wise exponential function and the prob-
ability function of categorical distribution is parameter-
ized as Pr(z = l|π) = πl, l ∈ {1, . . . , L}. In a Bayesian
approach, the prior distributions for π , β , and γ l must be
defiend. We set a prior based on the Dirichlet distribution
for π , and flat priors to the hyperparameters σ and τ for

Fig. 2 Plate diagram of the model for ENIGMA yn is affected from environmental factors xn and latent variables zn
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Fig. 3 Simulation result of B The comparison true B and the mean of B̂. The error bars indicates SE

β and γ , respectively. For the convenience of later section,
let p′

l = softmax(γ l) be the probabilities of the occurrence
of bacteria in the latent classes l.

Parameter estimation
Let us denote observed matrix by Y = (ynk), X = (xnm),
the unknown parameters by θ = (α,B, γ 1, . . . , γ L, σ , τ),
and their prior by φ(θ). The posterior distribution is
represented as follows:

p(θ , z|Y ) ∝
N∏

n=1
p(yn|zn, xn, θ)p(zn|θ)φ(θ) (2)

First, latent variable zn must be marginalized. The likeli-
hood is described by

N∏

n=1
p(yn|xn, θ) =

N∏

n=1

L∑

l=1
πlp(yn|zn = l, xn, θ). (3)

The posterior distribution is proportional to the prod-
uct of the likelihood and prior density:

p(θ |Y ) ∝ exp
{ N∑

n=1
log p

(
yn|xn, θ

) + logφ(θ)

}

Let θ̂ be the MAP estimator of θ , found by maximizing
log p(θ ,Y ,X).
We use a Laplace approximation [13] for parameter

estimation. A Taylor expansion around θ̂ gives

log p(θ |Y ,X) ≈ log p(θ̂ |Y ,X) + 1
2
(θ − θ̂)�H(θ̂)(θ − θ̂)

(4)

where H(θ̂) is the Hessian of log p(θ |Y ,X) evaluated at θ̂ .
Eq. 4 gives

p(θ |Y ,X) ≈ 1
C

exp
{
1
2
(θ − θ̂)�H

(
θ̂
) (

θ − θ̂
)}
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where C is a normalizing constant. This relation-
ship shows that p(θ |Y ,X) can be approximated by
the normal distribution N

(
θ̂ ,H−1

(
θ̂
))

. Credible inter-
vals can be calculated from this multivariate normal
distribution.
We used the stochastic programming language Stan

(http://mc-stan.org/) for its implementation. The MAP
estimators were obtained by the L-BFGS method.
Credible intervals were computed from the using a
Stan function to compute the Hessian at the MAP
estimates.
After fitting the model, the enterotype-like cluster of

each sample must be classified. The conditional probabil-
ity of zn = l is

Pr(zn = l) = πlp(yn|γ l,β , xn)∑L
l=1 πlp(yn|γ l,β , xn)

. (5)

This is the probability that the n-th sample belongs to
cluster l. Next, the n-th sample is then classified into the l-
th cluster thatmaximizes the conditional probability given
by Eq. 5.

Model Selection
We also examined whether or not the whole set rather
than individual bacteria is related to the environmental
factors of interest. We compared between the two models

when B �= 0 and B = 0. We used the log marginal like-
lihood as the goodness of fit for model comparison. The
marginal likelihood is given by

P(Y |X) =
∫

p(Y , θ |X) dθ . (6)

From Eq. 4, we have
∫
p(θ ,Y |X) dθ ≈ p

(
θ̂ |Y ,X

) ∫
exp

(
1
2

(
θ − θ̂

)�
H

(
θ̂
) (

θ − θ̂
))

d θ .

(7)

Thus, the log marginal likelihood is approximated by the
following formula:

logP(Y |X) ≈ log p
(
Y |θ̂ ,X

)
+ φ

(
θ̂
)

+ D
2
log 2π − 1

2
log |H

(
θ̂
)

|
(8)

where D is the number of free parameters. In model com-
parison, we choose the model showing larger log marginal
likelihood.

