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Abstract

Background: Rheumatoid arthritis (RA) is the most common autoimmune disease and affects about 1% of the
population. The cause of RA remains largely unknown and could result from a complex interaction between genes
and environment factors. Recent studies suggested that gut microbiota and their collective metabolic outputs exert
profound effects on the host immune system and are implicated in RA. However, which and how gut microbial
metabolites interact with host genetics in contributing to RA pathogenesis remains unknown. In this study, we
present a data-driven study to understand how gut microbial metabolites contribute to RA at the genetic,
functional and phenotypic levels.

Results: We used publicly available disease genetics, chemical genetics, human metabolome, genetic signaling
pathways, mouse genome-wide mutation phenotypes, and mouse phenotype ontology data. We identified
RA-associated microbial metabolites and prioritized them based on their genetic, functional and phenotypic
relevance to RA. We evaluated the prioritization methods using short-chain fatty acids (SCFAs), which were
previously shown to be involved in RA etiology. We validate the algorithms by showing that SCFAs are highly
associated with RA at genetic, functional and phenotypic levels: SCFAs ranked at top 3.52% based on shared
genes with RA, top 5.69% based on shared genetic pathways, and top 16.94% based on shared phenotypes.
Based on the genetic-level analysis, human gut microbial metabolites directly interact with many RA-
associated genes (as many as 18.1% of all 166 RA genes). Based on the functional-level analysis, human gut
microbial metabolites participate in many RA-associated genetic pathways (as many as 71.4% of 311 genetic
pathways significantly enriched for RA), including immune system pathways. Based on the phenotypic-level
analysis, gut microbial metabolites affect many RA-related phenotypes (as many as 51.3% of 978 phenotypes
significantly enriched for RA), including many immune system phenotypes.

Conclusions: Our study demonstrates strong gut-microbiome-immune-joint interactions in RA, which
converged on both genetic, functional and phenotypic levels.
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Background
Rheumatoid arthritis (RA) is one of the most common
autoimmune diseases and affects over 1.3 million Ameri-
cans and 1% of the worldwide population ((https://
www.rheumatoidarthritis.org/ra/facts-and-statistics/), [1]).
RA is complex, with genetic, epigenetic, and environ-
mental factors contributing to disease susceptibility and

progression [2]. While significant progress has been
made in understanding genetic, molecular, and cellular
aspects of RA, relatively little is known about which
environmental factors are important in RA susceptibil-
ity and how they interact with host genetics in the
development of RA [3]. Human and mouse model
microbiome studies have shown that gut dysbiosis, an
imbalance in the intestinal microbiota [4], is associated
with RA [5–11]. Studies in mouse models have shown a
requirement of gut microbiota for arthritis develop-
ment [12–14].
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Human gut microbiota contribute to human diseases and
health via the cumulative effects of microbial metabolites
[15–17]. It has become increasingly clear that the prodi-
gious metabolite activities of gut microbiota strongly influ-
ence RA susceptibility and progression [6, 7, 18–21]. Short
chain fatty acids (SCFA) are the primary end-products of
fermentation of non-digestible dietary fiber by the gut
microbiota. SCFAs have emerged as major mediators in
linking nutrition, gut microbiota, and human health [22,
23]. Recent studies have shown that SCFAs play important
roles in the suppression of inflammation in RA [19]. Mice
deficient for SFCA receptor showed exacerbated inflamma-
tion in modes of RA [19]. Butyrate, one of the most abun-
dant SCFAs, acts as an endogenous histone deacetylase
(HDAC) inhibitor and has been shown to decrease inflam-
mation in animal models of RA and other inflammatory
diseases [20].
Although the link between microbial metabolism and

