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Abstract

with only hypermethylation and hypomethylation.

Background: Determination of genome-wide DNA methylation is significant for both basic research and drug
development. As a key epigenetic modification, this biochemical process can modulate gene expression to
influence the cell differentiation which can possibly lead to cancer. Due to the involuted biochemical mechanism
of DNA methylation, obtaining a precise prediction is a considerably tough challenge. Existing approaches have
yielded good predictions, but the methods either need to combine plenty of features and prerequisites or deal

Results: In this paper, we propose a deep learning method for prediction of the genome-wide DNA methylation,
in which the Methylation Regression is implemented by Convolutional Neural Networks (MRCNN). Through
minimizing the continuous loss function, experiments show that our model is convergent and more precise than
the state-of-art method (DeepCpG) according to results of the evaluation. MRCNN also achieves the discovery of de
novo motifs by analysis of features from the training process.

Conclusions: Genome-wide DNA methylation could be evaluated based on the corresponding local DNA
sequences of target CpG loci. With the autonomous learning pattern of deep learning, MRCNN enables accurate
predictions of genome-wide DNA methylation status without predefined features and discovers some de novo
methylation-related motifs that match known motifs by extracting sequence patterns.
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Background

The process of DNA methylation is the selective addition
of a methyl group to cytosine to form 5-cytosine under
the action of DNA methyltransferase (Dnmt). DNA
methylation primarily occurs symmetrically at the cytosine
residues that are followed by guanine (CpG) on both
DNA strands, and 70-80% of the CpG dinucleotides are
methylated in the mammalian genomes [1]. The methyla-
tion status of cytosines in CpGs influences gene expres-
sion, chromatin structure and stability; and plays a vital
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role in the regulation of cellular processes including host
defense against endogenous parasitic sequences, embry-
onic development, transcription, X-chromosome inactiva-
tion, and genomic imprinting, as well as possibly playing a
role in learning and memory [2-5].

Determining the level of genome-wide methylation is
the basis for further research. Recent technological ad-
vances have enabled DNA methylation assay and ana-
lysis at the molecular level [6-9], and high-throughput
bisulfite sequencing is widely used to measure cytosine
methylation at the single-base resolution in eukaryotes,
including whole-genome bisulfite sequencing (WGBS)
and Infinium 450 k/850 k. As the gold standard for geno-
me-wide methylation determination, systems-level ana-
lysis of genomic methylation patterns associated with
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gene expression and chromatin structure can be achieved
with WGBS [4, 5]. However, this method is not only ex-
pensive, but also constrained by bisulfite-converted ge-
nomes’ lower sequence complexity and reduced GC
content [3]. Apart from the above issues, the unstable en-
vironment and different platforms make the situation
more formidable.

Therefore, computational prediction of CpG site-spe-
cific methylation levels is critical to enable genome-wide
analysis [6], and forecasting through probabilistic models
and machine learning methods has already received ex-
tensive attention [7]. As has been reported, gene methy-
lation in normal tissues is mainly concentrated in the
coding region lacking CpG; conversely, although the
density of CpG islands in the promoter region is high,
the gene remains unmethylated. Owing to this, some
typical methods focus on the predicting methylation pat-
terns of specific genomic regions, such as CGIs [10-16].
Other methods assume that the methylation status is
encoded as a binary variable, which means that a CpG
site is either methylated or unmethylated [14-19]. In
addition, most of the methods need to combine a large
amount of information, like knowledge of predefined
features [6, 11, 13-16, 18]. Considering the number of
methylation sites is large (usually tens of millions), the
corresponding features for prediction are not easily ac-
cessible, which leads to large amount of manual annota-
tion and preprocessing must be implemented before
obtaining the final prediction.

