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Abstract

Background: The amount of RNA per cell, namely the transcriptome size, may vary under many biological conditions
including tumor. If the transcriptome size of two cells is different, direct comparison of the expression measurements
on the same amount of total RNA for two samples can only identify genes with changes in the relative mRNA
abundances, i.e., cellular mRNA concentration, rather than genes with changes in the absolute mRNA abundances.

Results: Our recently proposed RankCompV2 algorithm identify differentially expressed genes (DEGs) through
comparing the relative expression orderings (REOs) of disease samples with that of normal samples. We reasoned that
both the mRNA concentration and the absolute abundances of these DEGs must have changes in disease samples. In
simulation experiments, this method showed excellent performance for identifying DEGs between normal and disease
samples with different transcriptome sizes. Through analyzing data for ten cancer types, we found that a significantly
higher proportion of the DEGs with absolute mRNA abundance changes overlapped or directly interacted with known
cancer driver genes and anti-cancer drug targets than that of the DEGs only with mRNA concentration changes alone
identified by the traditional methods. The DEGs with increased absolute mRNA abundances were enriched in DNA
damage-related pathways, while DEGs with decreased absolute mRNA abundances were enriched in immune and
metabolism associated pathways.

Conclusions: Both the mRNA concentration and the absolute abundances of the DEGs identified through REOs
comparison change in disease samples in comparison with normal samples. In cancers these genes might play more
important upstream roles in carcinogenesis.

Keywords: Differentially expressed gene, Relative expression ordering, Cellular mRNA concentration, Absolute mRNA
abundances

Background
It is a common practice to identify differentially expressed
genes (DEGs) between two phenotypes through comparing
the gene expression profiles measured with the same
amount of RNA (or mRNA) extracted from two-phenotype
samples, based on the assumption that different types of
cells have approximately the same amount of total RNA
per cell (transcriptome size) [1]. However, this assumption

does not hold under many biological conditions. For ex-
ample, high expression level of c-Myc can induce global
transcriptional amplification of cancer cells [2] and many
cancer cells are aneuploid and/or polyploid [3], both of
which may cause a change in the transcriptome size [4, 5].
Consequently, if two samples being compared are dif-
ferent in transcriptome sizes but still the same
amounts of RNA are used which will result in differ-
ent numbers of cells between the two measured sam-
ples, a direct comparison of the measurement values
of the two samples can only identify transcripts with
changed cellular concentration which might have no
changes in absolute mRNA abundances [6]. Although
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it could be argued that the concentrations of
macromolecules are relevant parameters governing
biochemical reactions inside cells, inappropriate
interpretation of mRNA concentration changes might
lead to incorrect conclusions for a range of biological
questions, including the transcriptional characteristics
of cancer cells [7].
Experimental methods have been proposed to identify

genes with differential absolute mRNA abundances be-
tween two cells with different transcriptome sizes [1, 7–9].
However, none has been commonly accepted as a reliable
standard approach. For example, if the number of cells
used for RNA extraction can be determined, such as in ex-
periments for cell lines or microdissected solid tumor tis-
sues, external control RNA could be spiked into each
RNA sample in proportion to the numbers of cells for
data normalization [1]. However, large technical variations
in spike-in control enrichment and amplification during
library preparation challenge the use of spike-in controls
[10, 11]. The biological scaling normalization approach
proposed by Aanes et al. [8] for adjusting the variation in
transcriptome sizes between samples cannot be employed
if the number of cells is unknown, which is often the case
in experiments for undissected solid tissues. Besides the
above-mentioned difficulties, it must be pointed out that
all of these strategies are not useful for previously pub-
lished data, where none of the information about external
RNA controls or the cell numbers could be available.
Ranking all genes according to their measured expres-

sion levels in a descending (or ascending) order in a
sample, the within-sample relative expression ordering
(REO) of a gene pair (GA and GB) represents whether
the expression level of GA is higher or lower than that of
GB in the sample. Previously, we have found that the
within-sample REOs of gene pairs are highly stable in a
particular type of normal tissues but widely disturbed in
tumor tissues. Based on this finding, an algorithm, Rank-
Comp [12], was proposed to detect DEGs through ana-
lyzing reversal REOs pattern in an individual disease
sample, taking the highly stable REOs in normal samples
as the background. Recently, we adjusted this algorithm
slightly to fit case-control cohort data, named Rank-
CompV2 [13, 14]. The RankComp and RankCompV2
algorithm detect the genes with expression changes that
disrupt the gene correlation structures and change the
REOs of the gene pairs from one phenotype to the other.
Here, we reasoned that DEGs identified through REOs
comparison must change in both mRNA concentration
and absolute abundances through theoretical reasoning
and simulation experiment. Then, RankCompV2 was ap-
plied to ten cancer datasets. Finally, we provided prelim-
inary evidence that the DEGs with changes in both
absolute mRNA abundances and concentration are more
likely to be closely related with cancer driver genes and

drug targets than the DEGs which may change only in
mRNA concentration exclusively identified by the popu-
lar SAM or edgeR algorithm. RankCompV2 is imple-
mented in C language on Linux and is available on
GitHub (https://github.com/pathint/reoa).

