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Significant improvement of miRNA target
prediction accuracy in large datasets using
meta-strategy based on comprehensive
voting and artificial neural networks
Bi Zhao and Bin Xue*

Abstract

Background: Identifying mRNA targets of miRNAs is critical for studying gene expression regulation at the whole-
genome level. Multiple computational tools have been developed to predict miRNA:mRNA interactions. Nonetheless,
many of these tools are developed in various small datasets, which each represent a limited sample space. Thus, the
prediction accuracy of these tools has not been systematically validated at a larger scale. Accordingly, comparing the
prediction accuracy of these tools and determining their applicability become challenging. In addition, the accuracy of
these tools, especially in large datasets, needs to be improved for broader applications.

Results: In this project, a large dataset containing more than 46,600 miRNA:mRNA interactions was assembled and
split into eleven subsets based on the availability of prediction scores of four individual predictors, which are miRanda,
miRDB, PITA, and TargetScan. In each of these subsets, the predictive results of four individual predictors were
integrated using decision-tree based artificial neural networks to make the meta-prediction. The decision-tree
is used here to sort the predictive results of four individual predictors, and artificial neural networks are applied to make
meta-prediction based on the outputs of individual predictors. In the decision tree, dual-threshold and two-step
significance-voting were incorporated, information gain was analysed to select threshold values. The prediction
performance of this new strategy was improved significantly in most of the eleven datasets comparing to the
individual predictors and other meta-predictors, such as ComiR, under multi-fold cross-validation, as well as in
independent datasets. The overall improvement of prediction accuracy in independent datasets is at least 9
percentile points comparing to the other predictors, and the percentage of improvement of F1 and MCC scores
is at least 40% compared to the other predictors.

Conclusions: The combination of dual-threshold, two-step significance-voting, and analysis of information gain is
very effective in optimizing the outcome of decision-tree, and further integration with artificial neural networks is
critical for further improving the performance of meta-predictor. A new pipeline based on this integration for
miRNA target prediction has been developed. A strategy using outputs of individual predictors to reorganize
large-scale miRNA:mRNA interaction dataset has also been validated and used to evaluate the prediction accuracy
of predictors. The predictor is available at: https://github.com/xueLab/mirTarDANN).
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Background
MiRNAs are short RNA molecules of about 22 nucle-
otides [1], which are normally produced from
non-coding RNAs by a process of two-step cleavage
catalyzed by Drosha [2] and Dicer [3, 4], respectively.
Although being very short compared to many other
types of RNA molecules, miRNAs play critical roles
in genome-wide gene expression regulation. Most
miRNAs perform their functions through the
well-known canonical pathway [5–7], in which an
miRNA forms base pairing with the 3′-UTRs of its
target mRNAs [8] to repress the expression of those
mRNAs by either inhibiting translation or inducing
mRNA degradation [5, 9]. Since the discovery of the
first miRNA lin-4 in the 1990s [10], more and more
miRNAs have been identified. Many mammal ge-
nomes each contain more than 2000 miRNAs [11].
These miRNAs were estimated to regulate about 60%
of all genes in each genome [12–14].
Clearly, identifying the targets of miRNAs is critical for

deciphering the functions of miRNAs, as well as revealing
the mechanisms of gene expression regulation. For this
purpose, many computational tools have been developed
to predict the interaction partners of miRNAs [12, 15–30].
These tools are generally developed based on two categor-
ies of strategies: (I) base pairing between the seed region
of miRNA and the 3′-UTR of mRNA, in integration with
various sequential, structural, interaction, and evolution-
ary information [12, 22–26]; (II) machine learning based
methods, such as hidden Markov Model (HMM) [16],
support vector machine (SVM) [27, 28], and regression
models [29]. With the application of these advanced tech-
niques, significant progress has been achieved in the de-
velopment of miRNA target predictors. Nonetheless, these
predictors start to face many other challenges nowadays.
Many predictors were trained and tested in rather small
datasets when the predictors were developed. However,
the amount of genomics/proteomics data is increasing
very fast. Consequently, the accuracy of existing computa-
tional tools on newly emerged large-scale datasets be-
comes a question. In addition, the prediction accuracy of
many existing miRNA target predictors is still not suffi-
cient for direct applications [31]. Especially, the sensitivity
of many existing predictors is rather low. Furthermore,
when using machine learning based techniques to build a
predictor, the common procedure is to build a dataset, se-
lect features, and then optimize the predictor. Clearly,
when the dataset or the number of features used in the
predictor becomes larger, the intrinsic noise associated
with the dataset or the features will increase and may
eventually impede the optimization of new predictors in
large datasets. Therefore, it is also critical to develop new
strategies to improve the prediction performance of pre-
dictors in large datasets.