Here, we report MRCNN, a computational method
based on convolution neural networks for prediction of
genome-wide DNA methylation states at CpG-site reso-
lution [20, 21]. MRCNN leverages associations between
DNA sequence patterns and methylation levels, using
2D-array-convolution to tackle the sequence patterns
and characterize the target CpG site methylation. On
the one hand, MRCNN does not need any knowledge of
predefined features, because it’s a deep learning method
with end-to-end learning patterns. On the other hand,
by using a continuous loss function to perform param-
eter calculations, a continuous value prediction of the
methylation level can be achieved. We found that a
series of convolution operations could extract DNA se-
quence patterns for our prediction and could yield sub-
stantially more accurate predictions of methylation from
several different data sets. In addition, some de novo
motifs are discovered from the filters of the convolution
layer.

Methods

Data and encoding

We downloaded the whole genome bisulfite sequencing
(WGBS) data (GEO, GSM432685) of H1 ESC from the
GEO database for training and validation. The
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methylation level of each CpG locus is represented as a
methylation ratio, varying from 0 to 1. The ratio is used
as the network prediction target value, while the weights
between the nodes in the network are optimized by min-
imizing the error between the predicted value and the
target value. For independent testing, we chose
genome-wide methylation data from multiple series of
GEO databases, including the same series of H1 ESC
(GEO, GSM432686) and different series of brain white
matter, lung tissue, and colon tissue datasets (GEO,
GSE52271). The DNA sequences selected were from the
UCSC hg19 file, GRCh37 (Genome Reference Consor-
tium Human Reference 37) with GenBank assembly ac-
cession number GCA_000001405.1.

In contrast to other traditional prediction tools with
predefined features, our method exclusively takes the
raw sequence as input. Given a DNA sequence, a frag-
ment of 400 bps centered at the assayed methylation site
was extracted. We choose the window size of 400 (with-
out counting the target site and including each 200 bps
DNA fragment upstream and downstream), with consid-
eration for the potential workload of the calculation.
Prior to conducting MRCNN training, these fragments
needed to be encoded to convert the bases A, T, C, and
G in the original sequence into matrices that could be
input to the network. The strategy we select was
one-hot encoding with the following rules: A =[0,0,0,1];
T=[1,0,0,0]; C=[0, 1,0, 0] and G=]10, 0, 1, 0]. After
preprocessing, a matrix of 400*4 size could be generated
for each target CpG site, in which every row represented
a base (A, T, C, G) and the columns assembled the
whole original fragment.

MRCNN

Deep learning is widely used in the field of image recog-
nition due to its end-to-end mode, by which the convo-
lutional neural network achieves good results with its
specific partial connection. However, there is a lack of
knowledge on how to construct a deep learning model
that could be applied to the regression of methylation
levels. As we know, a typical convolutional network is
generally a convolution layer adjacent to a pooling layer,
alternating in turn and finally output by a fully con-
nected layer, such as VGG Net [22]. We were more con-
cerned about solving the regression problem itself, and
after tried many structures, we eventually found that, for
the prediction of methylation sites, the required struc-
ture has its own unique characteristics. On the one
hand, we must consider the complete coding informa-
tion of single base. On the other hand, the method needs
to implement efficient feature extraction to improve the
prediction results. The final deep learning architecture
of MRCNN is shown in Fig. 1.
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Fig. 1 The deep-learning architecture of MRCNN. The input layer is a matrix of one-hot coding for the DNA fragment centered at the
methylation site, and the first convolution layer helps extract the information of each base. Then, it is reshaped as a 2D tensor for the following
operations, and the convolution and pooling operations obtain higher-level sequence feature, while the next two convolution layers overcome
the side effects of the saturated zone. Finally, the tensor is expanded by the full-connection layer, and the output node gives the prediction value
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The first layer of the MRCNN is a single convolutional
layer, which is mainly employed to extract single nitrogen-
ous base information from the 400*4 input matrix. Because
each base is a 1*4 independent code, the size of the convolu-
tion kernel can only be 1*4. This makes it possible to ensure
that every base’s information is entered into the network
while the 16 feature maps are generated. In the design of
the first layer, we choose not to adopt the pooling operation
because the convolution of the first layer was essentially the
synthesis of coding information, that is, ensuring each base’s
encoded information could be read completely by the net-
work. For the input matrix s,,, , ,,
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Here, wj;yl is the parameter or weight of the convolu-
tional filter f for this layer, and " ! is the corresponding
bias. Then, the output of the first layer L, ; for each
CpG site is a 400*1 tensor with 16 channels. To extract
the information contained in the DNA sequence pattern,
the output tensor is reshaped into a 20*20 tensor before
being input into the next layer, which is advantageous
for subsequent 2D-array-convolution and pooling opera-
tions. Here, each row of tensor L, ; represents the syn-
thesis information of every single base, then it is
restructured following the original queue of bases while
the shape is changed to 20*20.