Methods
Data and processing
All expression datasets, as summarized in Table 1, were col-
lected from the Gene Expression Omnibus (GEO) database.
For microarray and beadchip datasets, quantile normalized
values were used in both SAM [15] and RankCompV2. For
the RNAseq data, edgeR uses raw counts as input to iden-
tify DEGs [16]. When applying the edgeR package, we
employed the default TMM (trimmed mean of M-values)
[17] to normalize the raw count for sequencing depth and
RNA composition. Because TMM does not deal with the
transcript length bias of sequencing data, the data normal-
ized with this algorithm are not suitable to rank expression
levels of genes with different transcript lengths. Thus,
RankCompV2 uses log2 RPKM data where the transcript
length bias has been normalized, as input to identify DEGs.
See supplementary method for details (Additional file 1).

RankCompV2 algorithm
The RankCompV2 algorithm was proposed for identifying
DEGs with large expression changes lead REOs within dis-
eased samples reversed, comparing with the stable REOs
within the normal samples [13].
First, gene pairs with significantly stable REOs are iden-

tified in the normal samples. Stable gene pairs, defined as
gene pairs with identical REO pattern in significantly more
samples for one phenotype than expected by chance, were
identified by a binomial test. For a given gene pair (Gi, Gj),
let s denote the number of samples in which gene i has a
higher (or lower) expression level than gene j in a total of
n samples, the significance of the REO pattern is deter-
mined by a binomial test as follows,

P ¼ 1−
Xs−1

i¼0

� n

i

�
ðp0Þið1−p0Þn−i ð1Þ

where p0 is the probability of observing a certain REO pat-
tern (Gi >Gj or Gi <Gj) in a sample by chance (p0 = 0.5).
Current approaches for adjusting the p-values in discrete
statistics are still arguable [18–23]. Here, we used the
Benjamini and Hochberg method [24] for this purpose,
though the method tends to have insufficient power for
discrete data [25].
Similarly, gene pairs with significantly stable REOs in

the disease samples are identified. Focusing on the
overlaps of the two lists of gene pairs, the gene pairs
with stable REOs in the normal samples are defined as
the normal background stable REOs while the gene
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pairs with reversely stable REOs in the disease samples
compared with the normal samples are defined as the
reversal REOs of the disease group. For a given gene G,
we counted the numbers of gene pairs with G >Gi and
gene pairs with G <Gi in normal and disease samples,
respectively, and listed the four-cell contingency table
through analyzing the G-background REOs and the re-
versal REOs. Then the Fisher’s exact test is used to test
whether gene G expresses differentially in the disease
group. After the identification of all candidate DEGs,
the gene pairs including candidate DEGs as partner
genes are excluded from the construction of the contin-
gency table. And the Fisher’s exact test is performed
again to minimize the confound effects of the expres-
sion changes of the partner genes. This filtering process
is conducted iteratively until the number of DEGs
keeps stable in two successive iterations. The details of
the RankCompV2 algorithm were described in our pre-
vious work [13].
RankCompV2 is an empirical algorithm, where the de-

fault FDR parameter (FDR < 0.05) for the determination of
significantly stable REOs can control false discoveries in
simulation experiments, as demonstrated on nine datasets
in our previous study [13] and on the twenty datasets in

this study (Additional file 1, Additional file 2: Figure S1
and Additional file 3: Table S1).

Reproducibility evaluation of DEGs
We used the POG (Percentage of Overlapping Genes)
score [26] and the concordance score to evaluate the
reproducibility of DEGs identified from two independ-
ent datasets. If two lists of DEGs with length L1 and L2,
have n overlaps, among which s have the same dysregu-
lation directions (up- or down-regulation), then the
POG score from list 1 (or 2) to list 2 (or 1), denoted as
POG12 (or POG21), is calculated as s/L1 (or s/L2), and
the concordance score is calculated as s/n. We evalu-
ated whether a concordance score is higher than what
expected by chance using the binomial distribution as
described above, where p0 is the probability of a gene
having the concordant dysregulation direction in the
two lists by chance.