In our previous studies on the development of various
predictors [32–36], as well as the studies of other groups
[30, 37, 38], individual predictors were integrated to make
meta-prediction to improve the final prediction accuracy.
However, a direct integration of the outputs of individual
predictors may not improve the prediction accuracy sig-
nificantly [32–34]. Under this situation, further integration
of other techniques, such as non-linear transformation
[34, 39] and dual-threshold value [35, 36], was very effect-
ive in improving prediction accuracy. In addition to using
meta-strategy, splitting a large dataset into multiple
smaller datasets is an alternative strategy for developing
dataset-specific predictors and for combining dataset-spe-
cific predictors to improve the final prediction accuracy
[35, 36]. In our previous work, dual-threshold and sequen-
tial voting were used to make meta-prediction for miR-
NA:mRNA interactions [35]. Nonetheless, the sample size
is still insufficient, and the meta-predictor only integrates
three individual predictors, including: miRanda, miRDB,
and PITA [35]. Besides, it is also clear to us that
dual-threshold sequential-voting has profound depend-
ence on threshold values. Stringent threshold values will
result in high-confidence predictions, but less number of
true predictions. On the other hand, less-stringent thresh-
old values will lead to a higher number of true predictions,
but also low-confidence. Consequently, it is challenging to
keep balance between confidence and number of true pre-
dictions, and therefore the effectiveness of dual-threshold
sequential-voting is still limited. To solve these problems,
we designed an upgraded strategy in this project focusing
on the following aspects: (1) increasing sample size; (2)
changing dual-threshold sequential-voting to dual-threshold
two-step significance-voting. Here, dual-threshold still
means that true prediction and false prediction have differ-
ent threshold values. Two-step voting indicates there are
two separate steps, in which the first step uses more
stringent threshold values to generate high-confidence
predictions, while the second step uses less-stringent
threshold values to create extra true predictions. Sig-
nificance voting allows the comparison of distance
from predictive scores to threshold values between
different individual predictors; and (3) integrating an
artificial neural network (ANN) into each branch of
the decision tree. The reason for this integration is
that the outcomes of decision tree discussed in [2]
are either high-confidence, or low-confidence. There-
fore, ANN can be used here to refine the prediction.

Results
Performance of individual predictors in eleven predictor-
specific datasets
A large dataset containing more than 40,000 miR-
NA:mRNA interactions was assembled. Many samples in
this dataset do not have numerical outputs from the
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following four miRNA target predictors: MiRanda [24],
MiRDB [28], PITA [17], and TargetScan [12]. Therefore,
for effectively comparing the prediction performance of
predictors and integrating outputs of individual predic-
tors into meta-predictor, all the samples in the dataset
were re-organized into subsets based on the availability
of numerical outputs of these individual predictors. Con-
sequently, one D4, four D3 (D3–1, D3–2, D3–3, and
D3–4), and six D2 (D2–1, …, D2–6) subsets were gener-
ated. Here, “D” stands for dataset, the number following
“D” shows the number of individual predictors associ-
ated with that subset, the numbers after dash represent
various combinations of individual predictors (please see
Method for a more detailed description of these subsets).
Clearly, the performance of four individual predictors
can be compared in each of these subsets.
Figure 1 shows the Receiver Operating Characteristic

(ROC) curves of individual predictors in the eleven
predictor-specific datasets. In overall, the prediction

performance of four predictors in all the datasets is not
optimal and still has a lot of room for improvement. In
addition, in different datasets, different predictors may
have large variations in prediction performance, as indi-
cated by the shape of ROC curves, the sensitivity and
specificity under their default threshold values. More
specifically, in terms of AUC (Area Under the ROC
Curve), miRDB achieved the highest value in the D4,
D3–1, D3–2, D3–4, D2–1, D2–4, and D2–5 datasets,
PITA was ranked at the first position in the D3–3, D2–
2, and D2–6 datasets, and miRanda obtained the best re-
sult in the D2–3 dataset. While using sensitivity, miRDB
is better than other predictors in the D4, D3–1, D3–2,
D3–4, and D2–1 datasets, PITA outperforms other pre-
dictors in the D3–3, D2–4, and D2–6 datasets, TargetS-
can beats other predictors in the D2–3 and D2–5
datasets, and miRanda exceeds others in the D2–2 data-
set. Clearly, using predictive scores of individual predic-
tors to split a large dataset into multiple smaller subsets

Fig. 1 ROC curves of individual predictors in the eleven newly designed non-redundant datasets. The datasets from top to bottom and from left
to right are: D4, D3–1, D3–2, D3–3, D3–4, D2–1, D2–2, D2–3, D2–4, D2–5, and D2–6, respectively. Samples in the D4 dataset has prediction scores
from four individual predictors, therefore, there are four ROC curves each for a predictor. Similarly, the D3 series datasets and D2 series datasets
have three and two ROC curves, respectively. In each of the insets, x-axis shows the value of 1-specificity, while y-axis shows the values of sensitivity
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may provide a novel start point for evaluating the per-
formance of different predictors. It shall also be noted
that the datasets used in Fig. 1 do not contain redundant
samples. By taking into consideration that predictive
scores of a predictor may distribute in a very narrow
range, removing redundant samples may influence the
calculated prediction accuracy significantly. The details
are shown in Additional file 1: Figure S1 and will be dis-
cussed further in the discussion section.