Simulation study
To demonstrate the performance of ENIGMA, we con-
ducted several simulation experiments. The synthetic
data were naturally produced via our generative process
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Fig. 4 Coverage probability of B. The histogram of coverage probability of B
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given by Eq. 1. We set M = 2000, L = 3, πl =
1/3, and α = (1, 1, 1)T . We first generated B and γ l
from the standard normal distribution. The variables xn,
zn, and yn are then sampled from the Bernoulli dis-
tribution with probability of 0.5, the categorical distri-
bution, and the multinomial distribution, respectively.
For the above parameter settings, we randomly gener-
ated a count dataset of 100 taxa for 100 samples for
evaluation.

• Coverage probability (CP): The coverage
probability is the proportion of the time over which
the interval contains the true value. A discrepancy
between the coverage probability and the nominal
coverage probability frequently occurs. When the
actual coverage is greater than the nominal coverage,
the interval is referred to as conservative. If the
interval is conservative, there is no inconsistency in
interpretation.

• Bias: The bias of B is defined by the difference
between true value and estimated value E[ B̂]−B.

• Standard error (SE): The standard error is the
standard deviation from the estimate. A smaller
standard error indicates the higher accuracy of
estimation.

• Root mean squared error (RMSE): The RMSE is
defined by√

E[
(
B̂ − B

)2
]. A smaller RMSE indicates the higher

accuracy of the estimation.
• Accuracy: The accuracy is the percentage of samples

correctly classified into original group.

To calcurate these metrics, we detrmined that we
calculated the sample means and standard devia-
tions of B̂ and

(
B̂ − B

)2
from the 10,000 synthetic

datasets.
Figure 3 shows a comparison of the true B and the

mean and standard deviation of estimates B̂ obtained
from the 10,000 simulations. We observed that the
points were arranged diagonally, indicating that the esti-
mator of ENIGMA was unbiased. We also calculated
the proportion of the time for which the 95% credi-
ble interval contains the true value of B. We found that
this proportion was greater than nominal value of 0.95 for
all B in Fig. 4. Table 1 shows the coverage probability (CP),
bias, standard error (SE), and RMSE of B̂, respectively.
We observed that the bias and standard error decreased
when βmk was large (i.e. the corresponding abundance
was large). We also found that the accuracy of classi-
fication given by Eq. 5 was exactly 100%. Thus, these
results indicate that ENIGMA can produce reasonable
estimates.

Table 1 Coverage probability (CP), bias, standard error (SE), and
RMSE of B̂
β CP Bias SE RMSE β CP Bias SE RMSE