Enrichment analysis
The hypergeometric distribution was used to determine
the biological pathways significantly enriched with up-
and down-regulated DEGs [27], respectively, based on

Table 1 Twenty datasets for ten cancers analyzed in this study

Cancer Type GEO series Platform Normal Cancer # of Genes

LIHC GSE57957 GPL10558 Illumina beadchip 39 39 30,500

GSE45267 GPL570 Affymetrix array 39 48 20,486

KIRC GSE46699 GPL570 Affymetrix array 42 42 20,486

GSE53757 GPL570 Affymetrix array 72 72 20,486

HNSC GSE33205 GPL5175 Affymetrix array 25 44 14,963

GSE6631 GPL8300 Affymetrix array 22 22 8592

LUSC GSE19188 GPL570 Affymetrix array 65 27 20,486

GSE18842 GPL570 Affymetrix array 32 32 20,486

STAD GSE13911 GPL570 Affymetrix array 31 31 20,486

GSE29998 GPL6947 Illumina beadchip 49 50 24,384

COAD GSE23878 GPL570 Affymetrix array 24 35 20,486

GSE44076 GPL13667 Affymetrix array 98 98 19,040

LUAD GSE27262 GPL570 Affymetrix array 25 25 20,486

GSE87340 GPL11154 Illumina HiSeq 27 27 19,471

BRCA GSE10780 GPL570 Affymetrix array 70 30 20,486

GSE10810 GPL570 Affymetrix array 27 31 20,486

PAAD GSE15471 GPL570 Affymetrix array 36 36 20,486

GSE16515 GPL570 Affymetrix array 16 36 20,486

ESCA GSE23400 GPL96 Affymetrix array 53 53 12,432

GSE38129 GPL571 Affymetrix array 30 30 12,432

Abbreviation: LIHC Liver hepatocellular carcinoma, KIRC Kidney renal clear cell carcinoma, HNSC Head and Neck squamous cell carcinoma, LUSC Lung squamous
cell carcinoma, STAD Stomach adenocarcinoma, COAD Colon adenocarcinoma, LUAD Lung adenocarcinoma, BRCA Breast invasive carcinoma, PAAD Pancreatic
adenocarcinoma, ESCA Esophageal carcinoma
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the Kyoto Encyclopedia of Genes and Genomes database
(downloaded on May 16, 2016) [28].

Results
Theoretical basis for identifying DEGs with changes in
absolute mRNA abundances
The absolute mRNA abundance of a given gene in a cell
is defined as the transcript number of the gene in the
cell, and the mRNA concentration is defined as the pro-
portion of mRNA of a given gene in the total mRNA of
the cell. Because the mRNA concentration of a gene in a
cell is equal to the mRNA concentration of the gene in
the corresponding sample including many identical cells,
a direct comparison of the measurement values of two
samples can identify DEGs with changes in cellular
mRNA concentration. However, when the transcriptome
size of a tumor cell is different from that of a normal
cell, direct comparison of the measurement values of
two samples cannot identify genes with changes in abso-
lute mRNA abundances at the single cell level. Here, we
reasoned that DEGs identified through REOs compari-
son must change in both mRNA concentration and ab-
solute abundances at the single cell level.
Let Tk represent the amount of total mRNA in a cell

of sample k (k = 1, 2) and S represent the same amount
of total mRNA extracted from the two samples. Then
the number of cells in sample k can be represented as

nk ¼ S=Tk ð2Þ
Under the ideal condition that mRNA is extracted

from the pure normal epithelial cells (sample 1) and
pure tumor epithelial cells (sample 2), the measured
expression level of gene i in sample k is,

Mki ¼ rk
�Nki

�nk ¼ rk
�Nki

�S=Tk ¼ rk
�Nki=Tk

�S
¼ rk

�Cki
�S ð3Þ

where rk is the linear correlation coefficient between the
measured expression value and the transcript number of
gene i in sample k with nk cells, Nki represent the tran-
script number of gene i (i = 1,...,m) in a cell of sample k.
Cki =Nki/Tk is proportional to the cellular concentration
of the transcript of gene i in sample k. Here, we assume
that the normalized count values of RNA-sequencing
platforms and the fluorescence intensity values of micro-
array platforms are approximately linearly correlated
with the transcript number in a sample within a certain
range of gene expression level [29–32].
Since S are the same for two samples and rk are com-

parable between two samples after data normalization,
direct comparison of the normalized measurements
(Mki) between the two samples is equivalent to the com-
parison of the concentrations (Cki) between the two
samples. Consequently, the DEGs identified by using

traditional methods, such as SAM for microarray data or
edgeR for RNA-sequencing data, are the genes with
changes in mRNA concentration (Cki) between the two
samples.
Because both Tk and S in eq. (3) are constant for a par-

ticular sample k, the within-sample REOs ranked according
to the concentration (Cki) are the same with the REOs
ranked according to the transcript number (Nki). Therefore,
the observed reversal REOs in sample 2 compared with
sample 1 must be the reversal REOs of both the mRNA
concentration and the transcript number (absolute mRNA
abundances). Thus, the DEGs identified by the REO-based
RankCompV2 algorithm must have changes in both
mRNA concentration and absolute abundances. Conse-
quently, they should be included in the DEGs with concen-
tration changes detected by traditional quantitative-based
methods such as SAM or edgeR, given that the later can
achieve sufficient power in the data under analysis.