Combinations of techniques and prediction accuracy
As indicated by the above analysis, the performance of in-
dividual predictors in all subsets may have a large room
for improvement. In this project, an integration strategy
was designed for each subset as follows (please also see
Method): First, dual-threshold value and two-step signifi-
cance voting are combined to sort the outputs of individ-
ual predictors. Then, an ANN was used to integrate the
outputs of individual predictors to make meta-prediction.
It should be noted that dual-threshold value and two-step
significance-voting are used to determine the infrastruc-
ture of decision-tree. They are not used separately in deci-
sion tree in this project for the following reasons: (1) only
using dual-threshold values in meta-strategy showed many
limitations in our previous project [35]; and (2) using
two-step significance-voting alone in meta-predictor
causes a lot of issues on the selection of threshold values.
Therefore, these two techniques are essentially a single
component of the designed meta-strategy. With that said,
there are actually two categories of techniques in the
meta-predictor: decision tree (incl. Dual-threshold and
two-step significance-voting) and ANN. Consequently,
there are three different combinations of these techniques:
(1) individual predictors + decision tree (C-I); (2) individ-
ual predictors + ANN (C-II); and (3) individual predictors
+ decision tree + ANN (mirTarDANN).
The prediction performance of these three combina-

tions in all eleven subsets under multi-fold cross-valid-
ation is presented in Table 1. Clearly, the first
combination has only limited efficacy in improving predic-
tion performance. There is always large imbalance be-
tween sensitivity and specificity. The second combination
may have significantly improved accuracy (ACC) in sev-
eral subsets, such as D3–1 and D3–2, but very low sensi-
tivity (Sens). The third combination showed significant
improvement of prediction performance in most subsets
under multiple accuracy measures. Therefore, the third
combination will be used as the formal model of
meta-predictor for further analysis. The third combin-
ation, MirTarDANN, has the following advantages: (1)
higher accuracy in most datasets; (2) improved balance
between sensitivity and specificity; (3) higher sensitivity in
most datasets. The final model of MirTarDANN actually
contains eleven modules, including one DANN-4, four

DANN-3x, and six DANN-2x modules. Each of the mod-
ules is trained and validated in its corresponding subset,
which is either D4 subset, or one of four D3-x subsets, or
one of six D2-x subsets. Each subset was also split into
multiple groups for multi-fold cross-validation and inde-
pendent test.

Performance of new predictor mirTarDANN
Figure 2 shows the comparison of accuracy, sensitivity,
and F1 score under multi-fold cross validation among
miRanda, miRDB, PITA, TargetScan, ComiR, and the
newly designed meta-predictor mirTarDANN. Clearly, in
terms of accuracy, mirTarDANN outperformed other
predictors in the D3–3, D3–4, D2–2, D2–3, D2–4, D2–
5, and D2–6 datasets, matched to others in the D2–1
dataset, but fell behind other predictors in the D4, D3–
1, and D3–2 datasets. In terms of sensitivity, mirTar-
DANN exceeded other predictors in almost all the data-
sets except D3–2 and D2–1. In these two datasets, four
individual predictors have low sensitivity but high accur-
acy due to having high specificity (see Additional file 1:
Table S2). This is also supported by the fact that the
sensitivity of mirTarDANN is higher than individual pre-
dictors in these two datasets. Anyhow, in these two data-
sets, ComiR achieved reasonably high or the highest
values on both sensitivity and accuracy. In terms of F1
score, mirTarDANN achieved significantly improved F1
score in D3–3, D3–4, and another five D2 datasets (ex-
cept D2–1), and equal or comparable scores with ComiR
and/or other individual predictors in the D4, D3–1, and
D3–2 datasets. In D2–1 dataset, ComiR’s F1 score beat
all other predictors, including mirTarDANN. The overall
accuracy and sensitivity of mirTarDANN averaged in all
the eleven datasets under multi-fold cross validation is
59.5 and 59.0%, which are 3 and 9% higher than ComiR,
the predictor at the second position. The F1 and MCC
values of mirTarDANN as an average of all the eleven
datasets are 0.492 and 0.287, compared to 0.329 and
0.101 from ComiR, respectively (see Additional file 1:
Table S2 & S3).
Figure 3 shows the comparison of accuracy, sensitivity,

and F1 score among four individual predictors, ComiR,
and mirTarDANN in the independent test datasets. The
overall trend of data in this figure is similar to those in
Fig. 2. Basically, mirTarDANN has the highest accuracy
in all datasets except D4, D3–1, and D3–2. In terms of
sensitivity, mirTarDANN outperformed other predictors
significantly in D3–1, D3–3, D3–4, D2–2, and D2–4
datasets, fell behind ComiR in the D4, D3–2, D2–1, and
D2–3 datasets, and also fell behind one or two individual
predictors in the D2–1, D2–5, and D2–6 datasets. As to
F1 score, mirTarDANN was only behind ComiR in the
D2–1 and D2–3 datasets. As an average in all the eleven
test datasets, the accuracy of mirTarDANN and ComiR
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is 65.1% vs 56.2%, and the sensitivity of mirTarDANN
and ComiR is 50.6% vs 51.4%, the F1 scores are 0.455
(miRTarDANN) vs 0.315 (ComiR), and the MCC values
are 0.276 (mirTarDANN) vs 0.119 (ComiR) (see Add-
itional file 1: Table S4 and S5).