-3.40 0.97 0.08 0.15 0.17 -0.04 1.00 0.01 0.05 0.05

-2.65 0.97 0.06 0.15 0.16 -0.04 1.00 0.01 0.05 0.05

-2.34 0.99 0.04 0.12 0.13 -0.01 1.00 0.01 0.05 0.05

-2.32 0.99 0.03 0.12 0.12 0.01 1.00 0.01 0.04 0.04

-1.83 0.98 0.03 0.14 0.15 0.02 1.00 0.01 0.06 0.06

-1.59 0.99 0.02 0.13 0.13 0.02 1.00 0.01 0.04 0.05

-1.58 0.99 0.03 0.13 0.13 0.03 1.00 0.01 0.04 0.04

-1.51 0.99 0.02 0.14 0.14 0.10 1.00 -0.00 0.08 0.08

-1.51 0.99 0.02 0.13 0.13 0.13 1.00 0.01 0.03 0.03

-1.29 0.99 0.02 0.11 0.11 0.14 1.00 0.01 0.03 0.03

-1.14 0.99 0.01 0.11 0.11 0.21 1.00 0.01 0.06 0.06

-0.95 1.00 0.01 0.09 0.09 0.23 1.00 0.00 0.08 0.08

-0.95 0.99 0.01 0.12 0.12 0.29 1.00 0.01 0.04 0.04

-0.92 1.00 0.01 0.09 0.09 0.31 1.00 0.01 0.05 0.05

-0.88 0.99 0.01 0.12 0.12 0.32 1.00 0.00 0.08 0.08

-0.84 1.00 0.01 0.05 0.05 0.33 1.00 0.01 0.04 0.04

-0.82 1.00 0.01 0.08 0.08 0.44 0.99 -0.02 0.10 0.10

-0.78 0.99 0.01 0.13 0.13 0.46 1.00 0.01 0.05 0.05

-0.78 1.00 0.01 0.07 0.07 0.50 1.00 -0.01 0.08 0.08

-0.76 1.00 0.01 0.08 0.08 0.53 1.00 0.00 0.06 0.06

-0.72 0.99 0.00 0.12 0.12 0.54 1.00 -0.00 0.08 0.08

-0.68 1.00 0.01 0.10 0.10 0.55 1.00 0.01 0.04 0.04

-0.65 0.99 0.01 0.11 0.11 0.55 1.00 0.01 0.03 0.03

-0.65 0.99 0.01 0.11 0.11 0.56 1.00 0.01 0.05 0.05

-0.65 1.00 0.01 0.06 0.06 0.76 1.00 -0.00 0.07 0.07

-0.61 1.00 0.01 0.06 0.06 0.79 1.00 0.00 0.06 0.06

-0.58 1.00 0.01 0.06 0.06 0.84 1.00 0.00 0.05 0.05

-0.58 1.00 0.01 0.07 0.07 0.90 1.00 0.01 0.04 0.04

-0.56 1.00 0.01 0.05 0.05 0.93 1.00 0.00 0.05 0.05

-0.52 1.00 0.01 0.06 0.06 0.96 1.00 -0.01 0.08 0.08

-0.52 1.00 0.01 0.07 0.07 0.98 1.00 0.01 0.04 0.04

-0.51 1.00 0.01 0.04 0.05 1.01 1.00 -0.01 0.08 0.08

-0.50 1.00 0.01 0.05 0.05 1.08 1.00 0.00 0.05 0.06

-0.50 1.00 0.01 0.04 0.04 1.10 1.00 0.00 0.05 0.05

-0.49 0.99 0.00 0.11 0.11 1.13 1.00 0.01 0.04 0.04

-0.47 1.00 0.01 0.05 0.05 1.14 1.00 0.01 0.04 0.04

-0.45 1.00 0.01 0.09 0.09 1.16 1.00 -0.01 0.07 0.07

-0.42 0.99 -0.01 0.13 0.13 1.22 1.00 0.01 0.04 0.04

-0.33 1.00 0.01 0.07 0.07 1.23 1.00 -0.02 0.09 0.09

-0.28 1.00 0.00 0.09 0.09 1.43 1.00 0.00 0.04 0.04

-0.27 1.00 0.01 0.07 0.07 1.45 1.00 0.01 0.04 0.04

-0.23 1.00 0.00 0.09 0.09 1.47 1.00 0.00 0.04 0.04

-0.21 1.00 0.01 0.07 0.07 1.55 1.00 -0.01 0.07 0.08

-0.18 1.00 0.00 0.10 0.10 1.60 1.00 0.01 0.03 0.03

-0.15 0.99 -0.01 0.11 0.11 1.61 1.00 0.00 0.05 0.05

-0.11 1.00 0.01 0.06 0.06 1.89 1.00 0.01 0.03 0.03

-0.09 1.00 0.00 0.09 0.09 1.91 1.00 0.01 0.03 0.03

-0.05 1.00 0.01 0.04 0.04 1.95 1.00 0.01 0.02 0.02
-0.05 1.00 0.01 0.04 0.04 2.25 1.00 0.00 0.04 0.04
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Fig. 5 Probability of occurrence in three bacteria

Results on real data
Arumugam et al. (2011)’s data
We demonstrated that the enterotype-like cluster can be
estimated using the data of Arumugam et al. [3]. This
data is N = 33, K = 55. The data of Arumugam et al.
[3] does not disclose the total read count. Thus, We
used the relative abundance multiplied by 10,000 as ynk .
Based on the result of Arumugam et al. [3], the number
of latent classes in ENIGMA was chosen to be L = 3.
We estimated the parameters using the ENIGMA and
setting all βmk = 0 in Eq. 1. We set the hyperparameters
of Dirichlet prior α = (1, . . . , 1)�, which is equivalent to
a noninformative prior.
Arumugam et al. [3] showed that the enterotype

is characterized by the differences in the abundance
of Bacteroides, Prevotella, and Ruminococcus. Estimates
of the probability of occurrence of those bacteria in
three clusters are shown in the Fig. 5. Class 1 con-
tains high-level Ruminococcus, class 2 contains high-level
Bacteroides, and class 3 contains high-level Prevotella.
This result is consistent with that of Arumugam et al.
(2011) [3].