RA has been recognized, the mechanisms underlying how
microbial metabolites interact with human genetics in
promoting or protecting against RA remain largely un-
known. We previously demonstrated that data-driven
computational approaches have potential in uncovering
mechanistic links between microbial metabolites and hu-
man diseases (colorectal cancer and Alzheimer’s disease)
[24–26]. Specific for RA, we previously developed a
mechanism-based prediction system, mMetabolitePredict,
for human metabolome biomarker discovery and applied
it to identify and prioritize metabolomic biomarkers for
RA [27]. We found that among 259,170 prioritized chemi-
cals/metabolites in human body, the subset of metabolites
originated from human gut microbiota ranked highly [27].
This finding motivated our current study (funded by Pfi-
zer ASPIRE Rheumatology and Dermatology Research
Award) to perform data-driven systematic analysis of
which and how human gut microbial metabolites are in-
volved in the immune-joint axis of the RA etiology at the
genetic, functional and phenotypic levels. We evaluated
the algorithms using SCFAs, which are known to have a
role in the suppression of inflammation in RA [19, 20].
We evaluated whether SCFAs were ranked highly based
on their genetic, functional and phenotypic relevance to
RA. To the best of our knowledge, our study represents
the first computational approach to comprehensively
characterize the complex gut-microbiome-immune-joint
interactions in RA. The unique informatics contribution is
that we innovatively leveraged large amounts of publicly
available data collected for other purpose and developed
data-driven computational methods to understand gut-
microbiome-gene-disease interactions. Our approaches are
highly flexible and can be applied to any other diseases.
The biomedical contribution of our study is that the identi-
fication of gut microbial metabolites and the understanding
of their role in RA has potential in providing new insights

into the basic mechanisms of disease etiology and enable
new possibilities for disease diagnosis, prevention, and
treatment.

Results
Genetic connections: Microbial metabolites may be
genetically involved in RA and interact with many RA-
associated genes
For evaluation, we show that the genetics-based ranking
algorithm ranked all three SCFAs consistently highly across
three complementary disease genetics data resources
(Table 1). SCFAs on average ranked in the top 3.52%
among 127 gut microbial metabolites, with acetic acid
ranked at top 1, butyric acid at top 2 and propionic acid at
top 9. Our study shows that butyric acid regulates many
RA-related genes, including IL10, IL2, IL6, and STAT4
(Table 2), suggesting the potential roles of SCFAs for their
anti-inflammatory effects in protecting joint in RA.
Our studies show that 61 out of the 127 gut microbial

metabolites directly interact with RA-associated genes. The
top 10 microbial metabolites (ranked based on the number
of shared genes with RA) and their shared RA gene are
shown in Table 2. For example, acetic acid ranked at top 1
and shared 30 genes with RA (18.1% of all 166 RA genes).
Many of the shared genes are immune-related, strongly
suggesting the gut-microbiome-immune-joint interactions
in RA.

Functional connections: Microbial metabolites may be
functionally involved in RA and participate in many RA-
associated genetic pathways
We identified genetic pathways significantly associated
with RA and for each microbial metabolite. We then
ranked metabolites based on the numbers of shared gen-
etic pathways with RA. All three SCFAs ranked highly
based on their pathway overlaps with RA (Table 3). A total
of 311 pathways were significantly enriched for RA, among
which butyric acid shared 222 pathways (71.4%), acetic acid
shared 126 pathways (40.5%), and propionic acid shared
152 pathways (48.9%). Among 127 microbial metabolites,
116 metabolites shared at least one genetic pathway with
RA. The top 20 ranked metabolites are shown in Table 4.
The fact that the majority of RA-associated genetic path-
ways were regulated by SCFAs and other gut microbial me-
tabolites indicates that human gut microbial metabolism is
functionally involved in RA etiology.
We then ranked the shared pathways between RA and

each metabolite by the balanced measure of their enrich-
ment folds. For example, the pathway “IL27-mediated
signaling events” was 10.31-fold enriched for RA and
6.48-fold enriched for butyric acid. The F1 combined en-
richment fold of this pathways was 7.96. The top 10 gen-
etic pathways regulated by both RA and butyric acid are
shown in Table 5. As shown in the table, the majority of
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the top shared pathways are related to immune func-
tions, strongly suggesting the gut-microbiome-immune
interactions in RA at functional-level. We performed the
same analysis for the other two SCFAs (acetic acid and
propionic acid) and for methane (the top one ranked
and non-SCFA metabolite). Table 6 shows the top ten
ranked pathways shared between RA and acetic acid,
propionic acid and methane. The results show that ma-
jority of the top shared pathways between RA and me-
tabolites (SCFAs and non-SCFA methane) are related to
immune functions, though the specific pathways for
each metabolite vary. In summary, microbial metabolites
may be involved in RA pathology through different im-
mune pathways.

