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Abstract

Background: Theory predicts that dependency within host-endosymbiont interactions results in endosymbiont

genome size reduction. Unexpectedly, the largest Wolbachia genome was found in the obligate, parthenogenesis-
associated wkol. In this study, we investigate possible processes underlying this genome expansion by comparing a
re-annotated wFol genome to other Wolbachia genomes. In addition, we also search for candidate genes related to

parthenogenesis induction (PI).

further investigation.

endosymbionts.

Results: Within wFol, we found five phage WO regions representing 25.4% of the complete genome, few
pseudogenized genes, and an expansion of DNA-repair genes in comparison to other Wolbachia. These signs of
genome conservation were mirrored in the wFol host, the springtail F. candida, which also had an expanded DNA-
repair gene family and many horizontally transferred genes. Across all Wolbachia genomes, there was a strong
correlation between gene numbers of Wolbachia strains and their hosts. In order to identify genes with a potential
link to PI, we assembled the genome of an additional PI strain, wl.cla. Comparisons between four Pl Wolbachia,
including wFol and wlcla, and fourteen non-PI Wolbachia yielded a small set of potential candidate genes for

Conclusions: The strong similarities in genome content of wFol and its host, as well as the correlation between
host and Wolbachia gene numbers suggest that there may be some form of convergent evolution between
endosymbiont and host genomes. If such convergent evolution would be strong enough to overcome the
evolutionary forces causing genome reduction, it would enable expanded genomes within long-term obligate
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Background

Endosymbiotic bacteria are found in the cells of many
eukaryotic species, where they affect major processes
such as host reproduction [1, 2], defence against patho-
gens [3] and development [4, 5]. Endosymbionts are
dependent on their host for proliferation, whereas host
are not necessarily dependent on their endosymbiont
and can often reproduce and survive in their absence.
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However, there are ample examples of obligate endo-
symbionts, e.g. Buchnera in aphids [6, 7], Wigglesworthia
in the tsetseflies [8], and Wolbachia in parasitic filarial
nematodes [9, 10]. In these cases neither host nor endo-
symbiont are viable without the other, and these associa-
tions are usually characterised by a long evolutionary
history, nutritional or developmental dependency, and
vertical transmission of the symbiont [11].

Current theory predicts that mutual dependency be-
tween host and endosymbiont leads to a reduction in
genome size of endosymbionts [12, 13]. Different genetic
mechanisms have been implied as the driving forces
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behind these reductions. First, co-adaptation between
the symbiont and their host may result in redundancy of
certain symbiont functions releasing genes from selective
constraints, causing them to decay and eventually to dis-
appear [14, 15]. Second, small population sizes and lim-
ited opportunity for horizontal gene exchange increases
genetic drift to a level that purifying selection cannot
overcome, which leads to deleterious mutations that
cause pseudogenization of mildly advantageous genes
and the eventual removal of those genes due to the in-
herent deletion bias found for bacterial genomes [12, 16,
17]. In addition, multiple transitional events seem to
pinpoint moments of sever genome reduction [18].
These include becoming host bound, moving into a spe-
cialized host cell and being vertically transmitted
through host generations. Intervals between different
transitional events seem prone to different sets of selec-
tion pressures that influence genome size. For example,
the negative correlation between host dependence and
symbiont genome size only holds for vertically transmit-
ted endosymbionts [19]. However, there is still a large
amount of variation in the genome size of vertically
transmitted endosymbionts that are not residing in spe-
cialized host cells, which is difficult to explain in the
context of current theory [18]. Examining endosymbiont
genomes in this stage will be needed to better under-
stand all factors that influence the genome reduction
during the evolution of endosymbionts.

Wolbachia is one of the most widespread endosymbi-
onts [20, 21] and known for its variety of interactions
with its host, including male killing, feminization, cyto-
plasmic incompatibility (CI), parthenogenesis-induction
(PI) and provisional mutualisms [22, 23]. Plus, all known
Wolbachia strains are in a similar transitional stage ac-
cording to the classification of Lo et al. (2016), i.e. they
are mainly transmitted vertically and do not reside in
specialized structures. They are thus predicted to vary in
genome size depending on the host dependency [18].
This prediction seems to hold for most of the Wolbachia
strains, with reduced genomes that lack mobile elements
found in obligate mutualistic strains and larger genomes
in facultative reproduction-manipulating strains. How-
ever, recently a Wolbachia genome was sequenced that
poses an exception to this pattern. The Wolbachia from
the parthenogenetic collembolan host Folsomia candida
has the largest Wolbachia genome sequenced so far [24],
yet it is obligate to its host. Since, elimination of Wolba-
chia by heat or antibiotics, renders the host’s eggs
non-viable [25, 26]. In addition, the wFol genome is the
first fully sequenced genome from supergroup E that is
positioned to be a sister group to supergroup A, B, C, D,
F and H, and shares a more ancestral common ancestor
with supergroup L [27, 28]. All complete genomes from
members of these supergroups have smaller genomes
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than wFol, which suggests that this obligate Wolbachia
strain showed genome expansion rather than the reduc-
tion that would be predicted by the symbiont genome
reduction model.

