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Abstract

resolution.

with the appropriate structure is quite powerful.

Background: A metagenome is a collection of genomes, usually in a micro-environment, and sequencing a
metagenomic sample en masse is a powerful means for investigating the community of the constituent
microorganisms. One of the challenges is in distinguishing between similar organisms due to rampant multiple
possible assignments of sequencing reads, resulting in false positive identifications. We map the problem to a
topological data analysis (TDA) framework that extracts information from the geometric structure of data. Here the
structure is defined by multi-way relationships between the sequencing reads using a reference database.

Results: Based primarily on the patterns of co-mapping of the reads to multiple organisms in the reference database,
we use two models: one a subcomplex of a Barycentric subdivision complex and the other a Cech complex. The
Barycentric subcomplex allows a natural mapping of the reads along with their coverage of organisms while the Cech
complex takes simply the number of reads into account to map the problem to homology computation. Using
simulated genome mixtures we show not just enrichment of signal but also microbe identification with strain-level

Conclusions: In particular, in the most refractory of cases where alternative algorithms that exploit unique reads (i.e,
mapped to unique organisms) fail, we show that the TDA approach continues to show consistent performance. The
Cech model that uses less information is equally effective, suggesting that even partial information when augmented

Keywords: Metagenomics, Topological data analysis, Multi-mapping reads, False positives

Background

A metagenome is a collection of genomes in a micro-
environment, such as the gut of an animal, bottom of an
ocean, or soil. This captures the influence of the imme-
diate environment on the phenotype of an organism. For
instance, one of the factors in the safety of our food sup-
ply chain is knowing the microbiome in the food [1]. The
state of disease and health of a host has been shown to be
related to the microbiomes in its gut [2]. The sturdiness
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or weakness of a plant is shown to be related to its soil
microbiome [3]. It is turning out that these microorgan-
isms are perhaps playing a much bigger role than earlier
anticipated. The DNA technology to capture these organ-
isms also has been disruptive in the area of microbiology,
i.e., each organism does not need to be cultured individ-
ually before sequencing but the entire volume of samples
can be put through the sequencing process en masse
[4]. The obvious advantage is that the recalcitrant organ-
isms that were resistant to being cultured no longer pose
a problem, as long as careful sample processing is per-
formed to avoid sequencing biases [5]. However, there
are two major challenges with the sequencing approach.
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Firstly, the completeness and correctness of reference
databases limits the power of detection. The database
of reference sequences must systematically be updated
when new genomes become available. Secondly, no mat-
ter how complete and accurate the databases are, there is
the problem of correctly assigning sequencing reads when
distinct organisms with very similar genomes are present.
In this paper, we address the second challenge of accu-
rately detecting the organisms present in a sample, given
a database.

Characteristics of the short sequencing reads fre-
quently results in them being mapped to multiple ref-
erence genomes in the database, even under very strict
matching criteria. Thus when the database organisms
are very similar to each other there is usually a sub-
stantial dearth of reads assigned to unique organisms.
As a consequence, most solution pipelines yield map-
ping results that are riddled with false positives. In fact,
in (microbial) simulation studies we find that often a
large percentage of the predicted potential organisms,
using standard pipelines from literature, are false pos-
itives. A recent benchmark study found the number
of species reported for the same sample varying by
orders of magnitude, depending on the classifier used
[6]. Popular methods for metagenomic read classifica-
tion include Kraken [7], CLARK [8], MetaPhlAn [9] and
others.

Topological data analysis (TDA) is emerging as a
promising approach for analyzing large genomic datasets
for a variety of questions [10—12], with already demon-
strated applications in evolutionary biology, cancer
genomics, and analysis of complex diseases. TDA extracts
information from the geometric structure of data; in our
application the structure is defined by the relationships
between sequencing reads and organisms in a reference
database.

Based primarily on the patterns of co-mapping of reads
to the organisms in a reference database, we use a sub-
complex of a Barycentric subdivision complex to model
the multi-way maps of reads, along with the extent of read
coverage on the respective organisms. This subcomplex
allows a natural mapping of our problem to homology
computation and interpretation. We test this approach on
the special scenario (dearth of uniquely mapped reads)
and find that using an appropriate voting function on the
typical bar diagrams of TDA, we can sort the organisms
to separate true positives from false positives. Next, we
test if a reduced information set, that is, only the number
of reads without utilizing their lengths or coverage when
combined with TDA is powerful enough to enrich for true
positives. We observe success in this scenario as well, sug-
gesting that the use of topology captures the non-obvious
structure defined by the reads promiscuously mapping to
multiple organisms. All the data used in the paper are
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simulated reads by necessity since it is the most reliable
way of knowing the ground truth, to assess the results.

