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Abstract

Background: Genome-wide association studies (GWAS) are utilized in cattle to identify regions or genetic variants
associated with phenotypes of interest, and thus, to identify design strategies that allow for the increase of the
frequency of favorable alleles. Visual scores are important traits of cattle production in Brazil because they are
utilized as selection criteria, helping to choose more harmonious animals. Despite its importance, there are still no
studies on the genome association for these traits. This study aimed to identify genome regions associated with
the traits of conformation, precocity and muscling, based on a visual score measured at weaning.

Results: Bayesian approaches with BayesC and Bayesian LASSO were utilized with 2873 phenotypes of Nellore
cattle for a GWAS. The animals were genotyped with Illumina BovineHD BeadChip, and a total of 309,865 SNPs
were utilized after quality control. In the analyses, phenotype and deregressed breeding values were utilized as
dependent variables; a threshold model was utilized for the former and a linear model for the latter. The association
criterion was the percentage of genetic variance explained by SNPs found in 1 Mb-long windows. The Bayesian
approach BayesC was better adjusted to the data because it could explain a larger phenotypic variance for both
dependent variables.

Conclusions: There were no large effects for the visual scores, indicating that they have a polygenic nature;
however, regions in chromosomes 1, 3, 5, 7, 14, 15, 16, 19, 20 and 23 were identified and explained a large part of
the genetic variance.
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Background
With the advent of bovine genome sequencing [1], new
information has become available for the prediction of
genetic values through genomic selection (GS) and to
locate regions or associated genes with phenotypes of
interest through genome-wide association studies
(GWAS) [2, 3]. In GWAS analyses, simple regression
models are frequently utilized, however, this method has
two limitations. The first limitation is the overestimation
of the variance proportion explained by a marker, once
it does not consider the existing linkage disequilibrium

(LD) among markers [4]. The second limitation is the
high rate of false positives when the population structure
is not taken into consideration [5]. The use of Bayesian
multiple regression models initially proposed for GS [6],
such as Bayesian LASSO [7] and BayesC [8], overcomes
these limitations.
The Bayesian approach differs with respect to a priori

distribution for QTL (quantitative trait locus) effects.
Bayesian LASSO assumes that there are few genes with
large effects and many genes with small or no effects,
whereas BayesC assumes that most SNPs (Single Nu-
cleotide Polymorphisms) are not associated with pheno-
type, and only a small π portion has some effect on
traits. The best model depends on the trait genetic* Correspondence: ligiacavani@hotmail.com
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architecture, which is unknown, mainly when the traits
have not been extensively studied [9].
In cattle, association studies have been carried out for

most economically important traits [10–13]. However,
GWAS have not yet been conducted for morphological
traits evaluated through visual scores in beef cattle,
which have a high relevance to Brazilian cattle breeding.
The utilization of these traits by producers as selection
criteria is important for the identification of harmonious
animals and its correlation with economic interest traits,
mainly those for growth [14–16] and those that indicate
carcass quality [17–19].
In dairy cattle, the results of some association studies

for linear evaluations of type, which assess several mor-
phological traits [20–23], are already available. In gen-
eral, these studies did not find regions with large effects,
showing that morphological traits have a polygenic na-
ture; that is, they are controlled by multiple genes with
small effects [5]. The distribution of QTL effects for
traits is a factor that influences the prediction accuracy
of genomic breeding values and this accuracy is greater
when there are large effect QTLs [5, 24].
Due to the importance of visual scores for Brazilian

cattle breeding, it is desirable that the regions involved
in the genetic control of these traits have pleiotropic ef-
fects on other important economic traits and that there
are large effect QTLs, resulting in greater genetic gains
when utilized as selection criteria. This study aimed to
identify genome regions associated with the traits of
conformation (C), precocity (P) and muscling (M) visual
scores, measured at the weaning of Nellore cattle, and to
compare BayesC and Bayesian LASSO in a genomic as-
sociation study.

Methods
Ethics statement
Data collection procedures were reviewed and approved
by the Ethical Committee for Animal Care and Use
(CEUA) of the São Paulo State University, UNESP - Jabo-
ticabal, São Paulo, Brazil (protocol number: 18.340/16).