Cross-subset performance of the newly-designed meta-
strategy/meta-predictor
The meta-predictor is composed of eleven modules, and
each module is associated with a specific set of individual
predictors. Each module is also trained and validated in its
corresponding subset, in which all the samples have and
only have numerical predictive scores from that set of in-
dividual predictors. Apparently, modules trained in sub-
sets with less number of individual predictors may be
used to make prediction for samples with more predictive
scores. For example, DANN-21 can be used to make pre-
diction for samples in the D4 and D3–1 subsets. In other
words, D4 samples can be predicted by not only DANN-4

module, but also four DANN-3x modules and six
DANN-2x modules. Samples in D3–1 subset have mi-
Randa, miRDB, and PITA scores, therefore, D3–1 samples
can also be predicted by DANN-21 (requires miRanda
and miRDB scores), DANN-22 (requires miRanda and
PITA scores), and DANN-24 (requires miRDB and PITA
scores) modules. In this project, the prediction accuracy
of a trained DANN module in a non-corresponding subset
is called cross-subset accuracy. Figure 4 shows the per-
formance of DANN modules in different subsets. In this
figure, x-axis is the prediction accuracy and y-axis shows
the sensitivity. Therefore, when a DANN module has good
performance in a subset, the symbol shall be at the
upper-right corner along the diagonal line. Clearly, as
shown in Fig. 4(a), all the DANN modules in mirTar-
DANN have lower performance in cross-subset test.
It is expected that DANN modules have lower perform-

ance in cross-subset validation, since a specific DANN
module has been trained in its corresponding subset, not

Fig. 2 Comparison of prediction performance of different predictors in eleven newly-designed datasets under multi-fold cross validation. X-axis
shows the eleven newly-designed datasets, while the y-axis shows (a) accuracy, (b) sensitivity, and (c) F1 score, respectively. Error bars are standard
deviation from multi-fold cross validation. In the D4 dataset, the performance of mirTarDANN was compared with four individual predictors and
ComiR. In each of the D3 series datasets, mirTarDANN was compared to ComiR, and three out of four individual predictors. In each of the D2 series
datasets, mirTarDANN was compared to ComiR and two out of four individual predictors. When calculating the accuracy of individual predictors, their
default cutoff values were used. For ComiR, a false discovery rate of 5% was recommended by the developer to determine the cutoff. Therefore, based
on the calculations of 50 randomly selected miRNAs and their targets in the datasets, 0.82 was used as the cutoff of ComiR
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Fig. 3 Comparison of prediction performance of different predictors in the independent datasets that each is associated with one of the eleven
newly-designed datasets. X-axis shows the datasets, while the y-axis shows (a) accuracy, (b) sensitivity, and (c) F1 score, respectively. Only mirTarDANN
has error bars since mirTarDANN has multiple sets of parameters optimized under multi-fold cross-validation

Fig. 4 Performance of eleven DANN modules in different subsets. aPerformance of original trained DANN modules in different subsets. b Performance
of DANN modules re-trained in merged subsets. c Performance of re-trained DANN modules in original subsets. X-axis shows the prediction accuracy,
while y-axis shows the sensitivity. Each symbol stands for the performance of a specific subset predicted by specific DANN module. Larger symbols are
performance of eleven original DANN modules trained in their corresponding subsets, while small symbols show performance of original DANN
modules in non-corresponding subsets or performance of re-trained DANN modules in various subsets. The subsets are represented by the colours
filled in the symbols as follows: D4:black, D3–1:red, D3–2:green, D3–3:yellow, D3–4:blue, D2–1:pink, D2–2:cyan, D2–3:grey, D2–4:dark red, D2–5:dark
green, D2–6:dar yellow. DANN modules are denoted by the shape of symbols as follows (All DANN-3x have dark edges, while all DANN-2x have red
edges): DANN4:star, DANN-31:up triangle, DANN-32:down triangle, DANN-33:square, DANN-34:diamond, DANN-21:up triangle, DANN-22:down triangle,
DANN-23:square, DANN-24:diamond, DANN-25:hex, DANN-26:circle
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the other subsets used for cross-subset validation. To fur-
ther evaluate the influence of different subsets on the per-
formance of specific modules, all the associated subsets
were merged to make a merged-subset and the corre-
sponding DANN module was re-trained in the
merged-subset to see the final prediction accuracy under
multi-fold cross-validation. Let’s take D4 subset as an ex-
ample as follows: all the D4 samples can be predicted by
DANN-4 and DANN-31 modules. However, since
DANN-31 was trained in the D3–1 subset, it has lower
prediction performance in D4 dataset. Therefore, it be-
comes interesting to see if D4 and D3–1 can be merged to
make a new D3–1 subset (i.e. *D3–1) to train a new
DANN-31 module (i.e. *DANN-31) to improve the pre-
diction performance in D4, D3–1, or *D3–1. In this case,
for the purpose to re-train DANN-31 module, D4 and
D3–1 become associated datasets. In this project, only the
merge of a subset associated with more individual predic-
tors into a subset associated with less individual predictors
is analysed, merge in the reversed direction will result in
samples with non-numerical predictive scores and there-
fore is not further considered. Clearly, the similar analysis
can be performed for all the DANN-3x and DANN-2x
modules. The results are shown in Fig. 4(b) and (c), accord-
ingly. In Fig. 4(b), the performance of each re-trained
DANN module in its corresponding merged-subset was
analysed. In Fig. 4(c), the performance of each re-trained
DANN in its original associated subsets was analysed.
Clearly, even if a new DANN module is re-trained in the
corresponding merged-subset, the performance of this
re-trained module is still less satisfactory in the merged-
subset, as well as in the original associated subsets.