Phenotypic connections: Microbial metabolites may affect
RA at the phenotypic level and affect many RA-related
phenotypes
We examined the phenotypic connections between gut
microbial metabolites and RA. As the evaluation, we
showed that SCFAs were significantly associated with
RA at the phenotypic level (Table 7). The top 20 metab-
olites ranked based on phenotypic overlaps with RA are
shown in Table 8. For example, a total of 978 pheno-
types were significantly enriched for RA-associated
genes (166 genes from combined resources), among
which butyric acid shared 502 phenotypes (51.3%) and
propionic acid shared 335 phenotypes (34.3%) with RA.
These results indicate that SCFAs and other microbial
metabolites are phenotypically involved in RA.

Case study: Butyric acid is phenotypically involved in RA
Butyric acid is the most abundant metabolites of gut
microbiota in the fermentation of dietary fiber. Our above
analysis showed that butyric acid was highly associated
with RA at both genetic, functional and phenotypic levels.
We then examined how butyric acid was phenotypically in-
volved in RA. Butyric acid shared 502 phenotypes with RA.
We classified these shared phenotypes based on the Mouse
Phenotype Ontology (MPO) classification schemes (3rd-
and 4th-level classifications). These 502 phenotypes were
classified into 52 3rd-level classes and 164 4th-level classes.
The top 10 3rd-level classes are shown in Fig. 1. The

3rd-level phenotype class “abnormal immune system

Table 1 Evaluation of genetic associations between RA and
SCFAs (butyric acid, acetic acid, and propionic acid). RA-associated
genes from three disease genetics resources (OMIM, the GWAS
Catalog, and ClinVar) were used separately and combined

Disease Genetics Recall Mean Ranking
(top %)

Median Ranking
(top %)

P-value

OMIM
(15 RA genes)

1.00 4.61 4.07 9.96E-4

GWAS
(155 RA genes)

1.00 4.33 2.44 0.0036

ClinVar
(10 RA genes)

1.00 4.61 4.07 9.96E-4

Combined
(166 RA genes)

1.00 3.52 2.44 0.0017

Table 2 Top ten microbial metabolites ranked based on shared genes with RA (166 genes from combined resources were used).
SCFAs are highlighted

Metabolite Targeted RA Genes Targeted RA Genes

Acetic acid 30 ACP5, ANKRD55, BAG6, BLK, CDK6, CIITA, CLYBL, CSF2
GABARAPL3, GATA3, GRM5, HLA-DQA1, HLA-DQB1
IL10, IL2, IL2RB, IL6, KCNIP4, MECP2, NFKBIE, NOTCH4
PPIL4, RAD51B, REL, SUOX, TEC, TXNDC11, TYK2
UTS2, ZNF774