Methods

In this section we map the problem to topological data
analysis, more specifically to bar diagrams arising from
persistent homology.

Motivation and problem statement

Given a reference database and a collection of metage-
nomic reads from the sequencing process, we denote by Z
the set of all possible organisms, resulting from a reads-to-
organism-mapping (ROM) pipeline: Z = {X1, Xy, .., Xn}.
We treat all the reads of the pipeline output equally, i.e.,
do not consider the extent of the match. The rationale is
that these characteristics have already been used by the
pipeline to produce the output. Hence we focus on the
subsequent information gathered from the pipeline: the
relationship between the reads an the organisms.

Consider the bipartite graph of reads and organisms,
where an edge connects a read to the assigned organ-
ism, that captures the ROM relationships completely. But
a much more natural fit is to a simplicial complex where a
k-simplex, k > 0 (analogous to edge in a graph) is a read
and the 0-simplex (analogous to a vertex in a graph) is
an organism. Furthermore each of the the k-simplices are
weighted, i.e., the weight is the number of reads that map
to exactly these k organisms, which is not immediately
apparent from the bipartite graph. The next question is
whether the topological features of this naturally emerging
simplicial complex can be exploited to solve the problem
of false positives. In other words, is there some hidden
characteristics of the ROM that separate the true from the
false organisms.

In this paper, to make it more tractable, we simplify
the problem as follows: Given the ROM pipeline output,
obtain an order for the elements of Z as X;,, X;,, ..., Xiy,
such that the top of the list is enriched for true positives
(TPs). In a practical scenario, a threshold can be used to
snip away the bottom of the list to eliminate potential
false positive candidates. Further, the retained true posi-
tives can be used to rescue and re-assign the reads that
had been misassigned due to the false positives.

Model I: Barycentric subdivision
Each organism X; has a collection of reads mapped to it.
For each subset Y = {Xi,...,X;} € 2%, we denote by
Sy the set of reads mapped to the organisms X3, Xa, ..., X,
and none other.

For instance, this implies that Six; x,} N Sp,x.05) = 9.
In general,

Sy NSy = @, wheneverY # Y’
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Definition 1 (area ay) For Y € 2%, the area ay is
defined to be the sum total of all the lengths of the reads in
Sy.

Definition 2 (depth dy (X;) for Y 2% and X; € Y) For
Y € 2% and X; € Y we denote the length of the genome
of the organism Xj covered by the reads in Sy by ly x;, and
define

ay

1
dY(Xj) = ﬁ (ZYX> ’
N

where m = |Y|.

This is motivated by the fact that if there is true overlap
in the m organisms, then the depth d of coverage of each
organism is magnified by some factor of m. Note that it
is quite possible that for Y = {X1, X», ..., X};}, the values
dy(X1),dy(X»),dy(X3), ..., dy(X,,) are all distinct.

Example 1 Consider a set of 3 organisms X = {A, B, C}.
A graphical representation of the underlying mapped reads
is shown in Fig. 1 and the values of dy for each set Y € 2%
are given in Fig. 2 (top).

The depth values were computed after simulating a
small set of reads’ placement on three reference genomes.
For example, in this case no reads match both B and C
(and not A), hence dpc(B) = dpc(C) = 0. However, some
reads match all three organisms, hence dspc > 0. The
values d4(A),dp(B),dc(C) indicate the depths of A,B,C
based on their uniquely mapping reads.
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Definition 3 (set Y’ forat > 0)
ForY € 2% andt € R,t > 0, we denote

Y= {XjeY |dy(X)) > t}.

Note that the sets (X;)1<i<n give a cover of the set of
reads, while the sets (Sy)yc,x form a partition of the
reads. This corresponds to the collection of organisms
present at a time ¢, mapped to some stage of a filtration of
a simplicial complex (see Definition 5).