Furthermore, the wFol genome could contribute to
understanding the genes and mechanisms underlying PI,
as wFol has been suggested to cause parthenogenesis in
its host. All parthenogenetic F. candida lines carry
Wolbachia whereas the sexually reproducing lines do
not [25, 29, 30]. Unequivocal proof of PI would require
curing of a parthenogenetic strain to produce males, but
since wFol induces parthenogenesis in addition to
promoting host egg development, this experiment is not
possible in the diplo-diploid F. candida. In several
Hymenopteran species, Wolbachia has been shown to
induce diploidy and feminization resulting in partheno-
genetic reproduction [31, 32] and several draft genomes
of PI-Wolbachia from Hymenopteran host are available:
wTpre from Trichogramma pretiosum and wUni from
Muscidifurax uniraptor [33-35]. Building a larger data-
base of Wolbachia genomes associated with PI might
shed more light on the genes involved in PI, similar to
recent finding for CI [36].

In this study, we set out to explain the factors that con-
tribute to the expansion in the wFol genome, which can
help further understand the genomic evolution within en-
dosymbionts. Therefore, we updated and re-annotated the
wFol genome and compared it to a diverse set of high
quality Wolbachia genomes. In addition, we searched for
genes shared by Wolbachia associated with PI that could
aid in understanding the mechanism behind this manipu-
lation. To this end, we assembled a draft genome of an
additional PI strain, wLcla, that has been shown to cause
diploidy restoration in the parasitoid wasp Leptopilina cla-
vipes [31]. Finding the genes underlying PI in Wolbachia
might elucidate the mechanism behind it and could re-
solve the debate on the nature of wFol host interaction.

Results

Genome assemblies of wFol and wlcla

The short read corrected wFol genome consisted of one
contig with a total length of 1,801,626bp and a
GC-content of 34.35%. This was 43 bp longer than the
initial assembly and the GC-content was a half percent
higher [24]. The draft genome of wLcla was assembled
in 46 contigs with a total length of 1,150,755 bp and a
GC content of 34.11%. Half of the assembly was con-
tained in 9 contigs (L50) larger than 43,523 bp (N50).
For a Wolbachia genome this is relatively small, but very
similar in size to the other PI strain from supergroup B
(wTpre) [34]. However, wTpre is in one scaffold that
contains a total gap length of 16,680 bp and wLcla is in
46 pieces, thus we still miss information for both of
these genomes. Hence, the current assembly of wLcla
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probably represents the major part the complete gen-
ome, but it will presumably increase slightly in size upon
completion.

Annotation of wFol and wlcla
To evaluate the quality and completeness of our annota-
tions, we run the BUSCO pipeline based on 148 essen-
tial bacterial genes on the annotations of wFol, wLcla
and an additional 16 Wolbachia annotations to compare
with (see Additional file 1). The wFol genome contained
the most complete set of essential genes of the 18 Wol-
bachia analysed. It contained the complete sequences of
92.6% of the essential genes, including two duplications,
and two fragmented. Only nine genes were missing,
which was the lowest number of all Wolbachia analysed.
The BUSCO gene set to which it was compared is a cu-
rated set of genes that are essential to most bacteria.
However, in Wolbachia even complete genomes miss 9
to 25 genes from the BUSCO set, indicating that these
genes probably are not missing from the assemblies and
annotations but because they have become redundant
for Wolbachia due to its endosymbiotic lifestyle. In the
draft genome of wLcla we found 133 complete (89.8%),
two fragmented and 11 missing genes, which is very
similar to most of the other Wolbachia genomes.
Annotating the improved wFol genome uncovered a
total of 1472 protein coding sequences (CDS), which is
the largest number of CDS for any Wolbachia genome
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sequenced so far. This is not surprising given that it is
the largest Wolbachia genome, and genome size and
gene number correlate well in bacteria. However, a
remarkably low number of pseudogenes were found in
its genome. Only 2.8% of the genes appeared to be
pseudogenized, while the pseudogene content in the
other Wolbachia genomes ranged from 4.7 to 22.1%. In
addition, we observed a high number of transposases,
DNA -repair related genes and ankyrin repeat containing
proteins (ANKs; see Table 1). The number of ANKs (96)
and DNA -repair related genes (34) in wFol outnumbered
the quantity found in any other Wolbachia and the
number of transposases is second only to the number
found in wCle.

In addition, we found large numbers of phage genes,
which were concentrated in five regions of phage origin
(RPO) that were labelled WOFoll to 3 and WO-like is-
land 1 and 2 (see Additional file 2: Table S1). With a
combined size of 458,452 base pairs, they took up 25.4%
of the total genome size of wFol, the largest amount in
any Wolbachia. Remarkably, pseudogenes and the three
before-mentioned overrepresented groups of genes
(ANKs, DNA-repair related and transposases) were all
unequally distributed between the phage regions and
rest of the genome (see Fig. 1a). Of all groups more than
the expected 25.4% was present within the RPOs, finding
29 out of 44 pseudogenes (binomial-test, R, p <0.001),
23 out of 34 DNA-repair related genes (binomial-test, R,

Table 1 Genomic characteristics of 18 Wolbachia strains used for comparisons

Strain Size (Mbp) Contigs (@) Pseudo Transposases ANK Repair Resolvases
wAU 127 1 1204 62 119 39 18 4
wBm 1.08 1 805 98 0 5 12 0
wBol1-b 1.38 144 1139 162 1 2 23 2
wCle 1.25 1 1216 NA 244 49 12 0
wFol 1.80 1 1472 44 124 96 34 19
wHa 1.30 1 1009 96 19 29 17 5
wlcla 1.15 46 880 194 50 22 12 1
wMel 127 1 1195 74 39 23 21 2
wNo 1.30 1 1040 90 19 48 18 2
wOo 0.96 1 647 195 0 3 7 0
wOv 0.96 1 642 42 0 0 7 0
wPip_Pel 148 2 1275 110 62 42 20 5
wPpe 0.98 36 851 62 1 0 13 1
wRec 1.12 43 902 127 26 2 13 1
WRi 145 1 1150 114 67 29 18 4
wTpre 113 9 1405 NA 53 54 16 2
wuUni 1.05 130 1174 NA 67 18 17 0
e 1.66 10 1293 255 20 27 19 9