Butyric acid 13 ACOXL, CDK6, CLYBL, CSF2, GRM5, IL10, IL2, IL6
MECP2, PRKCB, PRKCH, STAT4, UTS2

Acetaldehyde 13 CSF2, DPP4, HLA-DRB1, IL6, KCNIP4, PADI4, PPIL4
PRKCB, RAD51B, STAG1, TRNT1, TXNDC11, ZNF774

Methane 12 BAG6, CSF2, CTLA4, EOMES, GATA3, GRM5, IFNAR1
IL10, IL2, IL6, PTPN22, STAG1

mannitol 10 ARHGEF3, BAG6, BLK, CLYBL, IL6, LRRC18, SLC22A4
TEC, TNFAIP3, TYK2

1-butanol 8 ANKRD55, BAG6, IL2, IL6, NFKBIE, NOTCH4
PTPN2, PTPN22

Isopropyl alcohol 8 ACP5, CLYBL, GCH1, IL10, IL6, KCNIP4
PTPN2, PTPN22

Propionic acid 7 GATA3, GCH1, GRM5, IL10, IL6, SLC22A4, UTS2

Succinic acid 6 BAG6, CCL21, CCR6, CXCR5, OS9, PPIL4

Isobutyric acid 6 CLYBL, GCH1, NFKBIE, REL
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physiology” ranked at top one. Among a total of 502
phenotypes shared between RA and butyric acid, 148
(23%) phenotypes belonged to this class. The top ten
4th-level classes of the shared phenotypes are shown in
Fig. 2, among which seven phenotypes were directly re-
lated to immune functions, including “abnormal immune
serum protein physiology”, “abnormal inflammatory
response”, “abnormal cell-mediated immunity” and “ab-
normal adaptive immunity”.
Since the gene-phenotype annotations in MGI are

largely mutational, our phenotypic-level analysis suggests
potential causal phenotypic effects of butyric acid and
other gut microbial metabolites on RA, though effects
on various immune functions.

Discussions
In this study, we performed data-driven analysis of the
gut-microbiome-immune-joint interactions in RA. We
showed that gut microbial metabolites were strongly
involved in RA at both genetic, functional and pheno-
typic levels. Specifically, our study shows that gut mi-
crobial metabolites interact with many RA-associated
genes, participate in RA-related immune pathways and

affect RA-associated immunological phenotypes. As com-
pared to our previous studies for colorectal cancer and
Alzheimer’s diseases, the identified microbial metabolites
as well as the genetic pathways involved are different in
RA from ones in colorectal cancer and Alzheimer’s disease
[24–26]. For example, SCFAs are highly related to RA
through immune pathways. On the other hand,
trimethylamine-n-oxide is highly related to colorectal can-
cer through many cancer-related pathways [24, 26]. To
the best of our knowledge, our study represents the first
computational approach to comprehensively characterize
the complex gut-microbiome-immune- joint interactions
in RA. While our study is pure ‘in silico’, it generated large
amounts of data/knowledge/hypotheses that can facilitate
other biomedical researchers to conduct hypothesis-
driven functional studies of gut microbial metabolisms in
RA. A few limitations inherent in the publicly available
datasets warrant further discussion.
First, although our analysis suggests strong functional

connections between gut microbial metabolites and RA,
especially in our phenotypic analysis that used the causal/
mutational gene-phenotype associations, our findings are
largely associational. In order to translate the findings for
RA diagnosis, prevention, and treatment, it is necessary to
establish cause-effect relationships of the identified
metabolite-gene-pathway-phenotype-RA associations and
identify specific gut bacteria that produce the metabolites.
Second, HMDB is currently the most comprehensive

human metabolome database, containing a total of 83,479
small molecule metabolites found in the human body.
STITCH is currently the most comprehensive chemical
genetics databases, containing genetic associations for
500,000 small molecules. However, HMDB contains only
172 metabolites originated from gut microbiota, among
which 127 metabolites have associated genes in STITCH.
The field of human microbiome research is fast moving,
with an increasing number of microbial metabolites being
identified and published in literature. We are currently

Table 3 Evaluation of functional associations between RA and
SCFAs (butyric acid, acetic acid, and propionic acid). RA-associated
genes from three disease genetics resources (OMIM, the GWAS
Catalog, and ClinVar) were used separately and combined

Disease Genetics Recall Mean Ranking
(top %)

Median Ranking
(top %)

P-value

OMIM
(15 RA genes)

1.00 5.96 5.69 0.0023

GWAS
(155 RA genes)

1.00 5.69 5.69 0.0018

ClinVar
(10 RA genes)

1.00 5.69 5.69 0.0018

Combined
(166 RA genes)

1.00 5.69 5.69 0.0018

Table 4 Top 20 microbial metabolites ranked based on shared genetic pathways. SCFAs are highlighted

Rank Metabolite Shared
Pathways (n)

Rank Metabolite Shared
Pathways (n)