Definition 4 Given any finite set S, a simplicial complex
with vertices in S, is a collection K of subsets of S, with the
property that if A € K, then for all B € 25 with B C A,
B € K. A subcollection L of K is a subcomplex of Kif L is a
simplicial complex.

In other words, K is closed under the operation of “tak-
ing subsets". This last property is crucial for the definition
of the simplicial homology groups, H(K), associated to a
simplicial complex K.

Definition 5 A finite filtered simplicial complex is a
finite sequence Ko C K1 C --- C Ky of simplicial com-
plexes. In other words, K; is a subcomplex of K; fori < j. A
filtration of a simplicial complex K is a filtered simplicial
complex with Ky = K.

This particular setup allows us to apply persistent
homology to our problem.

To any finite simplicial complex K one can associate for
each j > 0, a finite dimensional vector space H;(K, Q)
(called the j-th simplicial homology group of K). More-
over, if we have a filtration of a simplicial complex K

—_— L —
B o, — . -
B —_—
ABC Ac EEEEEw
C—

Fig. 1 A set of organisms {a, b, ¢} whose genomes are represented with a red, green, and blue line respectively. Reads mapped to the organisms are
shown with shorter lines. The line colors and styles for the reads indicate unique and shared reads, according to the given labeling
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Input A, B, C with respective d’s
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Bar diagram

A

T
|
Hy :
1
T
1

T
|
|
|
|
|
T
|

0 .36

.68 .86 1.36

Fig. 2 Top: Values of depth d for the three organisms and read mapping shown in Fig. 1. Middle: Filtration of the Barycentric subdivision of the
2-simplex spanned by A, B, C. Bottom: The bar diagram in degree zero with organisms associated to bars

as above, then each inclusion iy : K — Kgs < ¢
induces a linear map, iy Hj(K;, Q) — Hi(K;, Q).
The images of these linear maps are usually called the
persistent homology groups of the filtration, and their
dimensions (i.e. the ranks of the maps i) determine the
so called “bar diagram" associated to the filtration. Intu-
itively, the dimensions of the vector spaces H;(K, Q) (also
called the j-th Betti number of the simplicial complex K)
measure the number of independent j-dimensional cycles

which are not boundaries of any (j 4+ 1)-dimensional sub-
complex of K (so called j-dimensional holes), and the
bar diagram of the filtration is a record of the “times"
of the births and deaths of these “homology classes",
where we think of the sequence (Kj)sc[o,n] as a com-
plex growing with time . Each bar in the bar dia-
gram represents the interval in time in which a homol-
ogy class persisted. We refer the reader to the book by
Edelsbrunner and Harer [13] for further details about
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persistent homology and its use in Topological Data
Analysis.

However, notice that for each ¢ € R, ¢ > 0, the set sys-
tem (Y*)y ,x does not necessarily satisfy the condition of
being closed under taking subsets — and hence, does not
necessarily form a simplicial complex with X as the set of
vertices.

Instead, we utilize the following construction (a simpli-
cial subcomplex of a barycentric subdivision, detailed at
the beginning of this section) that does produce a simpli-
cial complex (in fact a filtration of complexes), and which
is also naturally aligned with the various functions dy (-)
defined earlier.

Intuitively, the simplices of the barycentric complex
correspond to chains of subsets of &A'. For example, if
X1,X3,X3 € X, then the sequence {X;} C {X1,Xp} C
{X1,X3,X3} is a chain in the partially ordered set 2%
(ordered by inclusion). Given ¢ > 0, we include the chain
{X1} C {X1, X2} C {X1, X2, X3} in the barycentric complex
iff {X1}F N (X1, X2}t N (X1, Xo, X3} # 0.

Barycentric subdivision and its subcomplex of interest
We now define more precisely the barycentric complex,
and the subcomplex we will use.

Let A x denote the (|X| — 1)-dimensional simplex with
vertex set .