Column label abbreviations: CDS stands for coding sequences and ANK for ankyrin repeat containing protein. Annotations of wCle, wTpre and wUni did not
specify pseudogenes; for these strains this category is therefore labelled as not available (NA)
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Fig. 1 Distribution of genomic elements of interest in the wFol genome. Legend: a) Circular map of wFol displaying the distribution of genes of
interest between regions of phage origin (RPOs) and chromosomal parts of the genome. Each ring gives locations of certain genes or genomic
elements. From outer to inner ring: CDS forward strand, CDS reverse strand, RPO, transposases, ankyrin repeat containing genes (ANKs),
pseudogenes and DNA-repair related genes. RPOs are separately labelled: WO regions with WOFol1 to 3 and WO-like islands with WOI1 and 2. b)
Double side histogram that presents the distribution of transposase groups between the chromosomal and the RPO. Distributions were analysed
with a binomial test in R, asterisks correlate to significant levels * to p > 0.05, ** to p>0.01 and ** to p > 0.001
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p<0.001), and 42 out of 96 ANKs within them
(binomial-test, R, p <0.001). The distribution of trans-
posases over the phage regions and rest of the gen-
ome was not different from a random expectation,
since 26.6% of them were found in the RPOs (bino-
mial-test, R, p=0.75). However, when focussing on
individual transposase families, they did show unequal
distribution patterns (see Fig. 1b). While the IS4,
IS110 and IS5 families were proportionally distributed
over the whole genome, the PD-(D/E)XK family was
more common in the RPOs than expected (bino-
mial-test, R, p<0.001). In addition, two of the other
five families exclusive to either the RPOs or to the
chromosomal part of the genome also showed a sig-
nificantly skewed distribution (IS481: binomial-test, R,
p <0.01; IS5, 1S903: binomial-test, R, p < 0.05).

The annotation of wLcla uncovered 880 CDS and 194
pseudogenes (see Table 1). Thus, while it is similar in
size to wTpre, it contains 525 fewer CDS and 194 more
pseudogenes. This is probably an effect of differences in
annotation style, as no pseudogenes were annotated for
wTpre, but many truncated genes were found [34] that
were therefore counted as one or two CDS instead of
one pseudogene. Finally, wlLcla contained 4 phage-re-
lated genes as well as 7 phage-related pseudogenes, thus
showing signatures of remnant phages. However, no
conserved RPOs could be detected within the assembled
contigs.

Phage annotation and synteny

As the RPOs take up more than a quarter of the wFol
genome we put extra effort in their annotation. Kent et
al. (2011) compared several WO phages and found that

they are composed of multiple modules of genes that
link to certain functions. We also found such modules in
the WOFol phages, which included patatin-like phos-
pholipases and baseplate, head and tail modules (see
Fig. 2a: Additional file 3). However, not every module
was present in all three WOFol regions, and WOFol2
and 3 contained many replicated modules. With a size
of respectively 132.270 and 215.744 WOFol2 and 3 were
the largest WO regions found in any Wolbachia (see
Additional file 2: Table S1). Surprisingly, all three
WOFol regions contained the tail module, which is often
lost in other WO [37]. In addition, WOFoll was missing
the head and baseplate modules, but did contain the
conserved WDO0611-WD0621 cluster that is also found
in several other WO phages [38]. All three WOFol re-
gions also contained the recently described eukaryotic
association module (EAM) [38] and within them 6 of
the WO Latrotoxin CTD proteins. Further, the RPO of
wFol contained 19 resolvases, which is at least two times
the number of resolvases found in any other Wolbachia
genome (see Table 1). Resolvases are often connected to
phage integration at specific sites, while integration by
transposases is less site-specific [39]. Finally, WOFol 2
and 3 also harbored a bacteriophage abortive infection
system, the AbiEi and AbiEii antitoxin-toxin complex,
which has never been found in WO before. This system
can provide phage protection at the population level by
killing its host when infected by a new phage [40].

The large number of RPOs in wFol led to the question
if all these regions arose from a single ancestral phage
that duplicated itself or, whether multiple phages in-
fected the wFol genome. Therefore, we searched for col-
linear blocks in the RPO and found them both between
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Fig. 2 Detailed graphical overview of phage WO regions in wFol. Legend: a) Graphical view of the RPO annotations of wFol. Arrow blocks depict
genes, upper marked regions are within collinear blocks between and lower marked regions within RPOs. A list of the microscopic abbreviations
of gene annotations within the arrow blocks can be found in Additional file 3. b) Circular maps of collinear blocks between the RPOs of wFol on
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the three WOFol regions and within WOFol2 and 3 (see
Fig. 2a, b). However, based on the mosaic structure of
the collinear blocks there does not seem to be a
complete duplication of one of the WO phages.