1 Methane 232 11 Acetic acid 126

2 Mannitol 227 12 Trehalose 6-phosphate 125

3 Butyric acid 222 13 5-aminopentanoic acid 118

4 Benzoyl-coa 169 14 Isobutanol 118

5 Trehalose 163 15 Hydroxyphenyllactic acid 115

6 1-butanol 153 16 Piperidine 107

7 Propionic acid 152 17 Phenylacetic acid 107

8 Isopropyl alcohol 148 18 Acetaldehyde 98

9 Trans-ferulic acid 139 19 2,3-butanediol 98

10 Chenodeoxycholic acid glycine conjugate 136 20 Acetone 90

Wang and Xu BMC Genomics          (2019) 20:124 Page 4 of 10



developing text mining and natural language processing
techniques to extract human gut microbial metabolites
from published biomedical literature.
Third, our data-driven multi-level analysis is not specific

to RA and can be applied to any other diseases. The only
change to the algorithm is to replace RA-associated genes
to genes associated with another disease. However, the
lack of evaluation data (known microbial metabolites asso-
ciated with diseases) in structured format prevented us
from systematically evaluating how the algorithm perform
in other diseases. Increasing number of published biomed-
ical research articles have reported the associations among
microbial metabolites, gut bacteria, and diseases. However,
the knowledge is still buried in free-text documents with
limited machine understandability. In order to systematic

evaluate our algorithm in other diseases, we need either
manually curate or develop natural language processing
techniques to automatically extract disease-microbial me-
tabolite associations from biomedical literature. We are
actively pursuing the latter approach.
Fourth, studies have shown the importance of diet and

associated changes in the gut microbiota in human dis-
eases. Intestinal SFCAs are produced by gut microbiota
digesting high fiber diet and are involved in human me-
tabolism and health [22, 23]. Trimethylamine n-oxide
(TMAO) is formed by gut microbiota in digesting red
meat and high fat diet. Both human studies have shown
that TMAO is mechanistically involved in cardiovascular
diseases [28], renal disease [29] and colorectal cancer [30].
However, the exact relationship among specific diet,

Table 5 Top 10 shared genetic pathways shared between RA and butyric acid

Pathway Enrichment
Fold (RA)

Enrichment fold
(butyric acid)

Combined

IL27-mediated signaling events 10.31 6.48 7.96

IL-10 Anti-inflammatory Signaling Pathway 9.47 6.60 7.78

Th1/Th2 Differentiation 16.94 4.73 7.39

Cytokines and Inflammatory Response 9.25 5.03 6.52

NO2-dependent IL 12 Pathway in NK cells 9.47 4.62 6.21

Erythrocyte Differentiation Pathway 7.15 5.24 6.05

IL 2 signaling pathway 7.31 5.10 6.01

Cytokine Network 7.31 5.10 6.01

IL22 Soluble Receptor Signaling Pathway 6.70 4.91 5.67

Regulation of hematopoiesis by cytokines 10.73 3.74 5.55

Table 6 Top 10 shared genetic pathways between RA and other SCFAs (acetic acid, propionic acid) and methane (top one
ranked metabolite)

RA ∩ Acetic acid RA ∩ Propionic acid RA ∩ Methane

IL 2 signaling pathway Interleukin-6 signaling Regulation of hematopoiesis
by cytokines

Trka Receptor Signaling Pathway IL 5 Signaling Pathway Cytokine Network

IL 5 Signaling Pathway Antigen Dependent B Cell Activation Dendritic cells in regulating TH1
and TH2 Development

Cadmium induces DNA synthesis and proliferation in
macrophages

Organic cation/anion/zwitterion transport Antigen Dependent B Cell Activation

Role of ERBB2 in Signal Transduction and Oncology Dendritic cells in regulating TH1 and TH2
Development

Cytokines and Inflammatory Response

Interleukin-6 signaling Trafficking of GluR2-containing AMPA
receptors

IL 17 Signaling Pathway

IL2 signaling events mediated by STAT5 Regulation of hematopoiesis by cytokines IL 2 signaling pathway

RB Tumor Suppressor/Checkpoint Signaling in response to
DNA damage

Role of ERBB2 in Signal Transduction and
Oncology

STAT3 Pathway

IL2 signaling events mediated by PI3K Folate biosynthesis Activation of Csk by cAMP-dependent
Protein Kinase Inhibits Signaling through
the T Cell Receptor