The second and third layer are the traditional convolu-
tion and pooling layers. The size of the convolution kernel
is 3*3, the pooling method is max pooling, and the step
sizes are 1*1 and 3*3. Through this layer, higher-level se-
quence features can be extracted.

20 20
L,> = Relu (Z ZLHJW,/:; + b”)

x=1 y=1
Lys = maxsi<x3i<y(Lin2)

The Relu activation function sets negative values to
zero, such that L, , corresponds to the evidence that the

motif represented by w/>
position. Nonoverlapping pooling is implemented to de-
crease the dimensions of the input tensor and, hence,
the number of model parameters.

The next two layers are both single-convolution layers
with the same size and step size as the second layer’s
convolution kernel. The convolution of the first layer
and these two layers is linear convolution operation,
with no pooling layer connection or activation function.
The main purpose is to improve the effect of the convo-
lution and nonlinear activation function, which results
in part of the input falling into the saturated zone, with
corresponding weights not being able to be updated. Fi-
nally, the tensor obtained by the last layer is expanded
through the fully connected layer. A drop-out function
is introduced for possible overfitting in training and then
the methylation level could be obtained via the output
layer. For the loss function in the training process, we
chose the Mean Square Error (MSE) function for meas-
urement, which is a classic solution to the problem of
regression:

occurs at the corresponding

S ()’

MSE(Y, Y°) = ”

where Y represents the predicted value of methylation
and Y’represents the true methylation level. Since the
final predicted value is continuous, it may be more than 1
or less than 0, and we have incorporated this uniformly.
For a prediction value greater than 1, the value is taken as
1, and a prediction value less than 0 is taken as 0.

Model construction and evaluation

For all training processes and evaluations, we used a
holdout validation. First, for construction of the model,
we selected nearly 10 million sites from WGBS for train-
ing. Since all chromosome numbers are disrupted, it is
not necessary to consider the difference among different
chromosomes, which is more conducive to the discovery
of the genome-wide DNA methylation patterns.
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Approximately 2 million CpG sites were randomly se-
lected from the remaining sites as the validation set to
help the network fine-tune the parameters. For testing
the model, we randomly divided the sites in the test data
set into a few copies to generate multiple independent
test subsets. The division of the test set was based on
two aspects, one being the original methylation level and
the other being whether the region where the site is lo-
cated belonged to the CpG islands. Details will be ex-
plained in the Results section. This also helps reduce the
accidental errors in the model testing process, which is
equivalent to a number of completely different test sets,
as the training and test sites are completely different in
origin. In general, we fitted the model on the training
set, optimized the hyperparameters on the validation set,
and performed the final model evaluation and compari-
son on the test sets.

To illustrate the model performance, we compared
MRCNN with DeepCpG [7]. DeepCpG is the most
state-of-art tool for genome-wide hypermethylation and
hypomethylation prediction using deep learning. With a
modular design, it uses a one-dimensional convolution
DNA module and a bidirectional gated recurrent net-
work of CpG module to achieve prediction. In addition,
to compare the effect of network structural difference
on the results, we also trained a simple CNN network as
a baseline method. The specific structure of this network
was an input layer, convolution layer 1, pooling layer 1,
convolution layer 2, pooling layer 2, a fully connected
layer, and an output layer. For simple CNN, we chose
the same loss function and activation function to ensure
univariate element during the experiments.