Orthologue identification and orthogroup expansion

Orthofinder was run to cluster the complete set of
19,303 protein-coding sequences (CDS) of the 18 Wol-
bachia into orthogroups resulting in 1239 orthogroups
containing 18,480 CDS (95.7%) (see Additional file 4:
sheet Overall statistics). Of these, 460 were present in
all Wolbachia genomes, including 414 that only con-
tained single copy genes (see Additional file 4: sheet
Orthogroups shared by all). These 460 genes can be
considered the Wolbachia core genome, which is within
the range of the 489 orthogroups found by Brown et al.
(2016), when comparing members of supergroups A-D,
F and L. For wFol, 1346 of the 1472 CDS were grouped
into 936 of the orthogroups (see Additional file 4: sheet

All orthogroups). Thus, 126 CDS remained unassigned
and were therefore considered to be unique to wFol (see
Additional file 4: sheet Unassigned genes). wTpre was the
only genome containing more unique CDS. This was most
likely due to the many truncated/pseudogenes in this gen-
ome annotation [34], which probably have ended up in
separate groups because of Orthofinder’s algorithm sensi-
tivity for gene length [41], thus creating false orthogroups
of truncated genes. Most of the unassigned genes from
wFol were hypothetical proteins (76) and putative mem-
brane proteins (27), but 23 of these genes could be anno-
tated in more detail (see Additional file 4: sheet
Unassigned genes). Moreover, 35 (27.8%) of the un-
assigned CDS were located within the RPOs, which in-
clude the AbiEi and AbiEii antitoxin-toxin complex
mentioned above (Additional file 5). For the wLcla draft
genome, 875 of their 879 CDS were grouped into 817
orthogroups, while only 4 remained unassigned. Three of
these were annotated as hypothetical proteins and one
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was a transposase (see Additional file 4: sheet Unassigned
genes). Therefore, no distinct functions could be linked to
these genes.

To define orthogroup expansions and contractions,
Z-scores were calculated for each orthogroup (see Fig. 3
and Additional file 4: sheet all orthogroups). Z-scores
measure the deviation of the number of genes of one
strain from the average number of genes per strain in an
orthogroup. Orthogroup expansions had more genes
(Z-score 2 or higher) and contractions fewer (Z-score —
2 or lower).

The three genomes with the highest number of gene
family expansions were all linked to PI (wTpre, wUni
and wFol). Unfortunately, no orthogroup was expanded
in all three Wolbachia genomes. Focussing on the wFol
genome we found 72 expanded and 10 contracted
orthogroups (see Additional file 4: sheet Expanded or
contracted in wFol). All 10 contracted orthogroups were
genes completely missing in wFol. The 72 expanded
orthogroups contained 371 genes of which more than
half within the RPOs (194 genes within 21 orthogroups).
In line with this, 89 genes were phage-related genes,
pressing the notion that the expansion of wFol is for a
large part due to an increase of phage genes. In addition,
more than half (190) of the genes were transposases
(93), ANKs (74) and DNA-repair related (21), proving
that these groups are overrepresented in this genome.

Not surprisingly, considering its small size the wLcla
genome contained only 14 expanded orthogroups with
26 genes in total (see Additional file 4: sheet Expanded
or contracted in wLcla). Eight of these genes were within
one orthogroup of 1S110 family transposases, while all
other groups consisted of 1 gene missing in all other
Wolbachia or 2 duplicate genes in wLcla. Most of these
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other groups consisted of uncharacterized proteins with-
out a clear function and the genes with annotation had
diverse functions in several biological processes. The
wLcla genome contained only five significantly
contracted orthogroups, which is surprising given the
large number of pseudogenes. This indicates that many
of the pseudogenized genes of wLcla were also degraded
in other Wolbachia.

Parthenogenesis induction genes

Clustering all genes into orthogroups also allowed us to
search for orthogroups whose absence or presence was as-
sociated with the four PI-Wolbachia strains (wFol, wLcla,
wTpre and wUni). We found no genes that were exclu-
sively missing from the four PI-Wolbachia. There was a
large number of shared orthogroups (684) between the
four genomes, which obviously also included the 460 core
genome orthogroups (see Fig. 4a). However, there were no
orthogroups that were exclusively present in all four or
three out of the four parthenogenesis-associated
Wolbachia genomes (see Fig. 4b). Only between pairs of
the PI-Wolbachia 11 exclusive orthogroups existed (see
Additional file 4: sheet Exclusive or mainly in PI). Five of
those contained only uncharacterised proteins and an-
other two contained only transposases. The remaining
four consisted of: 1) a putative phage protein shared by
wUni and wFol, 2) a protein with a magnesium trans-
ported domain shared between wTpre and wUni and 3) a
cluster of two genes shared between wTpre and wLcla
consisted of a protein with a partial fungal domain of un-
known function and a protein that contains several
leucine-rich repeats. These leucine-rich repeats are pro-
tein binding domains that are involved in a wide range of
biological processes [42]. Furthermore, we also searched

Wolbachia core genome
460 genes

Number of expanded orthogroups

Max Z-score per Orthogroup

Fig. 3 Expanded and contracted orthogroups in different Wolbachia strains. Legend: Heatmap of the Z-scores of the 18 Wolbachia strains per
orthogroup that indicates expansions in red and contractions in blue. The rectangle separated by a dashed line represents the 460 core genome
genes without variation in Z-score. Wolbachia strains are ordered by the number of expanded orthogroups from the least on top till the most at
the bottom and all orthogroups are sorted on their max Z-score from lowest at the left to highest at the right
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A All shared orthogroups
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Fig. 4 Orthogroups shared by PI Wolbachia. Legend: Venn diagrams representing a) a distribution of all orthogroups shared between the Pl
associated Wolbachia, including the orthogroups shared with the other 14 Wolbachia and b) a distribution of all orthogroups exclusively present