Parkinson’s disease data
To validate the performance of ENIGMA in discover-
ing clusters of microbial communities and associations

between microbes and a specific disease, we applied
ENIGMA to the real metagenomic sequencing data
from Scheperjans et al. [14], Hill-Burns et al. [15],
Heintz-Buschart et al. [16] and Hopfner et al. [17].
The data was analyzed by sequencing the bacterial
16S ribosomal RNA genes sampled from patients with
Parkinson’s disease (PD) and controls in Finland, USA,
and Germany. Table 2 shows the summary statistics of
the data. The OTUs were mapped to the SILVA tax-
onomic reference, version 132 (https://www.arb-silva.
de/) and the abundances of family-level taxa were
calculated.
To assess the optimal number of clusters, we used the

Calinski-Harabasz (CH) Index. It is defined as:

CHl = BCl/(l − 1)
WCl/(n − l)

(9)

Table 2 Data summary

PD CO

Finland 74 74

German 55 64

USA 207 139

https://www.arb-silva.de/
https://www.arb-silva.de/


Abe et al. BMC Genomics 2019, 20(Suppl 2):191 Page 70 of 185

0

5

10

15

2 3 4
L

C
H

 in
de

x

Finland

0

5

10

15

2 3 4
L

C
H

 in
de

x

Germany

0

10

20

30

40

2 3 4
L

C
H

 in
de

x

USA

Fig. 6 The CH indexes in each country

where BCl is the between-cluster sum of squares (i.e.
the squared distances between all points i and j, for
which i and j are not in the same cluster) and WCl
is the within-clusters sum of squares (i.e. the squared
distances between all points i and j, for which i and j
are in the same cluster). Here, we used Jensen-Shannon
divergence (JSD) as the distance. The JSD between sam-
ples a = (a1, . . . , aK ) and b = (b1, . . . , bK ) is defined
as follows:

JSD(a, b) = 1
2

( K∑

k=1
ak log(ak/bk)) +

K∑

k=1
bk log(bk/ak))

)

.

(10)

When calculating the JSD, we used the normal-
ized abundance obtained by dividing ynk by the total
read count, and 0 was replaced with pseudo count
10−6. We chose the number of clusters L such that

Table 3 Cross-tabulation of gender and cluster

Class 1 2 3

Female 22 31 21

Male 21 27 26

CHl was maximal. To evaluate the CH Index, we
use the function index.G1() from the R library
clusterSim. The number of latent classes in ENIGMA
was chosen to be L = 3 in Finland and Ger-
many and L = 2 in USA by the CH indexes
(Fig. 6).
First, we evaluated whether the model assumption was

satisfied when using this data. According to Arumugam
et al. (2011) [3], the gender of the host is not related
with the enterotype. The genders of the subjects were
published in the Finland study. We examined the rela-
tionship between gender and enterotype-like cluster using
the data from Finland. Table 3 shows there was no cor-
relation between them. We conducted a Chi-squared test
for independence as shown in Table 3 and the p-value
was 0.66.
We evaluated whether the model showing that bacteria

were associated with PD is better than the model without
the associations in terms of marginal likelihood. Marginal

Table 4 Comparison marginal likelihood

Finland Germany USA

M0 -442734.62 -5913441.14 -3010279.35

M1 -355079.50 -3807297.76 -2063932.02
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p̂′
l

)
. These quantities correspond to the probabilities of the occurrences of bacteria for the three latent classes

likelihood represents the model evidence expressing
the preference of the data for different models. Let
M1 be the model which is described by Eq. 1 and
M0 be the model setting all βmk = 0 in Eq. 1.
Table 4 shows that the marginal likelihood of M1 was
greater than M0. It is preferrd to explain the data
by considering the association between the microbiota
and PD.
Figure 7 shows the estimated probabilities of the

occurrences of bacteria for the three latent classes, p′
l,

(l = 1, 2, 3). Bacteria detected in fewer three coun-
tries were removed. Arumugam et al. [3] showed
that enterotype is characterized by the differences
in the abundance of Bacteroides, Prevotella, and
Ruminococcus. The results of ENIGMA showed the
same tendency as the previous survey. Figure 8 shows
the (γ̂ l)