Interleukin 13 (IL-13) Pathway Cytokine Network GATA3 participate in activating the Th2
cytokine genes expression
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bacteria and diseases remain largely unknown. In one of
our recent studies, we developed network-based systems
approach to investigate food-metabolite interactions in
Alzheimer’s disease [31]. The food metabolites can be pro-
duced by either human host or gut bacteria, however we
currently lack the knowledge to differentiate these two.
The identification and understanding how diet and food
are associated with diseases by impacting gut microbiota
will have great potential in treating and preventing human
diseases, including RA.
The computational framework that we developed has

built-in flexibility and capability for us to continuously in-
corporate new data as it becomes available in our future
studies. We believe that our view of gut-microbiome-RA
interactions will evolve as more data becomes available.

Conclusions
The cause of RA remains largely unknown and could re-
sult from a complex interaction between genes and en-
vironment factors. Recent studies suggested that gut
microbiota and their collective metabolic outputs exert
profound effects on the host immune system and are

implicated in RA. However, which and how gut micro-
bial metabolites interact with host genetics in contribut-
ing to RA pathogenesis remains unknown. In this study,
we present a data-driven study to understand how gut
microbial metabolites contribute to RA at the genetic,
functional and phenotypic levels. Our in-silico data-driven
study suggests strong gut-microbiome-immune-joint in-
teractions in RA, which converge on both genetic, func-
tional and phenotypic levels.

Methods
We used publicly available human disease genetics, human
chemical genetics, human metabolome, genetic signaling
pathways, mouse genome-wide mutation phenotypes, and
mouse phenotype ontology to characterize the genetic,
functional, and phenotypic connections between human
gut microbial metabolites and RA.

RA genetics data
We used three data resources to obtain RA-associated
genes: (1) we obtained 155 RA-associated genes form the
Catalog of Published Genome-Wide Association Studies
(GWAS catalog) (data accessed in June, 2017). The
GWAS catalog is an exhaustive source of disease/trait-
gene associations from published GWAS data and cur-
rently contains 34,790 disease/trait-gene pairs for 1655
common complex diseases/traits [32], 2) we obtained 16
RA-associated genes from the Online Mendelian Inherit-
ance in Man database (OMIM) (data accessed in July,
2017). OMIM is the most comprehensive source of dis-
ease genetics for Mendelian disorders and currently in-
cludes 10,125 disease-gene pairs for 10,674 diseases/
phenotypes [33]; and (3) we obtained 10 RA-associated
genes from ClinVar (data accessed in July, 2017). ClinVar
is a publicly available resource of reports of the relation-
ships among human variations and phenotypes and
currently contains 9873 disease-gene associations for 5240

Table 7 Evaluation of phenotypic associations between RA and
SCFAs. RA-associated genes from three disease genetics resources
(OMIM, the GWAS Catalog, and ClinVar) were used separately and
combined

Disease Genetics Recall Mean Ranking
(top %)

Median Ranking
(top %)

P-value

OMIM
(15 RA genes)

1.00 15.00 5.00 0.1022

GWAS
(155 RA genes)

1.00 23.33 7.50 0.2923

ClinVar
(10 RA genes)

1.00 14.72 5.00 0.0969

Combined
(166 RA genes)

1.00 16.94 5.83 0.1300

Table 8 Top 20 ranked microbial metabolites based on shared phenotypes. SCFAs are highlighted

Rank Metabolite Shared
Phenotypes (n)

Rank Metabolite Shared
Phenotypes (n)

1 methane 533 11 5-aminopentanoic acid 296

2 butyric acid 502 12 trans-ferulic acid 241

3 isopropyl alcohol 386 13 piperidine 240

4 mannitol 371 14 indoxyl sulfate 230

5 benzoyl-coa 340 15 phenylethylamine 211

6 1-butanol 337 16 putrescine 208

7 propionic acid 335 17 zeaxanthin 196

8 trehalose 314 18 muramic acid 193

9 isobutanol 313 19 succinic acid 189

10 2-hydroxyglutarate 304 20 chenodeoxycholic acid
glycine conjugate

184
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diseases/phenotypes [34]. We used these three comple-
mentary disease genetics resources to demonstrate the ro-
bustness of our findings.