miRNA:mRNA interactions exclusively identified by
mirTarDANN are closely associated with diseases
In all the eleven datasets, the newly designed
meta-predictor mirTarDANN exclusively identified 298
experimentally validated miRNA:mRNA interactions that
cannot be identified by any of the individual predictors
under their default settings as shown in Fig. 5. Out of
these 298 miRNA:mRNA interactions, 126 can be pre-
dicted by ComiR. Therefore, mirTarDANN identified 172
novel miRNA:mRNA interactions that can not be identi-
fied by four individual predictors and ComiR (see Fig. 5).
Among these 172 novel true positive predictions,

many are from the same dataset. For example, 43, 28,
24, 17, 16, and 14 interactions are from D3–3, D2–2,
D3–4, D3–1, D4, and D2–4 datasets. The other thirty
true positive predictions are from the other five datasets,
with each dataset contributing one to ten true-positive
predictions. These miRNA:mRNA interactions involve
167 mRNAs and 82 miRNAs.
Among the afore-mentioned 167 mRNAs, ACO1,

SMARCA2, SUMF1, TOX4, and ZMAT3 can be regulated

by more than one miRNAs, multiple mRNAs belong to
the same gene families, such as members in the AKAP,
EIF, MED, SLC, TMEM, USP, ZBTB, ZFP, and ZMAT
families. ACO1 is a cytoplasmic aconitate hydratase.
When cellular iron levels are high, ACO1 binds to iron
and serves as an aconitase to generate the isocitrate dur-
ing the citric acid cycle [40]. When iron levels are low,
ACO1 binds to iron-responsive elements (IRES) in target
mRNA molecules to serve as a RNA-binding protein [41].
In the predicted novel miRNA:mRNA interactions, ACO1
is regulated by MMU-MIR-339 and MMU-MIR-10B.
SMARCA2 has the function of ATP-dependent helicase
and is probably a global transcription activator. It is a
component of SWI/SNF chromatin remodelling com-
plexes [42, 43]. It is also a component of npBAF complex,
and therefore critical for the development of neural stem
cells [44]. SMARCA2 is bound by MMU-MIR-33 and
MMU-MIR-466A. SUMF1 is a formylglycine-generating
enzyme [45, 46]. Its malfunction is the cause of multiple
sulfatase deficiency (MSD) [47, 48]. SUMF1 is targeted by
MMU-MIR-743B and MMU-MIR-488 in the predicted
novel interactions. TOX4 (TOX high mobility group box
family member 4) is a component of PTW/PP1 phospho-
tase complex, which regulates chromatin structures [49].
TOX4 is an interaction partner of MMU-MIR-221 and
MMU-MIR-376C. ZMAT3 is the short name for Zinc fin-
ger matrin-type protein 3. It is a target of P53 and has
functional roles in P-53 dependent regulatory pathway
[50–52]. ZMAT3 is regulated by MMU-MIR-764 and
MMU-MIR-292A.
Out of the afore-mentioned 82 miRNAs, 36 may regu-

late multiple novel-predicted mRNAs. In which,
MMU-MIR-129, MMU-MIR-340, MMU-MIR-362, and
MMU-MIR-9 may regulate 12, 9, 8, and 8 mRNAs, re-
spectively. These thirty-seven downstream mRNAs are in-
volved in over thirty signalling pathways, including
cancer-related pathways, MARK signalling pathway, Ras
signalling pathway, hippo signalling pathway, RNA trans-
port pathway, spliceosome pathway, etc. Especially, among
those thirty-seven downstream genes, PDGFRA and
MYLK are involved in eighteen and eight signalling path-
ways, respectively. In addition to the afore-mentioned four
miRNAs, another 12 miRNAs each may regulate more
than three novel-predicted mRNAs as shown in Fig. 6(a).
The regulated signalling pathways and the number of in-
volved genes of each pathways for the afore-mentioned 36
miRNAs are presented in Fig. 6(b).