Evaluation of performance
We assumed that the number of reads mapping to a tran-
script sequence is roughly proportional to the RNA
amount of the transcript and the sum of the read counts of
all transcripts (total mapped reads) was used to represent
the total RNA amount of a sample. Thus, we performed a
simulation experiment based on the RNA-sequencing data
of the GSE87340 dataset to evaluate the performance of
RankCompV2 in data with global transcriptome size
changes. For the 19,471 genes measured for the 27 normal
samples, after removing genes with a count of 0 in more
than 75% of the samples, we simulated disease samples by
randomly selecting 6000 genes to produce 3000, 4000 and
5000 up-regulated DEGs and correspondingly 3000, 2000
and 1000 down-regulated DEGs, respectively. For each
simulation experiment, the up-regulated genes were
equally divided into four groups and the fold change (FC)
levels of the genes in the four groups were assigned as 2, 3,
4 and 5, respectively. Similarly, the down-regulated genes
were equally divided into four groups and the FC levels of
the genes in the four groups were assigned as 1/2, 1/3, 1/4
and 1/5, respectively.
When simulating more up-regulated DEGs than

down-regulated DEGs, the simulated disease samples
tend to have more total transcript counts than the nor-
mal samples, which mean that the transcriptome size of
a disease cell is larger than that of a normal cell. In order
to simulate the same amount of total RNA extracted
from two samples, the read counts of each transcript in
simulated disease samples were multiplied by a tran-
scriptome size factor to make the total counts of simu-
lated disease samples keep the same with that of normal
samples. The factor is the fold change of the transcrip-
tome size (the amount of total RNA per cell) between
the tumor cell and the normal cell.
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Read counts were used in edgeR and the RPKM values
calculated from the counts were used in RankCompV2 to
identify DEGs. Each simulation experiment was repeated
100 times. The sensitivity (the ratio of correctly identified
DEGs to all true DEGs), the specificity (the ratio of cor-
rectly identified non-DEGs to all true non-DEGs), the
F-score (a harmonic mean of the sensitivity and the speci-
ficity) and the false discovery rate (FDR, the ratio of true
non-DEGs to all identified DEGs) were employed to
evaluate the performance of different algorithms.
As shown in Table 2, when the number of up-regulated

DEGs increased from 3000 to 5000, the ratio of the total
counts of the normal sample to that of the simulated dis-
ease samples decreased from 0.7570 to 0.5972. The TMM
normalization [17] can estimate a scale factor to adjust the
different total RNA output between samples. When the
numbers of up- and down-regulated DEGs were equal,
edgeR which can incorporate these factors into DEGs ana-
lysis exhibited higher average sensitivity and F-score than
RankCompV2. However, the FDR of edgeR was up to
54.89% when the up-regulated DEGs were more than the
down-regulated DEGs. Instead, RankCompV2 exhibited
rather good performance with sensitivity > 95%, specificity
> 99% and FDR < 0.15%. For each simulation experiment
the DEGs identified by RankCompV2 were completely in-
cluded in the DEGs identified by edgeR. The simulation
results confirmed the above mathematical reasoning and
demonstrated RankCompV2 can identify genes with ex-
pression change in both mRNA concentration and abso-
lute abundances.
To assess the strength of the methodology, we performed

another simulation experiment based on the RNA-sequen-
cing data of the 27 normal samples in the GSE87340 data-
set. We randomly generated 4000 up-regulated and 2000
down-regulated genes by changing their measured values
in each samples with FC levels of 1.5 to 3.5 to produce 27
disease samples. In each simulation experiment, all the se-
lected genes were set at the same FC level. Each simulation
experiment was repeated 100 times. The simulated disease
samples were also multiplied by a transcriptome size factor
so as to simulate the same amount of total RNA extracted
from two samples. The average transcriptome size factors
for each 100 simulated experiments were listed in Table 3.