On the basis of the above, in order to analyze the se-
quence features extracted during the training of the
model, we visualized the weight matrix of the convolu-
tional filters by reverse decoding from weight assign-
ment and corresponding raw tensor input. Specifically,
the products of the first convolutional layer shared four
types of weights, which corresponded to the original en-
coding of the four bases, so that the base sequence could
be assigned according to the input, and then the weights
of the different sequences could be reassigned according
to the size of the filter weights. Motifs could be gener-
ated from MEME 5.0.1 by inputting the weighted se-
quences [23], and these de novo motifs were matched to
annotated motifs given by Tomtom 5.0.1 [24]. Matches,
where an FDR less than 0.05 was considered significant.
All training and testing were implemented on our server
with 128 G memory and 2 Nvidia 1080 graphics cards.

Evaluation metrics
We quantitatively evaluated the predictive performance
from regression and classification. For regression, we

Page 4 of 10

chose the root mean square error (RMSE) and mean ab-
solute error (MAE),

S (r-r°)°

RMSE(Y,Y?) = p

n
MAE(Y,Y?) = %Z‘Y—YO‘
=1
where Y represents the predicted value of the methyla-
tion level and Yrepresents the true value.

For classification evaluation, we chose the sensitivity
(SE), specificity (SP), classification accuracy (ACC) and
area under the receiver operating characteristic curve
(AUC). Here, TN, TP, EN and FP represented the num-
ber of true-negatives, true-positives, false-negatives and
false-positives, respectively.

P TN
= —-— P _——
SE TP—l—FN]; TYI;[N+FP
+
ACC= TP + FN + TN + FP
Results

To evaluate the model prediction performance, we con-
sidered the two aspects, consisted of regression errors
and binary classification performance. For regression er-
rors, the model predictions of hypermethylation, hypo-
methylation and intermediate methylation status were
compared to analyze the predictive properties of
MRCNN for CpG methylation regression. These three
states were grouped by different cutoff values of the
methylation rate. Analysis of the classification perform-
ance was implemented by comparing the classification
metrics of sites from the CpG islands and non-CpG
islands among different models, which could be more
comprehensive because of the difference in methylation
patterns on distinct regions of the genome. Predictions
results from other tissues were used to further analyze
the robustness of MRCNN for more complicated methy-
lation mechanisms. In addition, we also analyzed the fil-
ters from the model training process, and verified the
validity of the sequence feature extraction, and obtained
related de novo motifs.

Regression error

Here, to demonstrate the predictive ability for different
methylation states, we distinguished successive methyla-
tion values in the raw data by different cutoff values.
Most of the previous studies were focus on predictions
of hypermethylation and hypomethylation, thus we also
evaluated model performance based on predictions of
the two states. However, in addition to this, in order to
objectively evaluate the regression prediction, we added
the evaluation for prediction of the intermediate
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methylation status. Specifically, if the original methyla-
tion label value was greater than 0.9, it was classified as
“hyper”, and if it was less than 0.1, it was classified as
“hypo”. The intermediate methylation status expressed
as “mid” was defined by an original value greater than
0.4 but less than 0.6. Three different groups were formed
and then regression results were evaluated by calculating
the errors between the true and predicted values.

The different regression results of the three groups
confirmed our previous expectation that MRCNN plays
different roles in learning hypermethylation (hyper), hy-
pomethylation (hypo) and intermediate methylation
(mid) statuses. A comparison can be concluded from the
boxplot in Fig. 2. For sites with significantly high methy-
lation status, MRCNN was able to achieve smaller errors
and obtain more satisfactory predictions compared with
hypo and mid groups. On one hand, there were more
sites with hypermethylation on genomes during training,
on the other hand, potential more complex methylation
mechanisms made prediction of hypo and mid methyla-
tion more difficult. In terms of the overall regression re-
sults, MRCNN achieved good results. First, maximum
error for a single site prediction was approximately 0.5,
and the prediction error distribution showed high accur-
acy of the predictions as most of the errors were con-
centrated around 0.1 for all test sites, see in
Additional file 1. The RMSE and MAE of the three
groups were calculated as follows: hyper: RMSE =
0.146806, MAE =0.129885; hypo: RMSE =0.23837,
MAE =0.207714; mid: RMSE=0.281514, MAE-=
0.268643. As seen from the RMSE and MAE values, the
overall error was acceptable and would not produce a
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case in which a hyper site was predicted to be hypo, a
hyper site was predicted to be mid, etc.