Discussion
Meta-strategy is capable to integrate the advantages of
different individual predictors and therefore to improve
the overall prediction accuracy efficiently. as well as bal-
ance sensitivity and specificity. Nonetheless, using a sim-
ple meta-strategy to directly integrate the outputs of
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Fig. 5 Number of novel miRNA:mRNA interactions identified by mirTarDANN in the eleven newly-designed datasets. Grey bars shows the number
of novel interactions compared to four individual predictors, including miRanda, miRDB, PITA, and TargetScan. Dashed grey bars show the difference
between mirTarDANN and one of the other five predictors, including four individual predictors and ComiR

Fig. 6 Functional analysis of novel miRNA:mRNA interactions identified mirTarDANN, but not identified by four individual predictors and ComiR. a
List of miRNAs and the corresponding number of mRNAs that can be regulated by each of these miRNA. Only miRNAs having more than three
mRNA targets are shown in the Fig. (b) KEGG pathways containing three or more genes, which are found in the novel miRNA:mRNA interactions
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individual predictors may not improve the prediction per-
formance significantly [34, 35]. Therefore, it may be crit-
ical to integrate various data analysis techniques in
meta-strategy to improve the final prediction accuracy. In
this project, the predictive scores of miRanda, miRDB,
PITA, and targetScan were input into a decision tree. In
the decision tree, dual-threshold value, two-step
significance-voting, and analysis of information-gain were
integrated to filter the input scores of individual predic-
tors. The input scores were then fed into an ANN to make
meta-prediction. This meta-strategy has improved the
prediction performance significantly, comparing to indi-
vidual predictors and other meta-predictors. With the suc-
cess of this strategy, it could be expected that integrating
more individual predictors, and/or more data analysis
techniques, is able to further improve the prediction ac-
curacy. While this expectation is reasonable, it should be
noted that the margin effect of adding extra individual
predictors into meta-predictor could be very limited [32–
34]. In addition, adding extra individual predictors may in-
dicate that there will be more subsets and consequently
the smaller size of subsets. By taking into consideration
that multiple subsets in this project have only ~ 300–400
samples, there may be additional concerns for using more
individual predictors in miRNA target meta-predictors.
The data analysis techniques used in this project are es-
sentially able to reduce noise in datasets and/or at differ-
ent stages of prediction. Therefore, it can be expected that
additional techniques may be used to further reduce noise,
and consequently to improve prediction accuracy.
The reasons for choosing the afore-mentioned four indi-

vidual predictors are multi-fold. First, these four individual
predictors are well designed and have been broadly used
in this field. Second, these individual predictors have stan-
dalone versions, webservers, as well as pre-assembled pre-
diction of miRNA:mRNA interactions for the entire
mouse genome. Consequently, the comparison and appli-
cation of our newly-designed meta-predictor becomes
much easier. Third, the use of these four individual pre-
dictors is able to split the original large dataset into mul-
tiple smaller subsets, which each has reasonable amount
of samples and well reduced noise as indicated by im-
proved prediction performance. The original unsplit data-
set used in this project contains more than 7000 positive
miRNA:mRNA interactions and ~ 40,000 negative miR-
NA:mRNA interactions. Many samples in this dataset
have non-numerical values, such as “-”, “NA”, or null, in
the outputs of those four individual predictors. Under the
current scheme of the newly-designed meta-strategy, these
non-numerical values cannot be used directly in the deci-
sion tree. Therefore, it is necessary to organize all the
samples into multiple subsets based on the availability of
numerical scores of individual predictors. In this way, all
the samples in a subset have and only have numerical

values from a specific subset of individual predictors. For
example, all the samples in the D3–1 subset have and only
have numerical predictive values from miRanda, miRDB,
and PITA. Consequently, these scores can be compared to
threshold values associated with the DANN-31 module of
the decision tree and fed into the ANN associated with
DANN-31 to make refined prediction. The second advan-
tage of splitting a large dataset into multiple smaller sub-
sets is to reduce the intrinsic noise of the subsets.
Normally, a sample with a non-numerical value can only
be assigned as false, even the sample is a positive sample.
This sample is also a sample space, different from other
samples with numerical values. Therefore, the presence of
samples with non-numerical values increases the noise of
datasets. Another advantage of using subsets is that the
prediction accuracy of predictors can be measured more
specifically in these subsets, and thus the comparison of
prediction accuracy of different predictors in subsets is
more informative. Actually, as shown in Figure 1, the per-
formance of individual predictors has large variations in
different subsets, and the variation can only be captured
in the form of subset. Furthermore, comparison of various
accuracy measures in different subsets of different predic-
tors provides another practical strategy to select the most
appropriate predictors. For example, if a miRNA:mRNA
pair has miRanda, miRDB, and TargetScan scores (or in
other words, this pair is similar to samples in the D3–2
dataset), ComiR can be selected to make prediction to en-
sure the highest sensitivity, while miRanda could be used
to ensure a higher specificity.
The reason for using those four individual predictors