′ values and their credible intervals. The top
three microbes in each enterotype-like cluster are
shown in excerpts for this plot. According to the results
of ENIGMA, the abundance of Enterobacteriaceae
and Lachnospiraceae also differed greatly among
clusters. Bacterial abundance differed between coun-
tries. In the USA, there was a high abundance of
Verrucomicrobiaceae, while in Finland, few of these
bacteria were detected. In contrast, Finland showed
more Prevotellaceae, with fewer in the in USA
it is less.
Table 5 shows the coefficients whose 95% cred-

ible intervals did not contain zero in more than

two countries. The microbes with these coefficients
indicates that the corresponding microbial com-
position patterns were significantly related to PD.
We found that at the family levels, Clostridiaceae,
Comamonadaceae, Prevotellaceae, Actinomycetaceae,
Bifidobacteriaceae, Enterococcaceae, Synergistaceae,
Verrucomicrobiaceae and Victivallaceae, the signs of the
coefficients matched in all countries. These results are
consistent with those of previous studies. Hill-Burns
et al. [15] reported that patients with PD contained high
levels of Bifidobacteriaceae and Verrucomicrobiaceae.
Scheperjans et al. [14] reported PD patients contained
high levels of Verrucomicrobiaceae and low levels of
Prevotellaceae. Hopfner et al. reported that patients with
PD have high levels of Enterococcaceae.
We compared ENIGMA to the Wilcoxon rank sum

test, a classical methods for identifying bacteria related
with an environmental factor of interest [16]. Table 6
shows the bacteria significantly related to PD with p-
value < 0.05 in more than two countries. We observed
that the bacteria detected by the Wilcoxon test were
mostly included in those of ENIGMA (Table 5). Notably,
all of the corrected p-values in Table 6 are larger than
0.05. This result shows that ENIGMA was superior
to the Wilcoxon rank sum test in terms of identify-
ing a larger number of associations between microbiota
and PD.
Finally, we combined the results of ENIGMA to

those of PICRUSt (version 1.1.3) [18] in order to
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evaluate which functions are related to PD. In the
present study, PICRUSt was performed using the default
settings. The Fig. 9 shows the functions exhibiting an
increase and decrease from the median, which matched
in all countries and clusters with respect to PD and
control (CO). This result indicates that ENIGMA is
a valuable tool for discovering new disease-related
functions.
The analyses using real-world data thus show that

ENIGMA can identify enterotype-like clusters and the
associations between the gut microbiota and PD. Some of
the results were strongly supported by those of previous
studies.

Conclusion
We proposed a novel hierarchical Bayesian model,
ENIGMA, for discovering the underlying microbial com-
munity structures and associations between microbiota
and their environmental factors from microbial
metagenome data. ENIGMA is based on a probabilistic
model of a microbial community structures and supplied
with labels for one or more environmental factors of inter-
est for each sample. The structures of each sample are
modeled by a multinomial distribution whose parameters
are represented independently by group and environ-
mental effects of each sample, which prevents mixing
of individual differences and the effects of interest. This
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Table 5 Bacteria significantly associated with PD in more than two countries