B Exclusively shared orthogroups

for orthogroups that were present in at least three of the
four PI strains and in a maximum of two other Wolbachia
strains. This yielded two orthogroups with single copy
uncharacterized genes, represented in wFol by
wFol_04740 and wFol_12640, and both shared by wFol,
wLcla, and wTpre (see Additional file 4: sheet Exclusive or
mainly in PI). Absence of these genes in wUni strain might
be inaccurate, as the still quite fragmented assembly is pos-
sibly hampering gene annotation (Table 1). One orthogroup
was also found in the male-killing strain wBolb-1 and the
other orthogroup in both wBolb-1 and Cl-strain wPip_Pel.
Based on their annotation neither of the examined genes
could be directly linked to parthenogenesis induction.

Whole genome correlations

We found a positive correlation between Wolbachia
genome size and the amount of phage DNA it contained
(see Fig. 5a). This indicates that a significant portion of
the variation in genome size was accounted for by the
RPOs. The genomes of Wolbachia strains that are essen-
tial to their host occurred at both ends of the size
spectrum, with most having small genomes and little
phage DNA and wFol having a large, phage-rich genome.
In addition, we also found a positive correlation between
the number of DNA-repair related genes and the gen-
ome size of Wolbachia (see Fig. 5b).

Host genome size and gene number were also corre-
lated to Wolbachia genome size and gene number,
respectively (see Fig. 5c, d), with gene content being
more strongly correlated. Moreover, the correlation be-
tween genome sizes still holds when RPO are excluded
(p=0.86, P=0.01; see Additional file 6), although the
deviating strain wCle needed to be excluded as the RPO
could not be properly annotated and therefore their size
could not be determined. These correlations suggest that
the genome size and number of genes of a Wolbachia
are not independent from the size and number of genes
of its host genome.

Discussion

The wFol genome is the largest Wolbachia genome to
date, and our results suggest that its genome size has in-
creased due to the integration of several phages, as
phage regions take up more than a quarter of the total
wFol genome. This is supported by an expansion of 21
orthogroups containing phage genes. These regions of
phage origin (RPOs) had higher numbers of ankyrin re-
peat containing genes (ANKs), DNA-repair related
genes, pseudogenes and PD-(D/E)XK transposases. In
addition, they contained a bacteriophage abortive infec-
tion system new to Wolbachia. Comparing wFol, wLcla
and two other Pl-associated strains to a diverse set of 14
Wolbachia genomes did not elucidate a set of genes
unique to the four PI strains. However, there were
unique sets of genes between some pairs of the PI asso-
ciated strains. Finally, we found strong correlations be-
tween Wolbachia and host gene numbers, suggesting
that there might be convergent evolution between Wol-
bachia and their host genomes.

Genome expansion in wFol

The first question we set out to answer was why the
genome of the obligate Wolbachia endosymbiont of the
parthenogenetic springtail F. candida (wFol) has ex-
panded, while current theory predicts an obligate rela-
tionship to lead to a reduced genome size [12, 18].
Obligate endosymbionts usually have a small genome
size and contain few repeated and mobile elements such
as transposases [43], ANKs [44, 45] and RPOs [46, 47].
Genome reduction of this kind is also evident in the ge-
nomes of obligate Wolbachia strains in filarial nema-
todes (wOo, wOv and wBm), which are the smallest
complete Wolbachia genomes, containing no or very
few transposable elements and phage derived genes [9,
10, 48]. In contrast, the genome of the obligate wFol
strain is the largest complete Wolbachia genome discov-
ered to date with a length of 1,801,626 base pairs (bp)
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[24]. Moreover, upon annotating this unusually large
genome meticulously, we found that it is highly enriched
in repeated and mobile elements and that the RPOs take
up more than a quarter of its genome. These regions
contain many of the ANKs and transposases that are
enriching this genome and have a big influence on the
genomic structure and size of wFol.

Many expanded orthogroups were also found to be lo-
cated in the RPO, including a set of genes connected to
DNA repair. Integrated phage genes within endosymbi-
onts can still be expressed and are known to influence
bacterial and host processes [36, 49]. Therefore, the
functions of these integrated genes may affect the per-
formance of the tri-partite symbiosis. Typically, in obli-
gate endosymbiont genomes a depletion of DNA repair
genes is seen and the loss of these genes would result in a
higher effective mutation rate [13]. Thus, the gain in DNA
repair genes in the wFol genome can be expected to lower
effective mutation rate, resulting in a better-conserved

genome with fewer deletions and fewer pseudogenized
genes.

We also found a large number of unique genes present
in wFol. Although RPOs are known to be a source of
new genes [38, 45, 50], in wFol unique genes were evenly
distributed over the genome. A possible explanation for
the large number of novel genes could be that wFol is
the first annotated Wolbachia genome of supergroup E,
while many of the other supergroups were represented
with more genomes in our analysis. Therefore, this
group of unique genes might not just represent genes
unique to wFol but also include genes that are specific
to the entire E supergroup. Nevertheless, the presence of
this many unique genes indicates that either wFol specif-
ically or all members of supergroup E are able to acquire
new genes or preserve existing ones more easily com-
pared to other Wolbachia.