Then edge R and RankCompV2 were performed to identify
DEGs. The sensitivity, specificity, F-score and FDR were
calculated.
As shown in Table 3, the average sensitivity of Rank-

CompV2 was only 56.10% for DEGs with FC of 1.5 and
up to 98.84% with FC of 3.5, which suggested that Rank-
CompV2 performed well for DEGs with large expression
changes. In general, RankCompV2 showed a very high
specificity and a very low FDR when the FC level in-
creased from 1.5 to 3.5. Notably, the FDR of edgeR rises
as the FC level increases. The underlying reason is as fol-
lows. When up-regulated DEGs with a larger FC level was
introduced in the simulation, it leads to a bigger global
transcriptome size of a tumor cell than that of a normal
cell, as shown by the decreased transcriptome size factor
(Table 3), the ratio between the normal transcriptome size
and the simulated tumor cell size. The edgeR algorithm
identifies DEGs through comparing the read counts of a
gene between the two samples. Given the same amount of
total input RNA for the two samples, many genes without
differences in mRNA absolute abundances would have
lower read counts in the tumor sample than in the normal
sample, thus be identified as down-regulated genes, which
leads to a higher FDR of edgeR if taking DEGs with abso-
lute mRNA abundance changes as the reference.
We also performed a simulation experiment on the gen-

ome size changes leading to the global transcriptome size
variations. The simulation experiment also demonstrated
that RankCompV2 could identify genes with expression
changes in absolute abundances and performed well for
DEGs with large expression changes (Additional file 4).

Reproducible DEGs with changes in absolute mRNA
abundances in ten cancers
We collected two datasets of gene expression profiles for
each of ten cancer types (Table 1). For each dataset, we
compared the DEGs between the normal and cancer
samples identified by RankCompV2 with the DEGs iden-
tified by SAM for microarray data or by edgeR for
RNA-sequencing data. In GSE57957 measured by micro-
array for liver hepatocellular carcinoma (LIHC), SAM
identified 11,497 DEGs with false discovery rate (FDR) <
0.05, which included 3603 of the 3715 RankCompV2

Table 2 Simulation evaluation with different transcriptome sizes for edgeR and RankCompV2

Up/Down Factor edgeR RankCompV2

Sen Spe F-score FDR Sen Spe F-score FDR

3000/3000 0.7570 99.31% 100.00% 99.65% 0.00% 95.24% 100.00% 98.53% 0.00%

4000/2000 0.6682 99.55% 89.40% 94.18% 18.95% 95.47% 99.98% 98.58% 0.05%

5000/1000 0.5972 99.41% 45.62% 62.51% 54.89% 95.96% 99.94% 98.71% 0.13%

Note: Up (or Down) indexes the number of simulated up-regulated (or down-regulated) DEGs; Factor is defined as the fold change of the transcriptome sizes
between the simulated tumor cell and the normal cell; Sen represents sensitivity defined as the ratio of correctly identified DEGs to all true DEGs; Spe represents
specificity defined as the ratio of correctly identified non-DEGs to all true non-DEGs); F-score is a harmonic mean of the sensitivity and the specificity; FDR is the
abbreviation of false discovery rate defined as the ratio of true non-DEGs to all identified DEGs
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DEGs. In GSE45267 for LIHC, the 14,192 DEGs selected
by SAM included 4712 of the 4728 DEGs detected by
RankCompV2. The concordance scores of the dysregula-
tion directions of the overlaps between DEGs detected
by RankCompV2 and DEGs detected by SAM in the two

datasets were all 100%. Similar results were observed in
the 18 datasets for other nine cancer types (Fig. 1a and
Additional file 5: Table S2). As expected, POG21 is lower
than POG12 because the DEGs identified by Rank-
CompV2 should be included in the DEGs identified by

Table 3 Simulation evaluation with different FC levels for edgeR and RankCompV2

FC
level

Factor edgeR RankCompV2

Sen Spe F-score FDR Sen Spe F-score FDR

1.5 0.9360 85.83% 100.00% 92.37% 0.00% 56.10% 100.00% 71.88% 0.00%

2 0.8647 98.76% 99.76% 99.26% 0.51% 82.50% 100.00% 90.41% 0.00%

2.5 0.7996 99.52% 97.82% 98.63% 4.23% 93.50% 100.00% 96.64% 0.00%

3 0.7448 99.78% 94.85% 97.21% 9.83% 97.79% 100.00% 98.88% 0.01%

3.5 0.6965 99.88% 92.61% 96.08% 13.87% 98.84% 99.98% 99.40% 0.05%

Note: FC is the abbreviation of Fold change; Factor is defined as the fold change of the transcriptome sizes between the simulated tumor cell and the normal cell;
Sen represents sensitivity defined as the ratio of correctly identified DEGs to all true DEGs; Spe represents specificity defined as the ratio of correctly identified
non-DEGs to all true non-DEGs); F-score is a harmonic mean of the sensitivity and the specificity; FDR is the abbreviation of false discovery rate defined as the
ratio of true non-DEGs to all identified DEGs