Classification performance

Considering that most previous studies on methylation
were based on CpG islands [4], the evaluation of the
classification performance was implemented for loci
from CpG islands and non-CpG islands. Additionally,
we compared MRCNN to DeepCpG for analysis of the
classification ability for methylation under different
deep-learning architectures and brought in the simple
CNN model as the baseline method.

Since our label values and prediction results were con-
tinuous, we selected 0.5 as the cutoff value to divide the
state of methylation into positive (>0.5) and negative
(<0.5) samples. Via holdout validation (“Methods”), all
methods were trained and tested on distinct methylation
sites. In particular, these sites were previously grouped,
with part of them from CpG islands and the rest from
non-CpG islands. CpG islands are short CpG-rich re-
gions of DNA which are often associated with the tran-
scription start sites of genes. There are differences in
methylation patterns between CpG islands and non-CpG
islands, so we chose SE, SP, ACC and AUC to quantify
the prediction performance of different models. The re-
sults of the classification comparison were shown in
Fig. 3. The results showed that the overall prediction of
MRCNN was better than that of DeepCpG, while the re-
sult of DeepCpG was better than that of the baseline
model, CNN. It is worth mentioning that MRCNN
achieved an accuracy of 93.2% and an AUC of 0.96
(t-test; P-value = 3.27 x 10™ *°) on sites from CpG islands
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Fig. 2 MRCNN achieved regression of the whole genome methylation. The box diagrams depict the distribution of the prediction errors of the
three groups of sites. The yellow diamonds represent the mean points and the green dotted lines represent the median lines. The points outside
the upper and lower boundary lines are the outliers
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Fig. 3 MRCNN obtained better classification performance than DeepCpG and the baseline method, simple CNN. Different deep learning
architectures lead to different effects in extracting features, which in turn affects the classification results for the test sets. The difference between
the SE and SP between CpG islands and non-CpG islands reveals distinct methylation patterns in different regions of the genomes
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and an accuracy of 93.8% and an AUC of 0.97 (t-test;
P-value = 2.65 x 10~ *°) on sites from non-CpG islands.
To fully compare the classification performance of the
three models, we also selected several sets of loci from
the whole genome with different sizes for testing. The
results were shown in Additional file 2.

We can see that even a general simple CNN model had a
certain ability to describe the relationship between DNA se-
quences and CGQ sites after training and achieved an accur-
acy of more than 70% and an AUC of approximately 80%.
However, there was still a gap compared to the
well-designed MRCNN and DeepCpG. On one hand, we
can see the powerful feature extraction capability of deep
convolutional networks. On the other hand, we can con-
clude that a customized deep learning model for a specific
problem is able to truly utilize its capability. In addition, we
also find that in the prediction of sites from CpG islands,
the SE is less than the SP, while this situation is exactly the
opposite for sites from non-CpG islands. A significant rea-
son for this is that CpG islands are enriched with sites of
hypomethylation (more negative samples), while non-CpG
islands are predominantly hypermethylated (more positive
samples). This illustrates the effect of the different

methylation patterns of CpG islands and non-CpG islands
on feature extraction during model training.