Another strong signature of gene conservation is the
low number of pseudogenes found in wFol. Most of the
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pseudogenes that were present were located within the
RPO, suggesting a less stringent conservation of phage-
derived genes. This is in line with what is seen in other
Wolbachia where the phage regions are often more
prone to degradation [51]. However, the rather high
share of intact phage genes within wFol, suggest that
even these regions with higher degradation rates are still
being maintained at an elevated rate. The combined re-
sults on phage preservation, the low number of pseudo-
genes, the many DNA repair genes, and the large
number of unique genes consistently point towards a
genome shaped by gene preservation. This is inconsist-
ent with expectations based on the symbiont genome re-
duction model.

At first glance, the wFol genome with its relatively
large size and many mobile elements resembles a re-
cently host-restricted symbiont. However, these symbi-
onts are generally facultative for their host, harbour
many pseudogenes and suffer large and small deletions,
as their genomes change rapidly [12, 18]. By contrast,
wFol is obligate to its host, possesses only few pseudo-
genes, and shows no signs of large deletions. Further-
more, the start of the symbiosis between wFol and its
host probably coincided with the host becoming par-
thenogenetic. Although, this split has not been properly
dated yet, genetic evidence shows considerable differen-
tiation between sexual and parthenogenetic lines of
Folsomia candida [29], suggesting this was not a recent
event. Thus, wFol does not fit the description of a re-
duced long-term obligate symbiont genome, nor a re-
cently host-restricted symbiont genome. Rather, it seems
to fall into a new category of a long-term obligate sym-
biont that was able to avoid genome degradation.

This leads to the question: what has caused the genome
preservation in wFol compared to the other Wolbachia,
including the other PI and obligate strains? These obligate
strains are just like wFol vertically transmitted within
hosts that are dependent on their Wolbachia, thus there
must be another explanation for the differences in genome
maintenance than level of interdependence with their host
or form of transmission. Interestingly, there are unique
features to the genome of F. candida, which mirror the
genomic patterns of its symbiont. Its genome has with
28,734 genes the most gene rich genome of the Wolbachia
hosts (Fig. 5d). Moreover, it is also gene richer than the
two other published Collembolan genomes of
Holacanthella duospinosa where they found 12,000 gene
models [52] and Orchesella cincta with 20,249 genes [53].
In addition, groups of genes related to DNA repair ex-
panded in both genomes, with F. candida having ex-
panded groups of ATP-dependent DNA helicases which
are important for DNA repair [24, 54]. Finally, both host
and endosymbiont contain high amounts of foreign DNA,
as 2.8% of F. candida genes are horizontally transferred
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genes (HTG) from a wide variety of organisms including
bacteria, fungi and protists, but not from Wolbachia. This
might sound low compared to the 25.4% of phage DNA in
wFol but is in fact the highest percentage found in any
metazoan genome except for rotifers and some nematode
species [24] Moreover, this abundance of mostly intact
HTG was correlated with an increase in transposons.
Thus, also the F. candida genome seems focused on pre-
serving genes. This is as far as we know, the first case that
shows signs of convergent evolution between endosymbi-
ont and host genomes. In addition, the correlation be-
tween Wolbachia gene number and host gene number of
all combinations with usable genomes, suggest that con-
vergence between host and endosymbiont genomes may
have taken place in more Wolbachia strains.

Regions of phage origin

The integration of phage DNA is one of the main rea-
sons for the large size of the wFol genome. The RPO in-
cluded three phage WO regions and two phage WO-like
islands, which is within the range of two to five pro-
phage WO haplotypes found in other fully sequenced
Wolbachia genomes [37]. However, the size of the wFol
WO regions is much larger and two of the regions con-
tain multiple copies of essential phage gene clusters.
Possibly, multiple phages clumped together within the
wFol genome or the phages that integrated had multiple
copies of the same modules. Alternatively, a recent du-
plication took place but this is not very likely because
the collinear blocks between phages were very fragmen-
ted and the longer blocks contained mainly the con-
served modules found in all WO phages. Such large
clusters containing multiple sets of the same phage
modules have previously been found in Wolbachia ge-
nomes wPip and wNo [50, 55] and hamper an assess-
ment of the exact number of phages that integrated
within this genome.

All three WO regions within wFol contained the char-
acteristic elements and standard modules of phage WO.
These included the Patatin gene that is probably helpful
for entering the host cell [37] and the recently defined
eukaryotic association module including latrotoxin-CTD
domain proteins, which are related to black widow
venom genes [38]. Neither of the WO regions contained
the cifA and cifB genes linked to CI [36], therefore it is
very unlikely that wFol can cause CI. Some wFol RPO
features are exceptional, such as the vast amount of
resolvases and transposases, which are thought to be in-
volved with phage integration into their bacterial host
[39, 56]. However, integration by transposases usually
takes place at non-specific integration sites while resol-
vases use conserved sites [39]. Thus, the excessive pres-
ence of both transposases and resolvases in the wFol
phages raises questions concerning their mode of
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integration. Finally, a toxin-antitoxin system that is new
for Wolbachia was found in the WOFol2 and 3. This
AbiEi and AbiEii system is an abortive infection system
that can cause altruistic cell death to prevent new phages
from settling within the bacterial population [40]. One
might argue that such a system may prevent further gen-
ome expansions by additional phages.