Fig. 1 Reproducibility evaluation of DEGs identified by RankCompV2. a Comparison of DEGs identified by RankCompV2 with DEGs identified by
SAM or edgeR in the same dataset. POG12 (or POG21) denotes the ratio of consistently detected DEGs by the two methods to DEGs identified by
RankCompV2 (or by SAM or edgeR) for the same dataset. b Comparison of RankCompV2 DEGs identified from different datasets. POG12 (or
POG21) denotes the ratio of consistently detected DEGs from two datasets to DEGs detected from the first dataset (or the second dataset) for
each cancer type. The concordance score denotes the percentage of consistently detected DEGs that display the same dysregulation directions
to the overlapped DEGs between two DEG lists
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SAM or edgeR. The results confirmed the above mathem-
atical reasoning, which also provided circumstantial evi-
dence of the high accuracy of the RankCompV2 method.
The DEGs identified by RankCompV2 were highly re-

producible in independent datasets. For LIHC, Rank-
CompV2 identified 3715 DEGs from the GSE57957 dataset
and 51.71% of them were included in the 4728 DEGs de-
tected from the GSE45267 dataset. The concordance score
of the overlapped 1946 DEGs was 98.72% which was un-
likely to be observed by chance (binomial test, p < 1.0E-16).
The highly reproducibility of RankCompV2 DEGs identi-
fied from independent datasets were also observed in the
other nine cancer types (Fig. 1b).

Enrichment of cancer driver genes and drug targets in
DEGs with absolute abundance changes
For each cancer type, the two lists of DEGs identified
from the two datasets by SAM for the microarray data
or by edgeR for the RNA-sequencing data were com-
bined, excluding those with contradictory dysregulation
directions. Similar combination processes were per-
formed on DEGs selected by RankCompV2. The DEGs
identified by RankCompV2, with expression change in
both mRNA concentration and absolute abundances,
were termed as absolute DEGs, while the DEGs solely
detected by SAM or edgeR were termed as relative
DEGs with changes in concentration only. The numbers
of the absolute DEGs and relative DEGs for the ten can-
cer types were listed in Table 4. Then, we explored the
biological significance of the absolute DEGs.
With the 616 cancer driver genes downloaded from the

Catalogue Of Somatic Mutations (COSMIC, version81,

updated 9th May 2017) database [33], we found 25.79% of
the 6472 absolute DEGs of LIHC overlapped or directly
interacted with known cancer driver genes based on the
protein–protein interaction data downloaded from the
STRING v10 database [34], which was significantly higher
than the corresponding ratio (18.35%) for the 12,049 rela-
tive DEGs (Fisher’s exact test, p < 1.0E-16). Similar results
were observed for the remained nine cancer types (Fig. 2a).
Based on the cancer driver genes downloaded from the
DriverDBv2 database [35], where the driver genes for each
cancer type were identified by at least two algorithms
from the mutation data in the TCGA database, we also
observed significantly higher ratios of cancer driver genes
and interaction genes in the absolute DEGs than in the
relative DEGs for all the ten cancer types (Fig. 2b). The re-
sults indicate that DEGs changing in absolute abundances
are more likely to be related with upstream events of car-
cinogenesis than DEGs changing in concentration only.
With 116 targets of 148 anti-cancer drugs documented

in CancerDR [36], we found that 16.56% of the 6472
absolute DEGs for LIHC overlapped or directly inter-
acted with known anti-cancer drug targets in the
STRING network, which was significantly higher than the
corresponding ratio 10.91% for the 12,049 relative DEGs
(Fisher’s exact test, p < 1.0E-16). Similar results were ob-
served for the remained nine cancer types (Fig. 2c).

Functional analysis of DEGs with absolute abundance
changes
Pathway enrichment analysis was performed for the abso-
lute and relative DEGs, respectively. As shown in Add-
itional file 6: Table S3, for each of the ten cancers, the
pathways enriched with the absolute DEGs were much
more than and quite different from the pathways enriched
with the relative DEGs. As summarized in Fig. 3, the path-
ways enriched with absolute DEGs for at least five cancer
types were very different from the pathways enriched with
relative DEGs for at least five cancer types. The
up-regulated absolute DEGs were enriched in many path-
ways related with response to DNA damages, including
“mismatch repair”, “base excision repair”, “nucleotide exci-
sion repair”, “homologous recombination” and “Fanconi
anemia pathway” [37]. These genes were also enriched in
“p53 signaling”, “cell cycle”, “DNA replication”, “pyrimidine
metabolism” and “purine metabolism”. The pathways
enriched by relative DEGs included “proteasome” and
“protein processing in endoplasmic reticulum” besides
“RNA transport” and “spliceosome” which were also
enriched by up-regulated absolute DEGs.
The down-regulated absolute DEGs were commonly

enriched in many metabolism pathways, including
amino acid, carbohydrate and lipid metabolism, and in
immune associated pathways, including “chemokine sig-
naling”, “complement and coagulation cascades” and