Data set
Data were used from Nellore males and females, born
between 2007 and 2011, belonging to two animal breed-
ing programs, DeltaGen and Paint, and including more
than 250 farms distributed across Brazil. Although the
animals were from two distinct programs, they had a
similar objective selection for weaning and yearling
weight, and several sires were common to both pro-
grams, which were used for artificial insemination
service. A previous GWAS analysis on birth weight re-
vealed that the animals from these two breeding pro-
grams clustered in the same group (“cluster 1”) of a

principal component analysis based on the genomic kin-
ship coefficient [25].
Phenotypes for the visual scores were evaluated at

weaning. Each contemporary group was assessed by a
single technician. First, the whole herd was observed
and characterized. Then, the average profile for each
trait was used as a basis of comparison to attribute
scores that varied from 1 to 5, where 5 was the highest
expression and 1 was the smallest expression. Each vis-
ual score was defined as [26]: conformation (C) esti-
mates the amount of meat on the carcass by length,
body depth and muscle development; precocity (P) rep-
resents the ability of the animal to display the lowest ac-
ceptable degree of finishing with a low body weight,
considering rib depth and fat deposition at the groin and
tail of the animals at the time of evaluation; muscling
(M) measures the amount of muscular mass, using as a
reference the muscular development in the shoulder,
foreleg, loin, rump and hind.
A total of 2021 females and 1416 males with records

for C, P and M with genotypical information were uti-
lized for the analyses. For genome association studies,
the phenotype of visual scores and the deregressed
breeding values (dEBV) were used as dependent vari-
ables for 2873 records after accounting for quality con-
trol and the smaller number of records for dEVBs
(Table 1) as only animals with an accuracy over 0.60
were considered for inclusion.
Estimation of the breeding values (EBVs) of scores was

done through a multi-trait threshold animal model, as
described by [27]. Direct and maternal genetic, perman-
ent environmental and residual effects were included as
random effects, whereas contemporary group (farm, year
of birth, management group at weaning, and sex) was
used as a fixed effect and age at measurement was used
as a co-variable (linear and quadratic effect). Genetic pa-
rameters and breeding values were estimated utilizing
THRGIBBS1F90 software, which implements the Bayes-
ian approach under a threshold model [28]. A total of
236,288 animals with phenotypes born from 1990 to
2012 and 300,484 animals included in the relationship
matrix were used to estimate breeding values. EBV ac-
curacy was calculated as described by [29] and dereg-
ressed breeding values were calculated using the
methodology described by [30].

Genotypic data
The animals were genotyped with Illumina BovineHD
BeadChip (Illumina, San Diego, CA, USA), according to
the manufacturer’s protocol. BovineHD BeadChip has
777,962 SNPs scattered throughout the genome with an
average distance of 3.43 kb between markers. The inclu-
sion criteria used to control genotype quality were: SNPs
located in autosomes; call rate per SNP greater than
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0.95; call rate per animal greater than 0.90; minor allele
frequency greater than 0.05; p-value for Hardy–Wein-
berg equilibrium (HWE) test less than 1 × 10− 5 (extreme
equilibrium deviations suggest potential genotyping
errors). Highly co-related SNPs (r2 > 0.98) were ex-
cluded. Quality control was an interactive process that
stopped when no SNP or sample were excluded, result-
ing in 309,865 SNPs for analyses that considered pheno-
type as the dependent variable, and 308,861, 308,561
and 308,481 SNPs for C, P and M, respectively, when
the dependent variable was dEBV. Quality control and
the input of missing genotypes were done with the
snpStats package of R software [31].

Association analyses
Bayesian approaches BayesC and Bayesian LASSO were
utilized to estimate marker effects. Both Bayesian ap-
proaches differ in their a priori distributions, which are
assumed for marker effects. In general, the models can
be presented in matrix notation as:

Y ¼ Xβþ Zαþ e ð1Þ

where: Y is a vector n × 1 of phenotype or dEBVs for the
visual score of C, P and M; X is an n × p matrix that re-
lates β vectors of fixed effects with Y; Z is an n × k matrix
of genotypes (0 for the first homozygote AA; 1 for the het-
erozygote AB or BA; 2 for the second homozygote BB) of
k SNPs; α is a k × 1 vector of random coefficients of re-
gression for SNPs (an effect of allele substitution) and e is
a residual vector with a normal distribution N ∼ (0, Iσ2e),
where σ2e is the residual variance, considered unknown
with a scaled inverse Chi-square distribution [32].
The difference between Bayesian approaches is the a