can also be rationalized in the analysis of overlap and
coverage. The overlap of two predictors refers to the
numbers of overlapped true positive and overlapped true
negative predictions, the coverage of two predictors
shows the maximum number of non-overlapped true
positive or true negative predictions of two predictors.
Clearly, overlap is an indicator of the similarity between
two predictors, while coverage shows the maximum
number of correct predictions that can be made by these
two predictors. For the simplicity of comparison, both
overlap and coverage are shown in percentile by dividing
the total number of either positive or negative samples
in that dataset. Figure 7(a) shows the values of overlap
and coverage of different pairs of predictors for positive
samples in the eleven datasets. Clearly, the values of
pairwise overlap are in most cases around or below 20%
except in the following three datasets: D3–4, D2–5, and
D2–6, where the values of positive sample overlap are
still less than 30–40%. In terms of pairwise coverage, the
values normally reach to ~ 40% in the D3–3, D2–2, and
D2–3 datasets, to ~ 60% in the D4, D3–1, D3–2, and
D2–1 datasets, and to ~ 70% in the D3–4, D2–4, D2–5,
and D2–6 datasets. The maximum values of coverage of
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multiple predictors in the D4 and D3 series datasets
are normally ~ 10% higher than the highest pairwise
coverage in that dataset. The overlap and coverage of
negative samples are presented in Fig. 7(b). In the
D4, D3–2, D3–2, D3–3, D2–1, and D2–2 datasets,
the pairwise overlap for negative samples are normally
between 40 and 50%, and the pairwise coverage
values are around ~ 90%. In the D3–4, D2–2, D2–3,
and D2–4 datasets, the values of pairwise overlap are
between 10 and 30%, and the values of pairwise
coverage are normally around 80%. In the D2–5 and
D2–5 datasets, the overlap is below 10% and the
coverage is at ~ 60%. In the datasets involving three
or four predictors, the maximum values of coverage
of multiple predictors are normally 5% higher than
the highest pairwise coverage values. Clearly, combin-
ing different predictors may improve the prediction
results significantly due to the fact that the pairwise
coverage values are much higher than the prediction
accuracy of individual predictors.
The analysis of overlap and coverage demonstrates that

these four predictors have some common predictions, but
also many predictor-specific predictions. Therefore, the
analysis of overlap and coverage is useful in determining
the infrastructure of decision tree. For majority-voting
based strategy, overlap is a critical measurement.

However, in significance-voting based predictor[s], al-
though overlap is still very important, coverage plays a
more critical role. In addition, majority-voting is strong in
selecting part of the true-positive predictions that have
very high levels of confidence, significance-voting is
able to pick up additional true-positive predictions that
cannot be identified by majority-voting. In this way,
significance-voting improves the overall prediction ac-
curacy and has higher potential in application. To
maximize the efficacy of significance-voting, the
dual-threshold value and two-step voting strategies are
also critical. In the first-step voting, the thresholds are
normally stricter than those of single predictors. The
purpose is to select high-confidence true-positive and
true-negative predictions from individual predictors.
The second step voting uses less-stringent threshold
values to enable the selection of additional true-positive
predictions that cannot be identified by individual pre-
dictors under their default settings.
After determining the infrastructure of the newly-de-

signed meta-predictor, two sets of threshold values (the
1st-step threshold values for true positive and true nega-
tive, as well as the 2nd-step threshold values for true
positive and true negative) need to be determined.
Therefore, the information gain in each of the eleven
datasets was analysed.

Fig. 7 Overlap and coverage between individual predictors for (a) positive samples and (b) negative samples. Grey bars are the values of overlap
between two predictors (pairwise overlap). Each cap indicates the value of overlap for a specific pair of predictors. Dark grey bars stand for the values
of coverage between two predictors (pairwise coverage), with caps each for a specific pair of predictors. Black bars show values of all-
inclusive coverage, which are calculated from all predictors in that dataset. Apparently, only D4 and D3 series datasets have the all-inclusive coverage
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Conclusions
Based on our previous studies where ANN or dual-
threshold sequential-voting was used to integrate the
predictive results of individual predictor, a novel infra-
structure of meta-strategy that combines ANN and
decision-tree was designed in this project to make
meta-prediction of miRNA targets using predictive
scores of four individual predictors, including miRanda,
miRDB, PITA, and targetScan. Different from traditional
decision-tree and the afore-mentioned dual-threshold
sequential-voting, the new decision-tree uses dual-
threshold and two-step significance voting. The combin-
ation of this new decision-tree with ANN was trained in
a large-scale miRNA:mRNA interaction dataset and im-
proved the prediction accuracy of miRNA:mRNA inter-
actions significantly comparing to individual predictors
and several other meta-predictors under multi-fold
cross-validation and using independent datasets in mul-
tiple accuracy measures, such as accuracy, sensitivity,
specificity, F1 score and MCC. Also, the availability of
numerical scores of individual predictors was used to
split a large dataset into multiple smaller subsets, to re-
duce the noise of subsets, improve the training of
meta-predictor, and provide more specific evaluation of
prediction performance of different predictors in the
subsets. The reduce noise in the sunsets further im-
proved the efficacy of meta-predictors developed on
those subsets. The newly-designed meta-predictor iden-
tified near 200 novel miRNA:mRNA interactions that
cannot be predicted by other predictors.