Table 4 Numbers of identified absolute and relative DEGs in
ten cancers

Cancer
type

Absolute DEGs Relative DEGs

Up Down Up Down

LIHC 3525 2947 5424 6625

KIRC 5295 4420 2882 6279

HNSC 841 1000 2142 1790

LUSC 3523 4795 7067 2363

STAD 2946 2003 4611 6042

COAD 3922 4692 4799 2877

LUAD 2905 3868 6186 2121

BRCA 2185 3251 6458 1771

PAAD 4261 2294 3658 8408

ESCA 1901 1334 2459 4438

Abbreviation: LIHC Liver hepatocellular carcinoma, KIRC Kidney renal clear cell
carcinoma, HNSC Head and Neck squamous cell carcinoma, LUSC Lung
squamous cell carcinoma, STAD Stomach adenocarcinoma, COAD Colon
adenocarcinoma, LUAD Lung adenocarcinoma, BRCA Breast invasive
carcinoma, PAAD Pancreatic adenocarcinoma, ESCA Esophageal carcinoma
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“leukocyte transendothelial migration”. In contrast, the
down-regulated relative DEGs were enriched in signaling
pathways including “calcium signaling”, “cAMP signaling”,
“neuroactive ligand-receptor interaction” and two sensory
system pathways of “olfactory transduction” and “taste
transduction”. The difference of pathways enriched by two
type DEGs is an issue worth further analysis.

Discussion
We demonstrated that the REO-based RankCompV2 al-
gorithm can identify DEGs with changes in both mRNA
concentration and absolute abundances (the absolute
DEGs), while the quantitative-based algorithms can
identify only those with changes in mRNA concentration
(the relative DEGs). Through studies for all the ten can-
cers, the absolute DEGs have a higher probability associ-
ated with both known cancer driver genes and drug
targets than the relative DEGs. Thus, we speculate that
the absolute DEGs might play a more important

upstream role in carcinogenesis. In addition pathway en-
richment analysis showed that up-regulated absolute
DEGs are significantly enriched in DNA damage-related
pathways and down-regulated absolute DEGs are signifi-
cantly enriched in immune and metabolism associated
pathways. The genome instability including DNA dam-
ages and tumor-promoting inflammation driven by im-
mune cells are two enabling characteristics of tumor and
instrumental for tumorigenesis and progression [38],
and energy metabolism dysregulation is a fundamental
hallmark to fuel cancer cell growth and division [38].
The reasoning for that the REOs-based RankCompV2

algorithm can identify DEGs with changes in absolute
mRNA abundances is based on the ideal condition that
the gene expression measurements are well correlated
with the transcript numbers. For tumor tissues, the ideal
condition could be violated due to variations of the
tumor epithelial cell proportions in tissues sampled from
different sites of a tumor and partial RNA degradation

Fig. 2 Association between the identified absolute and relative DEGs with known cancer driver genes or drug targets. a 616 cancer driver genes
from COSMIC; b cancer driver genes from DriverDBv2; c anti-cancer drug targets. Statistically significant differences (p < 0.05) were found in all the
ratios between absolute DEGs and relative DEGs
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during sample preparation. However, the qualitative nature
of REOs lends them the advantage being robust against
the above-mentioned confounding factors [39–41]. As
demonstrated in our recent study, the stromal cells in
tumor tissues have similar REOs with those of epithelial
cells in tumor tissues [39, 41]. More than 96% REOs in the
tumor tissues with above 70% of proportion of epithelial
cells are consistent with the REOs in tumor epithelial cells,
and about 90% REOs in tumor epithelial cells are kept in
tumor tissues even when the proportion of epithelial cells
decreases to 30% [41]. Therefore, the REOs-based Rank-
CompV2 algorithm would be largely applicable to real
tumor data of macro-dissected cancer tissues.
In order to simplify the reasoning, we assumed that

genes have similar measurement biases and the correl-
ation coefficients (r) between the measured expression
values and the transcript numbers are similar for different
genes in eq. (3). However, different measurement biases
exist among different samples and among different genes
within samples in actual measurement [42–44]. Thus, it
seems unreasonable to compare the measured expression
levels of different genes within a sample. However, it has
been shown that the within-sample REOs are robust
against systematic biases of measurements, experimental
batch effects and data normalization [45]. Moreover, the

gene pairs with large rank difference tend to retain the
same REO patterns in samples measured with different
platforms [46]. The high robustness of within-sample
REOs indicate that the influence of measurement biases
on the REOs is small.
Here, we further analyzed the influence of measure-