priori marginal distribution assumed for α, which deter-
mines the variable selection and shrinkage in SNP effect
estimates. For LASSO, the assumed distribution for
effects is double-exponential. This distribution has a
greater density at zero and thicker tails than a normal
distribution, which causes an effect-dependent shrinkage
because SNPs with small effects are regressed toward

zero with greater shrinkage than the SNPs with large ef-
fects [7, 33]. Shrinkage level is controlled by the λ hyper-
parameter, which was inferred from data a priori using a
Gamma distribution. For BayesC, the a priori effect dis-
tribution is a mixture at zero point mass and a normal
distribution [8]. The proportion of SNPs with effects dif-
ferent from zero is controlled by the π hyperparameter,
which was fixed at 0.01 instead of being inferred from
the data since [34] found convergence problems when
the π value was inferred from data. When score pheno-
type was considered a dependent variable, a threshold
model with the probit function was utilized. The model
assumes that there is a random variable subjacent to the
observable phenotype, termed liability, which follows a
standard normal distribution. The variance residual was
fixed at 1 to make the estimation feasible. Fixed effects
considered in the models were: contemporary group
(formed by the management group at weaning, farm,
birth year and sex) and weaning age, considered a
co-variable. When dEVBs were the dependent variable, a
linear model was utilized and only the average effect was
considered a fixed effect in the model.
Analyses were carried out with the BGLR package of

the software R [35], which implements Gibbs sampler to
sample a posteriori parameter distributions. A total of
800,000 cycle chains were sampled. The first 200,000
were discarded as burn in and the remaining 600,000
samples were left for parameter inference.

Association criterion
With the use of a high-density chip, QTL effects can be
distributed across several SNPs that are in LD with
QTL, resulting in non-significant individual SNP effects
[36, 37]; therefore, SNPs were grouped in 1Mb-long
windows, overlapping every 100 kb, totaling 25,250 win-
dows. The amount of SNPs per window varied from 1 to
336, with an average of 122 ± 25.2 SNPs. The genetic
variance percentage, explained by each window, was the
criterion used to identify windows associated with
scores; it was calculated as follows:

Table 1 Number of records, according to the dependent variable, in genome association analyses for visual scores of conformation
(C), precocity (P) and muscling (M)

Score Dependent
variable

Record Average/Frequency*

Males Females Total 1 2 3 4 5

C Phenotype 1977 896 2873 0.036 0.186 0.400 0.263 0.115

dEBV 1266 601 1867 0.232

P Phenotype 1977 896 2873 0.040 0.164 0.355 0.279 0.162

dEBV 1132 569 1701 0.293

M Phenotype 1977 896 2873 0.055 0.184 0.363 0.246 0.152

dEBV 1118 553 1671 0.354

dEBV deregressed breeding value; *frequency for phenotypic values and averages for deregressed breeding values, dEBV
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%σ2j ¼
σ2j
σ2SNP

h2

h2SNP
100 ð2Þ

where: %σ2j is the genetic variance percentage ex-
plained by window j; σ2j is the genetic variance explained
by window j; σ2SNP is the genetic variance explained by
SNPs; h2 is the trait heritability and h2SNP is the pheno-
typic variance proportion explained by markers (marker
heritability). σ2j and σ2SNP were calculated as the vari-
ance of genomic breeding values (GEBV) of each win-
dow or the whole genome. GEBV for animal i in window
j was calculated as:

GEBVij ¼
XK

k¼1
Xik bαk ð3Þ

where: k is the number of SNPs within window j; Xik

is the genotype of animal i for SNP k and αk is the allele
substitution effect for SNP k. For 1 SNP windows, this
method is equivalent to 2pk(1 − pk)α

2
k [38]. The Bayes-

ian approach that explained the greater proportion of
phenotypic variance was chosen to identify genome re-
gions associated with the phenotype; the genes for the
windows that explained values above 0.25% of the addi-
tive genetic variance were identified, and a candidate
gene was proposed as responsible for the variance ex-
plained by the window.

Gene identification
The database from the National Center for Biotechnol-
ogy Information (NCBI) (http://www.ncbi.nlm.nih.gov/
snp/), loaded with bovine genome version UMD 3.1, was
utilized to identify genes within the windows. Gene clas-
sification with respect to biological function was done
through the Database for Annotation, Visualization and
Integrated Discovery (DAVID) [39], available at http://
david.abcc.ncifcrf.gov/.