The human metabolome database (HMDB)
HMDB contains detailed information about small molecule
metabolites found in the human body [35]. Currently,
HMDB contains 83,479 metabolites. In this study, we

focused on the 172 metabolites originated in human gut
microbiota (data accessed in July, 2017).

Metabolite genetics data
We used STITCH (Search Tool for Interactions of Chemi-
cals) database to obtain genes associated with gut micro-
bial metabolites obtained from HMDB. STITCH contains
data on the interactions between 500,000 small molecules

Fig. 1 Top 10 ranked 3rd-level classes of phenotypes shared between RA and butyric acid

Fig. 2 Top 10 ranked 4th-level classes of phenotypes shared between RA and butyric acid
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and 9.6 million proteins from 2031 organisms [36]. In this
study, we used chemical-gene associations found in hu-
man body, which include 15,473,939 chemical-gene pairs
for 473,602 chemicals, and 18,701 human genes (data
accessed in July, 2017). Among the 172 microbial metabo-
lites from HMDB, 127 were mapped.
to chemical names in STITCH. Genes associated with

the mapped microbial metabolites were then obtained
from STITCH. For example, we mapped butyric acid (in
HMDB) to butyrate (in STITCH) and obtained a total of
793 butyrate-associated genes from STITCH.

Molecular pathway data
We used rich pathway information from the Molecular
Signatures Database (MSigDB) to investigate how micro-
bial metabolites were functionally related to RA. MSigDB
is currently the most comprehensive resource of 17,779
annotated pathways and gene sets [37] (data accessed in
July, 2017). For each microbial metabolite, we identified
molecular pathways that were significantly enriched for
both RA and the metabolite.

Genome-wide mutational phenotypes in mouse models
and mouse phenotype ontology
The Mouse Genome Database (MGD) made available large
amounts of phenotypic descriptions of systematic genetic
knockouts in mouse models [38]. Such large-scale system-
atic genetic knockouts are impossible to do in human.
These strong causal gene-phenotype associations (318,709
gene-phenotype association annotations for 60,474 targeted
mutant alleles and 12,104.
phenotypes) have been useful for screening functional ef-

fects of chemicals on disease phenotypes. We have recently
developed computational algorithms to perform virtual
phenotypic screening to prioritize drugs for diseases by
matching mouse mutational phenotype profiles between
drugs and diseases [39–42]. We validated our virtual
screening drug candidates in experimental models of ovar-
ian cancer [39, 40]. In this study, we used the same strategy
to assess the phenotypic effects of gut microbial metabo-
lites on RA-related phenotypes. For example, the microbial
metabolite butyrate is associated with the gene IL17A and
the knockout of IL17A in mouse models is associated with
the phenotype “rheumatoid arthritis”. We then used the
classification scheme of the Mouse Phenotype Ontology
(MPO) at MGD to group identified phenotypes (e.g.,
“rheumatoid arthritis”, “abnormal cytokine level”) into clas-
ses (e.g., “abnormal immune system physiology”).

Analyze genetic connections between gut microbial
metabolites and RA and prioritize metabolites based on
their shared genes with RA
We hypothesize that if a metabolite interacts with many
RA-associated genes, then this metabolite may be highly

involved in RA. We prioritized microbial metabolites
based on number of their shared genes with RA. We ob-
tained RA-associated genes from three complementary
disease genetics data resources (OMIM, the GWAS
Catalog, and Clinvar): 15 RA-associated genes from
OMIM, 155 genes from the GWAS Catalog, 10 genes from
ClinVar, and 166 genes from these three resources com-
bined. We obtained microbial metabolite-associated genes
from the STITCH database. Metabolites were ranked
based on the numbers of their shared genes with RA.