We also considered the effect of different cell and tis-
sue types on the prediction of MRCNN. Based on this,
test was performed on several other tissue types of
methylation data. Since the data for training the model
come from the normal stem cells of human body, we
compared the performance of predicting the methylation
level of another three tissues. The test loci come from
normal brain white matter, lung tissue, and colon tissue,
which were randomly distributed on CpG islands and
non-CpG islands for the consideration of genome-wide
methylation prediction. The results of the classification
performances were shown in Fig. 4. Precisely speaking,
the prediction result from the H1 ESC was slightly better
than the other three cell types, but the difference was
very tiny, and the prediction of hypomethylation in lung
tissue was better than that of H1 ESC (with higher SP).
MRCNN got an AUC of 0.91 (t-test; P-value = 1.87 x 10—
19) for brain white matter data, an AUC of 0.925 (t-test;
P-value = 2.21 x 10-19) for normal lung tissue data and
an AUC of 0.915 (t-test; P-value = 4.19 x 10-19) for nor-
mal colon tissue data.
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Fig. 4 MRCNN predicted methylation for different types of tissues. The H1 ESC was used as the control data, and the other three data were taken
from the normal brain white matter, lung and colon tissue. Although MRCNN was trained on H1 ESC data, it still obtained high accuracy and
performance when used to predict methylation levels of other types of tissues. The results showed that MRCNN had a certain robustness to more

Although MRCNN was trained based on human stem
cells, we can see from the experimental results that the
performance of MRCNN was still good on other tissue
methylation data and further demonstrated the effective-
ness of MRCNN as a universal predictive tool for
genome-wide methylation. For more cautious consider-
ation, we also evaluated the prediction of MRCNN in
the cancerous phenotypes of the three tissues, and the
results were shown in Additional file 3. Overall,
MRCNN achieved satisfactory predictions for different
types of cells and tissues, indicating that the model had
considerable adaptability in face of more complex
methylation mechanisms and confirmed the original
intention of designing a universal genome-wide methyla-
tion prediction tool.

Feature analysis and motifs finding

To explore the extraction of DNA sequence pattern in-
formation during the training process, we also analyzed
the feature maps from the network. In particular, we an-
alyzed the learned filters of the first convolutional layer.
First, we evaluated the ability of these filters to distin-
guish between hyper and hypo methylation states by
visualizing the generated representations with t-SNE
[25]. We compared the representation of the learned fil-
ters with the original input tensor representation and
found that the learned filters were more able to

distinguish the methylation level of the sites and explain
the feature extraction by MRCNN. The t-SNE plot was
shown in Fig. 5. The original feature could not distin-
guish the hyper and hypo methylation states quite well,
while after the convolutional feature extraction, it could
be roughly separated and would be sufficient to demon-
strate the validity of the convolution operation. So, we
can infer that the feature extraction was finished during
the training and thus produced good prediction result.
These filters also recognize DNA sequence motifs
similarly to conventional position weight matrices and
can be visualized as sequence logos [7]. The discovered
sequence motifs associated with DNA methylation are
from the online motif-based sequence analysis tools
MEME [23] (version 5.0.1). We submitted these de novo
motifs into Tomtom [24] (version 5.0.1) to find similar
known DNA motifs by searching public databases. This
may contribute to our deeper knowledge of methylation
and DNA sequences. Part of the motifs and their
matches were shown in the Fig. 6. The top three motifs
were from hypomethylation related sequences (with
methylation rate < 0.1), the middle two motifs were from
sequences with a methylation rate between 0.4 and 0.6,
and the last ten motifs were from hypermethylation re-
lated sequences (with methylation rate > 0.9). It was in-
teresting that, as intuitively seen from the logo, the
hypermethylated corresponding motif tended to have
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Fig. 5 Clustering results for hypermethylation and hypomethylation loci of the original features and the learned filters of the first convolutional
layer. a t-SNE plot of the original input tensor representation. From the plot, we cannot apparently distinguish between hypermethylation and
hypomethylation. b t-SNE plot of the learned feature map representation. Hypermethylation and hypomethylation are generally grouped
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yper 8 JQAOAQAA AQIC?OTCIQAAAAAAAAAAAA HOXA13 HOXA13 _full (Hox protcin A13 N terminal, Homeobox domain) ~ 1.79E-03
hyper 9 JA ACCA CCT C‘%AACAIA._ ZBTB49 Zinc-finger of C2H2 type 2.85E-03
el J CCT TAATCCCA CAQTT 160 TEAD1 TEADI_full (TEA/ATTS domain family) 4.96E-03
Fig. 6 Discovered sequence motifs associated with DNA methylation. The first column is the number of de novo motifs and the second column
is the motif logo generated by MEME. The third column is the known motifs matched by Tomtom, and the next forth column is the
corresponding class and family representing the biological factor species of the known motifs. The p-value is defined as the probability that a
random motif of the same width as the target would have an optimal alignment with a match score as good as or better than the target's.
Tomtom estimates the p-value using a null model consisting of sampling motif columns from all the columns in the set of target motifs
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major bases of one certain type at a specific site, while
there was no particularly obvious trend in the motif cor-
responding to the hypomethylation and intermediate
methylation status. In addition, regardless of hypermethy-
lation or hypomethylation sites, several of the matched
known motifs were related to zinc finger factors, suggest-
ing that it might play an important role in the methylation
process. There have been reports in the literature that
methylation is associated with zinc finger factors [26]. In
this research, Carvin et al. pointed out that the selective
targeting of methylation by zinc-finger proteins demon-
strated that binding of distinct classes of factors could be
monitored in living cells. Other matched motifs indicated
more potential methylation background knowledge in dif-
ferent biological mechanisms.