Results
In general, the proportion of phenotypic variance ex-
plained by SNPs was smaller than trait heritability.
Moreover, BayesC explained the largest phenotypic vari-
ance and was nearest to heritability, and among the
dependent variables, phenotype was superior to dEBVs.
Table 2 also shows the number of windows that cap-
tured 10% of the genetic variance; in this criterion,
BayesC with phenotype was superior, as well.
The identification of regions associated with visual

scores was done through BayesC, utilizing phenotype as
the dependent variable, because it was the Bayesian ap-
proach that best explained the proportion of phenotypic
variance for all three visual scores. In Fig. 1 and Table 3,
the windows that explained over 0.25% of the additive
genetic variance for conformation, precocity and musc-
ling are shown. Due to the great number of windows

that were necessary to explain 10% of the genetic vari-
ance, and just a few windows exceeding the threshold of
0.25%, windows that were very close to the threshold
were also included. For these windows, candidate genes
responsible for the genetic variance explained by the
window were proposed.
A total of 190 genes were located in 14 associated win-

dows with the phenotype of visual scores: 150 genes were
codified proteins, 16 were ncRNA (non-codifying RNA), 3
were miRNA (microRNA), 6 were tRNA (RNA trans-
porter) and 15 were pseudogenes. In the identification of
candidate genes, only genes that codify proteins were con-
sidered. Thus, 18 candidate genes were identified and clas-
sified into four groups according to the function that they
perform in the organism: basal and cellular metabolism
(TBC1D5, LPAR2, TMEM9, NDUFA13, GSTA3 and
FBXL17), regulation and transcription of other genes
(CREG1, POU2F1, MAPK11, MAPK12, ESRRG and
STK3), lipid metabolism (SORL1 and ASCF2) and genes
related to growth and skeletal muscle (C1QTNF3,
PPP1R39, WFIKKN2 and IGFBP6). Furthermore, windows
located in chromosomes 3 (0.4–14Mb), 5 (118.7–119.7
Mb), 16 (20.7–21.7Mb) and 23 (24.1–25.1Mb) were asso-
ciated with at least two scores (Table 3).

Discussion
The difference between the proportion of phenotypic
variance explained by SNPs and trait heritability, a dif-
ference known as lost heritability [40], can be explained
by several factors, such as the lack of LD among markers

Table 2 Proportion of phenotypic variance explained by BayesC
and Bayesian LASSO and the number of windows needed to
explain 10% of the genetic variance for the visual scores of
conformation (C), precocity (P) and muscling (M)

Score h2 Model Dependent σ2SNP σ2e h2SNP 10% σ2a
C 0.44 BayesC dEBV 1.031 0.619 0.275 [0.625] 139

Phenotype 0.503 1.00 0.335 87

LASSO dEBV 0.970 0.711 0.254 [0.577] 175

Phenotype 0.412 1.00 0.292 101

P 0.43 BayesC dEBV 0.992 0.735 0.247 [0.574] 172

Phenotype 0.390 1.00 0.281 82

LASSO dEBV 0.824 0.921 0.203 [0.472] 198

Phenotype 0.322 1.00 0.244 99

M 0.42 BayesC dEBV 0.902 0.753 0.229 [0.545] 159

Phenotype 0.416 1.00 0.294 86

LASSO dEBV 0.850 0.834 0.212 [0.504] 205

Phenotype 0.355 1.00 0.262 104

dEBV = deregressed estimated breeding values; h2 = estimated heritability
utilizing the threshold model; σ2SNP = variance explained by SNPs; σe

2 = residual
variance; h2SNP = proportion of phenotypic variance explained by SNPs, values in
brackets [] indicate the proportion related to additive genetic variance; 10%
σa

2 = number of windows that capture 10% of the genetic variance
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and QTLs, interactions between variants, or interactions
between genetics and the environment [41]. Another
possible explanation could be the sample size, as it is ne-
cessary to increase the number of genotyped animals to
capture small effect QTLs [42].
With respect to the Bayesian approaches used, BayesC

had a better fit to the data as it was nearest to heritabil-
ity and explained the largest phenotypic variance. In
addition, phenotype was superior to dEBVs, although
some authors have considered estimated breeding values
(EBV) to be the best dependent variable for GWAS ana-
lyses [43] as they are the best estimate of genetic breed-
ing value. The smallest phenotypic variance captured by
the models that used dEBVs can be a consequence of a