Evaluation
Animal studies showed that SCFAs had a role in the
suppression of inflammation in RA [19, 20]. For evalu-
ation, we examined whether SCFAs were ranked highly
based on their genetic overlaps with RA. Both mean and
median rankings of SCFAs among all metabolites were
calculated. Significance was calculated by comparing
mean rankings to random expectation, which is 50%.
Rankings based on three disease genetics data resources
were compared to demonstrate the robustness of our
analysis and findings.

Analyze functional connections between gut microbial
metabolites and RA and prioritize metabolites based on
their shared genetic pathways with RA
We obtained RA-associated genes from the three disease
genetics databases separately. Pathways associated with
each gene were obtained from MSigDB. For each path-
way, we assessed its probability of being associated with
a given set of RA-associated genes (e.g., 15 RA genes
from the OMIM database) as compared to its probability
of being associated with the same number of randomly
selected genes. The random process was repeated 1000
times and a t-test was used to assess the statistical sig-
nificance. For instance, a total of 108 pathways were sig-
nificantly associated with the 16 RA-associated genes
from OMIM. The pathway “Cytokines and Inflammatory
Response” had a significant 61-fold enrichment as com-
pared to the random expectation. Similarly, we identified
significantly enriched genetic pathways for each of the
127 microbial metabolites (with metabolite-associated
genes obtained from the STITCH database). For example, a
total of 748 pathways were significantly enriched for butyric
acid. The pathway “Cytokines and Inflammatory Response”
shows a significant 5-fold enrichment for butyric acid.
A shared genetic pathway may be associated with RA

and a metabolite at different significance level. We de-
veloped a prioritization measure to identify shared path-
ways that rank highly for both RA and a metabolite. The
intuition is that a shared pathway between RA and a
metabolite ranks highly if and only if it ranks highly for
both RA and the metabolite. The ranking of a shared
pathway between RA and a metabolite s defined as:
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rank = 2*(ranking_ra * ranking_m)/(ranking_ra + 2 ran-
king_m), where ranking_ra is the enrichment fold of a
pathway for RA; and ranking_m is the enrichment fold of
the same pathway for the metabolite. For example, the
pathway “cytokines and inflammatory response” showed a
61-fold enrichment for RA and a 5-fold enrichment for
butyric acid. The combined ranking score of this shared
pathway for both RA and butyric acid was 9.24. After
identifying shared pathways, metabolites were then priori-
tized based on the numbers of shared pathways with RA.

Evaluation
The prioritization algorithm was evaluated using three
known RA-associated SCFAs. Mean ranking, median rank-
ings and the significance were calculated. Rankings based
on three different disease genetics data resources were
compared to demonstrate the robustness of the finding.

Analyze phenotypic connections between gut microbial
metabolites and RA and prioritize metabolites based on
their shared phenotypes with RA
We obtained RA-associated genes to their corresponding
mouse gene homologs (e.g., IL17A = >Ctla) using
human-mouse homolog mapping data from MGD [34].
The mapped mouse genes were then linked to their
corresponding mutational phenotypes in mouse models
(e.g., IL17A = > rheumatoid arthritis, TNF = > abnormal
inflammatory response) using gene-phenotype association
annotations from MGD. For each mapped phenotype, we
assessed its probability of being associated with RA-associ-
ated genes as compared to its probability associated with
the same number of randomly selected genes. The random
process was repeated 1000 times and a t-test was used to
assess the statistical significance. As an example, the pheno-
type “abnormal T-helper 1 physiology” showed a significant
36-fold enrichment for RA as compared to random expect-
ation. Similarly, we identified significantly enriched pheno-
types for each gut microbial metabolite. For example, the
phenotype “abnormal T-helper 1 physiology” shows a sig-
nificant 1.7-fold enrichment for butyric acid. Phenotypes
shared between RA and each metabolite were then priori-
tized as described above for prioritizing shared genetic
pathways. After identifying shared phenotypes, metabolites
were then prioritized based on the numbers of shared phe-
notypes with RA.

Evaluation
The prioritization algorithm was evaluated using three
known RA-associated SCFAs. Mean ranking, median rank-
ings and the significance were calculated. Rankings based
on three different disease genetics data resources were
compared to demonstrate the robustness of the finding.
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