Asequenceo = (Yp,...,Y)),Y; € 2% is called a chain of
the poset 2% (ordered by inclusion) if Yo C Y7 € --- C Y,.
The first barycentric subdivision of A’,, of Ay (see Fig. 3)
is then defined by

Ay ={Y=(Y,...,Y,) | Yisachainin2¥}. (1)

Now let X’ be afinite set,andletd = (dy : ¥ — R)yx
be a tuple of maps. For each ¢ € R, we denote by A’} ;(?)
the subcomplex of A’,, defined as follows.
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Fort e R,and Y = (Yp,...,Y)) € Ay, let

Ya)y= [ Y= [ (XeYildrnO) =18, ()

0<i<p 0<i<p
and set
Ay a@® ={Y = (Xo,...,Yy) € Ay | Yq(&) #0}. (3)
We continue with Example 1 of three organ-

isms A,B,C. In this case, the vertices of A’X are
{A,B,C,AB,AC, BC, ABC}, where we write A for {A}, AB
for {A, B} and so on. The top part of Fig. 2 implies that
we have only 7 different values for our functions dy. So
we only need to specify the following collection of such
A’X, 4(9) (taking into account Remark 2 below):

Ay 4(0) = {[A]}

Ay 4(:36) = Ay 4(0) U{[B],[C]}

Aly (68) = Aly 4(36) U{[AB],[A, AB], [ B, AB] }

Ay 4(:86) = Ay 4(:68) U{[AC],[A,AC], [ C,AC])

Aly 4(.99) = Aly 4(.86) U{[ABC],[C,ABC],[AC,ABC],[ C,AC,ABC]}
Aly o) = Ay 4(99) U{[A,ABC], [B,ABC], [AB,ABC], [A,AB,ABC],

[A,AC,ABC],[B,AB,ABC]}
A’X'd(l.36) = A’X.

See Fig. 2 (middle) for a graphic representation of this
filtered simplicial complex.

Fact 1 A, (t) is a simplicial complex with vertices in

2%, Moreover, for any sequence ty > t, > ... > ty,

Aly q(t0) C Ay g(t1) C -+ C Ay g(tN).
Proof If Y = (Yp,...,Y,) € A/X,d(t) is a chain, and Z =

(Yig>.--»Y3,),0 < ip < -+ < ig < p,is asubchain, then it
is straightforward to check that

Ya(2) C Zg(t).

A c

Fig. 3 Left: The 2-simplex A = 248C} Right: Its barycentric subdivision A’
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Since Yq4(2) is not empty, Z4(¢) is not empty as well, so
Zc A’X, a®.

Now assume that ¢; > ¢ for some i,j € {0,...,N}, and
letY € A/X,d(ti)‘ We have that if Yq(¢;) # @ then there
exists some X such that for all ¥; in Y we have dy,(X) >
ti > tj, therefore Y € A/év,d(tj)' O

Filtration
Armed with Fact 1 above, we have the following definition.

Definition 6 Define the filtered simplicial complex

Nypg= U Ay 4. (4)
teR

This definition means that each of the simplicial com-
plexes A’X, 4(?) can be thought as a particular point in time
of the filtration A’ 4.

While the constructions so far deal with theoretical con-
siderations, for actual computations we use the following
remarks, which were in fact used to compute the filtration
values for Example 1.

Remark 1 Let o = (Y, ..

t=mY.

L Yy) € Ay, and let

Yeo
Define to by
to = max lglelg{dy(X)}- (5)

Then ty is the time of addition of o to A’X,d,

Remark 2 To make A',, ; covariant with respect to t, we
use the change of variable t' = m — t where m denotes the
maximum value attained by the functions dy.

From now on, unless stated otherwise, we will use the
aforementioned change of variable.

Voting Scheme. Next we develop a voting scheme for
all organisms that aims to solve the problem of order-
ing the organisms from true to false positives, using tools
from algebraic topology. We refer the reader to Subsection
2.6 and Section 3 of [14] for the definition of persistent
homology of a filtered simplicial complex, and a character-
ization in terms of P-intervals respectively. In particular,
using Corollary 3.1 of said article we have the following
definition.

Definition 7 Let K be a filtered simplicial complex and
i > 0an integer. We define the i-th degree bar diagram of K
as the collection of P-intervals associated to the i-th degree
persistent homology of K.
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We now consider the persistent homology of the filtered
complex A/X,d. For 0 < i < |X| — 1 let B, be a set of gen-
erators for the i-th degree persistent homology of Alx, @&
with fixed representing cycles, and B = | B;. We can put
these generators in a bijection with bars of the bar diagram
of Ay 4-

To help motivate the definition of the votings for each
organism, we first list some of the components of the final
formula. At each degree i, we assign to each organism X
a collection of generators in B; such that these generators
witness X as a contributor to the features of our complex.
For instance, for each X, consider all B such that X appears
in its representing cycle (remember that such cycle is a
linear combination of simplices, containing organisms as
vertices). This gives rise to functions F; : X — 25i,

For each generator B € B, let start(B) and end(B) denote
its beginning and end as a bar. Consider now a strictly
decreasing functionf : R>g — Rso with f(x) - Oasx —
o0; this function will modulate the contributions of each
bar to the voting value of a given organism along the fil-
tration value, while a decreasing function g : R>g — Rx>¢
will modulate the contributions along homology degree.