Genetic basis of parthenogenesis induction

We also perused the wFol genome for genes that are as-
sociated with PI to elucidate the genetic basis of this re-
productive manipulation. Together with three other PI
Wolbachia, wUni of supergroup A and wTpre and wLcla
of supergroup B, they were compared to a diverse set of
14 Wolbachia including members of 6 different super-
groups (A,B,C,D,F and L). We searched for gene sets
present in at least three PI and a maximum of two other
Wolbachia strains, comparable to the CI phenotype
where a toxin-antitoxin gene cluster was shared by all
CI inducing or repressing strains and some others [36,
57]. We did not find any genes present in all PI strains,
which may have several non-mutually exclusive explana-
tions. First, PI genes may not be uniquely present in
Wolbachia expressing the PI phenotype, but also in
some of the Wolbachia causing other reproductive ma-
nipulations, similar to what is seen for the CI phenotype
[58]. The two genes we identified to be associated with
three of the PI-strains were also present in wBolb-1 and
in wPip_Pel that are both in supergroup B. The presence
of these genes in the two other strains might have to do
with the fact that phenotypic expression of Wolbachia
has been found to be determined in combination with
the host genotype. For example, the Cl-strain wRec
caused male killing after being transferred to a new host
[59] and wTei caused CI after a host transfer while
showing no signs of reproductive manipulation in its
natural host [60]. This same interaction with host geno-
type may apply to PI expression. A second possibility is
that the PI phenotype is not a single genotype but is
achieved via different cellular mechanisms formed by
convergent evolution, in which case we do not expect a
single gene cluster to be shared by all PI-Wolbachia.
Support for this explanation can be found in studies
showing that parthenogenesis is induced in a two-step
mechanism of diploidization of the gamete followed by
feminization of the egg [61, 62]. Diploidization can be
achieved in different ways. In both Trichogramma wasps
and Leptopilina clavipes (the hosts of respectively wTpre
and wLcla, the two PI inducing Wolbachia of super-
group B) gametes are rendered diploid by failure of the
first mitotic anaphase division [31, 63]. In Muscidifurax
uniraptor (host of wUni of supergroup A) diploidization
is only restored after the second mitotic division through
a fusion of the two mitotic nuclei [64]. For, wFol of
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supergroup E the speculated mechanism is diploidy res-
toration through either non-disjunction or fusion of the
two haploid division products at the end of the first ana-
phase [65] and thus similar to the situation in wTpre
and wLcla, although the difference in sex determination
system might call for a different manipulation for the
same outcome. Therefore it has already been suggested
that diploidy restoration in Wolbachia most likely has a
polyphyletic origin [31]. With this in mind, the cluster of
two genes uniquely shared by wTpre and wLcla might
still be very interesting and might be linked to one of
the two steps of PI in these lines that seem to have a
similar mechanism developed in supergroup B.

Conclusions

Large RPOs with ample repair genes and accumulation
of repetitive and transposable elements make up most of
the expansion of the wFol genome. This genomic signa-
ture of gene conservation was mirrored in the F. can-
dida host genome. We found that a large part of the
variation within the genome size and gene number of
facultative endosymbionts is correlated to the gene num-
ber of the host. This suggests that host and symbiont
genome may be subject to correlated selection pressures
that resulted in convergent evolution between host and
endosymbiont, or that somehow the host may have a
direct influence on the symbiont genomes. However,
these selection pressures would probably be neutralized
after endosymbionts move into a specialized cell,
explaining the well-documented steady genome decrease
seen in those cases [11, 66, 67]. Therefore, genome re-
duction may ultimately result from becoming obligate.
However, before the endosymbiont resides in a special-
ized cell, but while being mainly transmitted vertically,
genome expansion of endosymbiont genomes might
occur.

The search for the PI genes yielded a set of poten-
tial candidate genes. Elaborating on these findings
could answer whether the PI genes are monophyletic
or polyphyletic. The complexity of this trait and the
indications that this is caused by multiple genes could
also means that both are not mutually exclusive in
this case.

Methods

Assembling of wFol and wlcla

Sequencing and assembling of the wFol genome was de-
scribed in Faddeeva-Vakhrusheva et al. (2017). We cor-
rected this assembly using the Illumina HiSeq 2000 data
of Gerth et al. (2014) (NCBI accession number:
SRR1222159). Illumina reads were mapped to the assem-
bly with BWA [68] using default parameters. Variants
between the assembly and the mapped Illumina reads
were called and quality filtered using GATK v. 3.7 [69],
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filtered based on read depth with vcffilter (“DP > 10”) of
the Vcflib package (E. Garrison, 2012, https://github.-
com/vcflib/vcflib). Variants were inspected manually and
when they were supported by the mapped Illumina data
they were included in the genomic sequence.

Reads used for the wLcla assembly were taken from a
study that sequenced its host Leptopilina clavipes [70]
using both an Illumina HiSeq (HiSeq) and a Pacific Bio-
sciences RS I (PacBio) library. Hiseq reads were used to
error correct the PacBio reads with the PacBioToCA
pipeline of CeleraAssembler7.0 [71]. We used the cor-
rected PacBio reads for the wLcla assembly. To filter out
the Wolbachia reads, all PacBio reads were mapped onto
the wTpre and the wPip_Pel genome with BLASR [72].
A consensus based on the mapped reads was made per
reference genome with PBDAG-Con [73] and the result-
ing contigs were extended and joined with PBjelly [74].
Thereafter, all reads were mapped back to these prelim-
inary assemblies and PBDAG-Con and PBjelly were run
again to extend the preliminary contigs further. All reads
mapping to these two assemblies were extracted and assem-
bled de novo in Mira [75] with the following parameters:
COMMON_SETTINGS -SKimmhr=1 PCBIOHQ_ SET-
TINGS —CO:mrpg = 5. Next, all corrected Pacbio reads were
mapped back to the Mira assembly, after which two itera-
tions of the combination of PBDAG-Con and PBjelly were
run to extend and connect the contigs as much as possible.
The process ended with a final step of PBDAG-Con to con-
firm the extensions based on mapped reads. Finally, the
HiSeq data was mapped to the assembly, variants were
called, manually checked and the assembly was adjusted in
the same way as described for the wFol assembly.