smaller number of animals used and a low estimation
accuracy; once, 46% of genotyped animals only had one
parent and 58% did not have progeny, resulting in 75%
of EBVs with an accuracy ranging from 0.60 to 0.70.
The great number of windows needed to explain 10%

of the genetic variance (Table 2) indicates that there are
no large effect QTLs; therefore, the visual scores evalu-
ated in Nellore cattle are influenced by many small effect
genes, as reported for morphological traits in dairy cat-
tle, in which large effect regions have not been identified,
and the identified regions were not common among the
studies [20–23].
The presence of genes related to basal and cellular me-

tabolism, located in significant windows, is explained by

Fig. 1 Percentage of genetic variance explained by windows in each chromosome using the Bayesian approach BayesC, considering phenotype
as the dependent variable of visual scores for conformation, precocity and muscling. Dotted lines mark the 0.25% threshold of genetic variance
explained by the windows
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the fact that these genes act on several tissues, affecting
cell and body development as a whole and, therefore,
contributing to general performance. These genes have
an important pleiotropic effect because they are
non-specific tissues that act on several body cells and
metabolic pathways, which include: signaling among
cells, protein synthesis and transportation, cell prolifera-
tion and survival, and transportation and formation of
cell membrane and its receptors. The gene protein
NDUFA13 (also known as GRIM-19) is found in this
gene group and it is a functional component of mito-
chondrial complex I, which is also involved in apoptosis
and cellular energy production processes [44]; modifica-
tions in this gene could cause lower energy availability
for cellular processes, decreasing tissue growth. Another
example is gene FBXL17, which intervenes in protein

recycling processes in part of proteosoma 26S, acting on
several cellular processes. This gene is expressed at dif-
ferent levels in the skeletal muscle of bovines from 8 to
12months old, indicating that it is associated with
muscle development at this age [45].
Genes that regulate transcription can be divided into

two subgroups: one formed by the genes STK3, MAPK11
and MAPK12, which belong to the kinase family (serine/
threonine-protein subgroup), and another that includes
genes POU2F1, CREG1 and ESRRG, whose main func-
tion is to modulate genetic expression (transcription
factor).
Kinases are enzymes that catalyze protein phosphoryl-

ation through the transfer of the ATP phosphoryl group,
changing protein configuration and resulting in its acti-
vation or inactivation. Kinases represent the largest

Table 3 Gene identification and percentage of genetic variance explained by windows associated with visual scores for
conformation (C), precocity (P) and muscling (M), utilizing BayesC, considering phenotype as the dependent variable

BTA Mb % σ2a Gene Candidate Description

C P M

1 155.9–156.9 0.25 1 proteins TBC1D5 TBC1 domain family, member 5

3 0.4–1.4 0.41 0.29 10 proteins
1 tRNA
3 pseudogenes

CREG1
POU2F1

Cellular repressor of E1A-stimulated;
POU class 2 homeobox 1

5 26.7–27.7 0.29 30 proteins IGFBP6 Insulin-like growth factor protein 6

5 118.7–119.7 0.29 0.26 0.24 3 proteins
4 ncRNA

MAPK11 MAPK12 Mitogen-activated protein kinase 11 and 12

7 3.0–4.0 0.32 23 proteins
5 pseudogenes
2 ncRNA

LPAR2
NDUFA13

Lysophosphatidic acid receptor 2;
NADH dehydrogenase 1 alpha, 13

7 59.0–60.0 0.27 9 proteins
2 ncRNA

PPP1R39 SH3 domain ring finger 2

7 108.8–109.8 0.32 2 proteins
1 tRNA
1 ncRNA

FBXL17 F-Box And Leucine-Rich Repeat Protein 17

14 67.5–68.5 0.27 11 proteins
1 tRNA
2 ncRNA

STK3 Serine/threonine kinase 3

15 31.7–32.7 0.27 5 proteins
1 miRNA

SORL1 Sortilin-related receptor, L(DLR class)

16 20.7–21.7 0.26 0.24 2 proteins
1 tRNA

ESRRG Estrogen-related receptor gamma

16 80.7–81.7 0.30 7 proteins TMEM9 Transmembrane protein 9

19 36.0–37.0 0.23 23 proteins
3 ncRNA
4 pseudogenes

WFIKKN2
ACSF2

Follistatin/kazal, immunoglobulin, kunitz and
netrin domain; Hypothetical protein LOC768237