With all this in place, the vote v(X) for organism X is
computed as follows:

vX) =) g | Y. (fstart(B) —f(end(B)) | (6)
i BeF;(X)

Examples of f, g include f(¢) = t%l and g(i) = H%l’ which
is what we used to obtain the results in this paper.

Continuing our example from Figs. land 2 (bottom)
shows the resulting bar diagram with associated genera-
tors after application of the mentioned procedure on the
depth values. In this case there is only non-trivial homol-
ogy in O-th degree. After applying the voting scheme
described above on the bar diagram shown in Fig. 2, the
votes are v(A) = 1.00, v(B) = 0.14, v(C) = 0.20.

Model II: Cech complex

Recall that Z = {Xj,Xo,..,Xn} is the set of all pos-
sible organisms, resulting from an ROM pipeline. Let
(Y = SXIXZ--Xk) € 22 be the set of reads associated with
organisms Xi, X», ..., and Xj. Note that for all ;, j, &, ...,

1Sx:| = 1Sx.x;1 = [Sx.x5x,] = .. (7)

The ¢ (time) order filtration is fpax down to fmin in
say steps of 1. A k-simplex on X1, Xy, ..., Xk, Xgx4+1 at time
t is introduced if |Sx,x,..x.X,1] = ¢ Note that if the
k-simplex on X1, X3, ..., Xg, Xx+1 belongs to the complex,
then so does each (kK — 1)-simplex on X1, X2, ..., Xg, Xit1
since, based on Eq. 7, for 1 < i <k,

ISy, Y2 ¥5... ;| = 1SX1 X5 X5.. X, Xy |» Where Yie (X1, Xo, X3, Xp, Xpeq1)-
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Each node or organism X gets a true-positive score v(X)
as follows: In the bar diagram, let b be the A-simplex =
Xo0X1..X), with bar length denoted as len(d). In this model,
the vote v(X) for organism X is computed as follows:

v) =Y | > hxlen() (8)

h beHy,Xeb

A simple example with four organisms is shown in Fig. 4.

Results

We applied the model on simulated shotgun sequenc-
ing reads from a collection of 36 recently published
Salmonella genomes [15], in an effort to study the
applicability of the approach to strain-level detection.
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We simulated 150 bp paired end reads, 100,000 per
each input genome, with dwgsim [16] (with parame-
ters 0, €0.005, £0.005, 4500, s0, r0.001, R0.15, X0.3) from
the 36 genomes. The reads were mapped to a database
consisting of the same set of genomes using bowtie2
[17] (very-sensitive-local mode, searching for up to 101
hits per read). Read simulation and mapping was per-
formed with the Metagenomics Computation and Analyt-
ics Workbench (MCAW) [18].

The mapped reads were processed with custom scripts
to prepare the Barycentric depth values and Cech set sizes
for each set of organisms. Concordance of paired reads
was checked (both reads of a pair mapping to the same
organism), a random representative selected if the organ-
ism had several hits from the same read, and only the best

7N

The input with four organisms a,b,c,d and the number of overlapping reads

<

Fig. 4 Four organisms and the filtrations on the associated Cech complex with t = 15

d
®
t = 15 (ab) t= 14 (bc) t =13 (bd) t = 12 (ac; cd; ad)
[San| > 15 [Spe| > 14 |Sba| > 13 [Sacls [Sedls [Saa| > 12
b b2 b 2 b
° °® > e ) )
a c a c a c a c
d v d 1+ d L4 d
t = 6 (abd) t = 5 (abc; bed) t = 4 (acd) t = 2 (abcd)
ISabd] 2 6 ISabc‘v |Sbcd| 2 5 ‘Sacd‘ 2 4 |Sabcd| Z 2
— | | |
[ | | |
0 PR I 1 1 |
; ; . abed
I I 1
: ! ! abd
! bed
H, i : | abc
' ! ! acd
Hy | | i abed
6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

downtot =2
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3TPs

1TP | 2TPs
0.9 1 0.9 0.9

o ©
D 0~

Voting values
o
o

0.4
0.3
0.2
0.1
5 0 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35
Organisms Organisms Organisms