Annotation of wFol and wlLcla

The annotation of both genomes was done using the
DIYA pipeline [76], in which we included: Prodigal for
gene prediction [77], tRNAscan-SE and RNAmmer to
predict RNA features [78, 79] and GenePRIMP to mark
possible pseudogenes and short genes without annota-
tion [80]. Predicted genes smaller than 100 amino acids
without hits in any of the databases were removed.
Genes were manually annotated as pseudogenes when
they contained frameshift mutations, premature
stop-codons, missing start codons or disruptions by
IS-insertions. In addition, protein domains were pre-
dicted according to the Pfam database [81], BlastP to the
NCBI database [82] and FASTA searches [83] against a
well-curated in-house database by Lisa Klasson of
Wolbachia genomes. All results were loaded into
Artemis [84] in which they were manually curated.
Transposases were blasted to the IS-finder database to
determine the family and group (https://www-is.bio-
toul.fr). Uncharacterized/unique proteins were run
through the InterPro databases with InterProScan [85].
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Genes that did not exhibit features indicative of any spe-
cific function, but did contain transmembrane segments,
cytoplasmic and non-cytoplasmic domains were charac-
terised as putative membrane proteins.

For wFol, equal distribution of gene groups and trans-
posase families over chromosomal parts (74.6%) and
RPOs (25.4%) was tested with binomial tests in R [86].

Annotation completeness and ortholog identification

We compared the wLcla and wFol assemblies to a set of
16 other Wolbachia genomes, selected based on assem-
bly quality as well as phylogenetic and functional diver-
sity (Additional file 2: Table S2) [9, 10, 28, 33-35, 50, 51,
55, 87-92]. Protein sequences of these 16 genomes were
downloaded from the NCBI database and the complete-
ness of their gene content was predicted with the
BUSCO v3 pipeline, which compares the Wolbachia ge-
nomes to a set of 148 single copy bacterial genes (Bac-
teria 0db9) [93]. Furthermore, orthogroups were inferred
using OrthoFinder and are defined as groups of genes that
all derived from a single gene in the last common ancestor
[41]. This allowed us to look for orthogroups shared be-
tween Wolbachia associated with PI and find unique
genes (genes lacking orthologues in other Wolbachia).

In all genomes, expanded and contracted orthogroups
were identified by calculating the z-scores [94], which is
calculated by subtracting the average number of genes in
an orthogroup over all species from the gene number of
a focal species and dividing this by the standard devi-
ation. A z-score of 2 or above indicates an expansion
and a score of -2 or below a contraction of an
orthogroup.

Prophage annotation and synteny
Prophage regions of wFol and wLcla were initially identi-
fied by PHASTER [95]. While this correctly finds the
more common phage genes it does not identify the more
diverse EAM [38], as they contain of eukaryotic genes
picked up by phages that are therefore not being recog-
nised as phage genes. Therefore, the EAM were defined
during manual curating of the prophage regions. Phage
region lengths of other phages were based on annota-
tions from Bordenstein & Bordenstein (2016) to include
the whole phages with EAM or, if not available from that
paper, by determining them in a similar way (Additional
file 2: Table S1). As, the phage region are often the most
difficult parts to assemble, this was only done for
Wolbachia assemblies with two or less scaffolds, to avoid
the use of incomplete sets of RPOs within our analysis.
Moreover, wCle could not be used as phage genes
seemed to be removed from its annotation.

Collinearity between the regions of phage origin
(RPOs) was analysed with the MCScanX package [96]. A
BlastP search of all against all RPO protein sequences
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was performed with an E-value cutoff of le-10,
followed by a MCScanX run (-m 2). Synteny plots were
drawn using Circos [97].

Whole genome correlations

To examine overall genomic expansion and contraction pat-
terns and their possible connection to phages and their host,
we assessed correlations between Wolbachia genome size
versus amount of phage DNA, Wolbachia genome size versus
host genome size, and number of Wolbachia genes versus
number of host genes for all combinations that had sufficient
reliable data. Genomic information of all available hosts of
the Wolbachia analysed in this study was collected from
online servers, most were downloaded from NCBI (hosts and
accession numbers: Brugia malayi, GCA_000002995.4;
Cimex lectularius, GCF_000648675.1; Culex quinquefasciatus,
GCA_000209185.1; Drosophila melanogaster, GCF_00000121
54; Drosophila simulans, GCA_000754195.2; Folsomia
candida, GCA_002217175.1; Onchocerca ochengi, GCA_0009
50515.2 and Trichogramma pretiosum, GCF_000599845.1)
and data for Omnchocerca volvulus strain Cameroon was
collected from http://parasite.wormbase.org/Onchocerca_vol
vulus_prjeb513/Info/Index/. Spearman’s rank correlations
were calculated in R.
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