ment biases on the within-sample REO-based algorithm.
Considering two genes, i and j which have the expres-
sion levels Ei and Ej, respectively, their measured values
can be written as Mi = Eiri and Mj = Ejrj. The ordering
between the two measured values can be judged by the
ratio of Mi/Mj = (ri/rj) (Ei/Ej). If there is no bias, ri = rj,
then Mi/Mj will be the same as Ei/Ej. If ri and rj are not
the same but remain constant in the measurement
range, Mi/Mj is proportional to the ground truth ratio,
therefore the observed REOs may not reflect the true
REOs, which will reduce the statistical power of the
RankCompV2 algorithm but will not introduce false dis-
coveries (Additional file 7). Furthermore, if the bias is
not systematic, the misjudged REOs will distribute
randomly in the four cells of the contingency table of
the counts of numbers of gene pairs with Mi >Mj or Mi

<Mj. Therefore, the detection power is expected to be
reduced. If the dynamic range is not linear, the situation
will be more complicated. But we also expect that the

Fig. 3 The pathways significantly enriched with absolute and relative DEGs, respectively, in each cancer type and commonly enriched in
at least five cancer types
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main influence to our method is to reduce the detection
power slightly. It means that the RankCompV2 algorithm
can detect at least a part of the DEGs with absolute
mRNA abundances changes, which still have biological
significances. We believe that the power of the Rank-
CompV2 algorithm will increase along with the improve-
ment of gene expression measurement technologies.
Genomic copy number aberrations (CNAs) could also

account for a substantial portion of gene expression
changes. Currently, CNAs in cancer genomes are deter-
mined by comparing the measurements for the same
amounts of DNA extracted from cancer and normal tis-
sues, based on the assumption that the overall yields of
DNA per cell (genome sizes) of different cell types are ap-
proximately the same. However, this assumption is least
likely to hold because many cancers are aneuploid and/or
polyploid [3]. The wrong assumption might lead to a ser-
ious consequence because CNAs are often used to deter-
mine cancer driver genes [47, 48]. Although several
methods such as FREEC [49] and CNAnorm [50] have
been proposed to correct the issues associated with cancer
genome sizes in estimating copy number alterations based
on deep sequencing data, there still exist some limitations.
For example, FREEC cannot deal with patients’ tumor
samples due to the need of providing the ploidy of the
most abundant copy number; CNAnorm is based on the
assumption that tumor cells are largely monoclonal or
polyclonal in a similar way, which could produce mislead-
ing results in tumors with large clonal variations [49, 50].
Furthermore, these methods cannot analyze the vast
amount of microarray CNA data. The REOs comparison
algorithm cannot be used to detect CNAs because, theor-
etically, the DNA intensity signals in normal cells should
be equal. Due to the same problem of cancer cell aneu-
ploid and/or polyploid [3], DNA methylation analyses
using bisulfite-Seq data based on the same amount of
DNA are also problematic [9]. Notably, the average beta
value of a given locus measured by the Illumina bead-
array can be interpreted as an estimate on the proportion
of methylated cells to all measured cells [51–53]. Thus,
when comparing two samples with different average DNA
yields per cell, the differentially methylated loci will not be
affected when similar amounts of DNA are extracted from
different number of cells.
The RankCompV2 algorithm can only identify DEGs

with sufficiently large expression changes that widely
change the REOs of the genes from one phenotype to the
other. On one hand, such DEGs might be of special bio-
logical significance, because functionally related genes
tend to express coordinately in a stable state of physio-
logical or pathological condition [54]. On the other hand,
many genes with small absolute abundance changes would
be determined as relative DEGs, which would blur the dif-
ferences between the absolute DEGs and the relative

DEGs. To learn more about the DEGs with changes in ab-
solute mRNA abundances, it needs to develop new bio-
logical techniques and/or bioinformatics algorithms.
Finally, we note that the studies on expression compari-
sons of microRNA and long non-coding RNA between
two phenotypes are also based on the wrong assumption
of similar overall yields of RNA molecules among different
cells [9, 55], where the REO-based methods are applicable
[56, 57]. It would be also interesting to study whether
these RNA molecules with absolute abundances changes
might have specific biological significances.

Conclusions
REO-based algorithm identified DEGs with changes in
both mRNA concentration and absolute abundances.
Through studies for all the ten cancers, we found DEGs
with absolute mRNA abundance changes are more likely
to be closely related with cancer driver genes and drug
targets and enriched in DNA damage, metabolism and
immune associated pathways. The genes with absolute
mRNA abundances changes in cancers might play more
important upstream roles in carcinogenesis.
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