Discussion

Through multilayer convolution learning, MRCNN
achieves methylation prediction for CpG loci at single-base
resolution, and thanks to the continuous MSE loss func-
tion, the method enables continuous value regression. Al-
though the 2D-convolution approach can exploit more
comprehensive DNA sequence features for methylation
prediction, one potential problem is that when the se-
quence is fixed, the predicted results do not change. Thus,
we not only tested the model on the same series of tissues,
but also on different types of tissues. The results showed
that the impact of this problem was tiny, and the prediction
results did not produce obvious fluctuations. The most im-
portant point is that MRCNN achieves methylation predic-
tion of CpG loci by local DNA sequences, not only does it
overcome the cumbersome pre-processing, but the predic-
tion results cover all ranges of methylation values. In
addition, we also find the corresponding de novo motifs
through the DNA sequence pattern extracted during the
training process. The significance of MRCNN is more fo-
cused on the realization of a universal model for predicting
the genome-wide methylation level of sites by the local
DNA sequences. We can use deep learning to fit any prob-
lem we care about through large-scale data training, but
more methods and attempts would be needed for problems
with complex mechanisms and broad backgrounds, such as
methylation. Here, MRCNN, as a general genome-wide
methylation prediction tool, does not solve all methylation-
related problems, it has its own scope of application, but
builds a bridge between DNA sequences and methylation
at CpG loci.

The application of deep learning methods in bioinfor-
matics has become a hot phenomenon, especially in ex-
ploring the implicit relationships and nonlinear mapping
of large-scale data. Nowadays, it is possible to analyze
methylation at all levels with the massive data generated
by high-throughput detection technology. Thus, the
combination of the two aspects gives us an opportunity
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to further explore the methylation mechanism. Although
we can analyze the phenomenon of methylation through
deep learning, we still need to understand the essence of
methylation, and only by making full use of the known
information can we discover new knowledge. One of the
future efforts is to combine deep learning with existing
known methylated biological backgrounds to construct a
comprehensive analytical model to achieve deeper un-
derstanding of this epigenetic phenomenon. In addition,
the learned features during the training process of
MRCNN may reflect the normal and abnormal patterns
of methylation, which are worthy of further study. This
research will be combined with cancer data for analysis
in subsequent work, which will be a key point for us to
expand the model.

Conclusion

In this paper, we propose a novel deep learning model
based on convolutional neural networks for predicting
DNA methylation at single-CpG-site precision using
local DNA sequence. The specially designed network
structure makes it a universal model for predicting
genome-wide methylation of CpG loci. The extraction of
DNA sequence features is achieved by multistep
2D-array-convolution, and the MSE loss function is min-
imized to achieve regression of the methylation values.
Based on extensive training data, MRCNN achieves ac-
curate methylation predictions and exhibits stability in
prediction methylation of different types of tissues. We
also further demonstrate the discovery of de novo motifs
by analyzing the learned filters of the convolutional layer,
and some of these motifs have been reported playing an
important role in the regulation of methylation.
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