20 39.4–40.4 0.26 8 proteins
1 tRNA

C1QTNF3 C1q factor related protein 3

23 24.1–25.1 0.35 0.24 16 proteins
1 tRNA
2 ncRNA
2 miRNA
3 Pseudogene

GSTA3 Glutathione S-transferase, alpha 3

Total 1.87 1.62 1.87

BTA bovine chromosome, Mb window position in megabases; %σa
2 = % of genetic variance explained by each window
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protein family in eukaryotes and are involved in multiple
cellular processes, including cellular signaling mecha-
nisms and the activation of transcription factors [46].
The gene STK3 (known in humans as MST2) acts as a
repressor of genes involved in the fat deposition of Han-
woo bovines; the high expression levels of this gene have
been associated with a low level of intramuscular fat,
showing that this gene inhibits adipocyte proliferation
[47]. The genes MAPK11 and MAPK12 are part of the
metabolic pathway p38 MAPK, which is a preserved
mechanism of cellular response to a broad variety of
extracellular signals, and is proposed as a regulator of
cellular differentiation, proliferation and development
[48]. As p38 MAPK is not tissue-specific, it would ex-
plain why this region was associated with the phenotype
for all three visual scores.
In the second subgroup, genes POU2F1 and CREG1

are transcription factors that regulate the activity of mul-
tiple genes that act on several metabolic pathways;
among them are genes involved in growth, proliferation
and cellular differentiation processes. POU2F1 was iden-
tified by [49] as one of the transcription factors that reg-
ulates the genes associated with the traits of growth and
fat deposition in Iberian x Landrace pigs, whereas [50]
found differences in the genic expression level of CREG1
in the psoas major and flexor digitorium muscles of bo-
vines, indicating that both genes act on the skeletal mus-
cles and fat tissue. Gene ESRRG is a member of the
receptor family related to estrogen (ESRR) that act as
transcription activators for gene PERM1, involved in the
energy metabolism of skeletal and cardiac muscle [51],
making this gene associated with deposition in fat and
muscle tissue.
Both genes involved in lipid metabolism were associ-

ated with the precocity score, which evaluates the ani-
mal’s capacity to deposit fat. Gene SORL1 belongs to the
low-density lipoprotein receptor family (LDLR) involved
in cholesterol metabolism, whereas ACSF2 is associated
with lipid metabolism and adipocyte differentiation.
These two genes have been associated with intramuscu-
lar fat deposition in swine and bovines [52, 53].
Out of the four genes related to growth, three were as-

sociated with precocity and muscling, and the miostatin
gene (GDF8) region did not show an association with
visual scores. The miostatin gene is important in muscu-
lar development and is one of the genes responsible for
the presence of double musculature in breeds like the
Belgian Blue and Limousin. Gene PPP1R39 (also known
as SH3RF2), like the miostatin gene, negatively regulates
muscular tissue growth once low expression levels are
associated with muscular hypertrophy. Studying fast and
slow growth lines in broiler chickens [54], found out that
a deletion had been fixed for gene SH3RF2 in the fast
growth line, and it was identified as the cause of the

largest growth. In bovines [55], found out that this gene
was under selection in the Blonde d’Aquitane breed, and
was one of the genes responsible for the double muscle
presence in animals.
Gene WFIKKN2 is an inhibitory protein of genes

GDF8 (miostatin) and GDF11, involved in muscular de-
velopment, leading the overexpression of this gene to
produce muscular hypertrophy, as the miostatin gene
negatively regulates muscular growth, as observed in rats
and sheep [56, 57]. Genes IGFBP6 and C1QTNF3 posi-
tively regulate muscular growth in bovines and high ex-
pression levels are associated with cellular growth in
skeletal muscles. Gene C1QTNF3 is also involved in sub-
cutaneous and intramuscular fat deposition [58, 59].
Windows located in chromosomes 3, 5, 16 and 23

were associated with at least two scores; this was ex-
pected since the genetic correlations among the traits
were high, ranging from 0.80 to 0.92, indicating that the
same genes were controlling the visual scores. The re-
sults of this study will help the selection process as the
increase of favorable allele frequencies for identified
genes will lead to greater genetic gains in visual scores.

Conclusions
According to our results, visual scores have a polygenic
nature because regions explaining a great percentage of
the genetic variance were not found. However, DNA re-
gions associated with visual scores were identified, con-
taining genes that are part of important biological
processes and molecular functions in body development.
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