Finland Germany USA

Family β̂ Lower
bound

Upper
bound

β̂ Lower
bound

Upper
bound

β̂ Lower
bound

Upper
bound

Anaeroplasmataceae -0.87 -1.28 -0.45 -1.69 -2.03 -1.35 - - -

Bacteroidales S24-7 group -0.52 -0.93 -0.11 0.22 -0.12 0.56 -0.80 -1.16 -0.44

Bradyrhizobiaceae - - - -0.82 -1.17 -0.47 -1.44 -2.21 -0.66

Brevibacteriaceae - - - -1.02 -1.38 -0.66 -0.65 -1.05 -0.25

Brucellaceae - - - -1.69 -2.50 -0.87 -1.34 -1.75 -0.92

Clostridiaceae 1 -0.54 -0.96 -0.13 -0.08 -0.42 0.26 -0.52 -0.88 -0.16

Comamonadaceae -0.85 -1.35 -0.35 -1.27 -1.61 -0.93 -0.21 -0.57 0.15

Elusimicrobiaceae -4.17 -5.60 -2.74 -2.11 -2.54 -1.68 2.52 1.03 4.01

Intrasporangiaceae - - - -3.47 -4.86 -2.07 -3.00 -4.72 -1.28

Leuconostocaceae -2.66 -4.30 -1.02 0.50 0.13 0.86 -1.74 -2.22 -1.25

Moraxellaceae - - - -1.58 -1.92 -1.24 -0.92 -1.28 -0.56

Pasteurellaceae -1.62 -2.07 -1.17 0.30 -0.04 0.64 -1.88 -2.25 -1.51

Prevotellaceae -2.46 -2.87 -2.05 -0.03 -0.37 0.30 -0.53 -0.89 -0.17

Rhodocyclaceae - - - -3.53 -4.93 -2.13 -0.75 -1.18 -0.32

Actinomycetaceae 0.11 -0.78 1.01 0.42 0.07 0.78 0.91 0.54 1.28

Bacillaceae 1.72 0.34 3.11 -2.35 -2.72 -1.99 0.80 0.43 1.17

Bdellovibrionaceae - - - 1.43 0.40 2.46 3.07 1.78 4.36

Bifidobacteriaceae 1.34 0.82 1.86 0.54 0.20 0.88 0.01 -0.35 0.37

Campylobacteraceae 0.36 -0.31 1.03 4.90 4.48 5.33 0.83 0.46 1.21

Cytophagaceae - - - 2.45 1.56 3.34 1.70 0.27 3.13

Enterococcaceae 3.87 2.70 5.05 0.74 0.40 1.08 0.09 -0.28 0.45

Lactobacillaceae 3.00 2.56 3.43 -0.51 -0.85 -0.18 1.73 1.36 2.09

Leptotrichiaceae -0.90 -1.89 0.09 2.57 1.88 3.26 0.82 0.36 1.27

Methanobacteriaceae - - - 0.93 0.59 1.27 0.67 0.30 1.04

Mitochondria 0.60 -1.27 2.46 0.73 0.11 1.36 1.57 0.95 2.20

Paenibacillaceae - - - 2.19 1.28 3.10 1.71 1.30 2.12

Planococcaceae - - - 1.06 0.72 1.41 3.26 2.67 3.85

Rhizobiaceae - - - 0.64 0.24 1.03 1.52 1.08 1.95

Streptococcaceae 0.44 0.03 0.86 0.84 0.50 1.17 0.26 -0.10 0.62

Succinivibrionaceae -0.32 -0.76 0.11 0.74 0.40 1.08 4.31 3.76 4.86

Synergistaceae 1.26 0.80 1.71 0.25 -0.10 0.61 1.44 1.06 1.82

Verrucomicrobiaceae 1.71 1.23 2.19 1.62 1.29 1.96 -0.06 -0.42 0.30

Victivallaceae 0.42 -0.00 0.85 0.68 0.34 1.02 0.93 0.54 1.32

The “-” notation indicates the bacteria undetected in that country

framework enables the model to simultaneously learn (i)
how microbes contribute to an underlying community
structures (cluster) and (ii) how microbial compositional
patterns are explained by environmental factors of inter-
est. The effectiveness of ENIGMA was evaluated through
experiments involving both synthetic and read-world
datasets. These newly discovered clusters and associa-
tions estimated using ENIGMA can provide insight into
the the mechanisms of a microbial communities.

Table 6 p-Value of Wilcoxon test

Finland Germany USA

Lachnospiraceae 0.009371 0.719014 0.002839

Lactobacillaceae 0.030404 0.077771 0.000002

Pasteurellaceae 0.006493 0.495315 0.004232

Prevotellaceae 0.001303 0.030892 0.194592
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Fig. 9 Predicted functional trait abundance in each country and cluster

The major limitation of ENIGMA is its scalability and
efficiency, as the number of the parameters in the model
increase proportionally with the number of taxa when
the number of environmental factors of interest is large.
Further studies should focus on developing a scalable
probabilistic model of microbial compositions to analyze
underlying microbial structures with a large number of
these effects by using sparse parameter estimation [19].
We are also interested in developing a dynamic probabilis-
tic model similar to that reported by Blei and Lafferty [20]
for analyzing time-varying bacteria compositions during
disease progression.
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