Fig. 5 Voting values (vertical axis) according to the Barycentric TDA method. The organisms (horizontal axis) are ordered according to their voting
values from Eq. 6. Each line corresponds to a case where simulated reads from 1, 2, or 3 true positive (TP) input organisms were mixed together. The
blue filled circles represent the voting values for the TPs

quality hits per read pair were used (based on sum of edit number of unique reads would miss the truly present
distances of reads in a pair). In this proof of concept we  strain and falsely indicate the presence of missing ones.
focused on the set of reads shared among 1 (unique reads), =~ The observed unique reads for false positive organ-
2, or 3 organisms; the simulated data had 1-3 truly present  isms can arise from sequencing read errors, effects
organisms. of the bioinformatics pipeline, and from subtle differ-
Indicative of the shared genome content between the ences between the reference genomes and the observed
closely related sequences, between only 2,087 to 92,176  genomes.
of the 100,000 reads simulated per genome uniquely For analysis, the 36 Salmonella genomes were split into
mapped to that genome after the process described 18 non-overlapping sets of 2 strains each, and into 12 sets
above. Looking only at unique read counts per genome of 3 strains each. The TDA methodology, including the
would certainly yield erroneous order of certain strains.  voting schemes described in Eqgs. 6 and 8, was applied
For example, we observed a simulated mixture of 3  to the simulated reads from each set. The resulting vot-
strains where two false positives (FPs) had more unique ing values v for each organism were ordered from large
reads (2,596 and 2,427) than one of the true posi- (indicating truly present organisms) to small (indicating
tives (TPs) (2,105). In this case, relying only on the potential false positives).

1TP

Voting values

5 0 15 20 25 30 35 5 0 15 20 25 30 35
Organisms Organisms Organisms

Fig. 6 Voting values (vertical axis) according to the Cech TDA method. The organisms (horizontal axis) are ordered according to their voting values
from Eq. 8. Each line corresponds to a case where simulated reads from 1, 2, or 3 true positive (TP) input organisms were mixed together. The blue
filled circles represent the voting values for the TPs
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The voting values for simulated mixtures of 1, 2, or 3
Salmonella strains are visualized in Fig. 5 for the Barycen-
tric approach and in Fig. 6 for the Cech approach. Order-
ing the organisms by voting values perfectly delineates the
TPs from FPs with both methods. As a comparison, order-
ing the organisms by read coverage (computed by bedtools
[19]) of the same reads as in the TDA input, the TPs could
also be separated from FPs. However, as discussed earlier,
using only the uniquely mapping reads would lead to false
positives. We demonstrated that the TDA approach solves
the problem of enriching the top of the list of voting values
for truly present organisms.

Discussion and conclusions

In this proof of concept study we apply topological data
analysis to the problem of separating signal from noise
in the analysis of frequently multi-mapping metagenomic
sequencing reads. Our approach is based on the construc-
tion of a particular subcomplex of a Barycentric subdivi-
sion complex, to rank-order the potential organisms and
tease out the truly present ones.

The results from applying the approach on simulated
genome mixtures show not just separation of signal from
noise but also the potential for identifying microbes from
metagenome samples, at strain level. We demonstrate the
power of the TDA approach even in cases where alter-
native algorithms that exploit uniquely mapping reads
fail. In fact, for the simple test cases the TPs bubble to
the top from amongst a reference collection of highly
related organisms, indicating promise of success for com-
plicated real-life scenarios. The Cech model that uses less
information is equally effective, suggesting that even par-
tial information when augmented with the appropriate
structure is quite powerful.

Additionally, the voting value curves show patterns of
sharp decrease after the last true positive, suggesting
automated calculation of cut-off thresholds. The same
methodology could also be used to study higher taxo-
nomic levels, e.g., separating true from false positive gen-
era, families, etc. by modeling the read mappings across
taxa.

Our next steps are to scale the implementation, and
to apply it in the food safety as well as in the human
health contexts. In both applications, a precise strain level
assignment is of paramount importance.
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