Methods
Datasets
MiRTarBase [53] and Tarbase [54] are very well designed
large-scale miRNA:mRNA interaction databases. All the
interactions in these two databases are validated by experi-
mental techniques, such as reporter assay, western blot,
Cross-Linking Immunoprecipitation (CLIP), and many
others. The miRTarBase V7.0 contains nearly ~ 2000
mouse miRNAs, over 7000 target mouse genes, and
40,169 mutual interactions between them. The TarBase
V7.0 contains more than 400 miRNAs, over 5000 mRNAs,
and 28,923 miRNA:mRNA interactions. Although both
containing a large amount of experimental data, these two
databases have only 457 overlapped miRNA:mRNA inter-
actions for the entire mouse genome. This fact gives
grounds for combining these two databases in this study,
as well as for developing novel computational strategies to
predict miRNA:mRNA interactions.
MiRanda [24], MiRDB [28], PITA [17], and TargetScan

[12] are four very popular predictors for miRNA:mRNA
interactions. Their websites each provides a dataset con-
taining the whole genome prediction of miRNA:mRNA
interactions for mouse genome. For each possible

miRNA:mRNA pair (or sample) in the genome, each pre-
dictor may produce either scored or unscored predictions.
Only scored predictions were included in those datasets.
There are over 810 k, 630 k, 2.7 m, and 270 k scored pre-
dictions for mouse genome, from miRanda, MiRDB,
PITA, and TargetScan, respectively. Samples in these four
datasets were further organized as follows: (I) Samples
found in all four datasets were deposited into D4; (II)
Samples found only in miRanda, MiRDB, and PITA, were
saved in D3–1. Similarly, D3–2 for samples only found in
miRanda, MiRDB, and TargetScan; D3–3 for samples only
found in miRanda, PITA, and TargetScan; and D3–4 for
samples common in MiRDB, PITA, and TargetScan; (III)
Samples found only in miRanda and MiRDB were kept in
D2–1. Similarly, there are another 5 subsets containing
samples that are only found in two out of four datasets,
which are D2–2 (MiRanda and PITA), D2–3 (MiRanda
and TargetScan), D2–4 (MiRDB and PITA), D2–5
(MiRDB and TargetScan), and D2–6 (PITA and TargetS-
can); (IV) Samples found only in one dataset were
grouped into another four datasets: D1–1 (miRanda), D1–
2 (MiRDB), D1–3 (PITA), and D1–4 (TargetScan).
Then, samples in these subsets were compared with

miRTarbase and TarBase. If a sample is found in either of
these two databases, it is assigned as a positive sample,
otherwise, negative sample. Afterwards, duplicated sam-
ples were identified if there was less than a 2% difference
between all predictor scores of two samples. One of the
duplicated samples was randomly selected and then re-
moved. It should be noted here that since each D1 series
dataset only contains samples with one prediction score,
they were not further considered in this study. Conse-
quently, there are in total eleven predictor-specific data-
sets, including one D4, four D3 series, and six D2 series
datasets (Table 2).

Meta-predictor
The infrastructure of the meta-predictor is shown in Fig. 8.
For each pair of query miRNA and mRNA sequences, pre-
dictions are first made using four individual predictors in-
cluding miRanda, MiRDB, PITA, and TargetScan. The
predictive results are next examined to see if they are
scored predictions. Based on the results of this examin-
ation, the predictive results are then input into a corre-
sponding Decision-tree based Artificial Neural Network
(DANN) to make the final meta-prediction. For example,
if a query miRNA;mRNA sequence pair only has scored
predictions from miRanda and miRDB, these two predict-
ive scores will be fed into DANN-2-1, which uses the pre-
dictive results of miRanda and miRDB, and is trained in
dataset D2–1.
Each DANN module uses the combination of several

specific techniques including dual-threshold [35, 36],
two-step significance-voting [36], and two-layer Artificial
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Neural Network (ANN). Dual-threshold means the
threshold values of true and false predictions are differ-
ent. Significance-voting refers to comparing the signifi-
cance of predictive results by their Euclidean distances
from corresponding threshold values. This technique is
complementary to the majority-voting technique used in
many studies. For example, when two predictors make
true predictions and another two predictors make false
predictions, comparing the number of true predictions
(NT) and the number of false predictions (NF) may not
lead to very useful conclusions. However, comparing the
sum of distances from true thresholds value (dT) and the
total distance from false threshold values (dF) may pro-
vide additional information of the relative significance of
true predictions and false predictions. Two-step selec-
tion in this study uses two sets of dual-threshold values
in combination with significance-voting as follows: First,
the 1st-step threshold values, which are more stringent,
are used to compare the number of true-prediction pre-
dictors and the number of false-prediction predictors. If
the numbers are equal, the 2nd-step threshold values,
which are less stringent, are used to compare the num-
bers of true-prediction predictors and false-prediction
predictors. If the numbers are also equal, significance-
voting based on the 2nd-step threshold values is applied.
By using these techniques, the predictive results from in-
dividual predictors will be encoded in six different ways
(see Fig. 8).
The encoded predictive results will be fed into one of

the eleven DANNs, which is a fully-connected two-hid-
den-layer ANN. There are ten, twenty, and two nodes in
the first hidden, second hidden, and output layers, re-
spectively. Since there are two nodes in the output layer,
the labels of positive and negative samples are [1,0] and
[0,1], respectively. The number of nodes in the input layer
is determined by the number of individual predictors in
that DANN module. There are 10, 9, and 8 input nodes

for DANN-4, DANN-3, and DANN-2 modules, accord-
ingly. The activation function for all the nodes is hyper-
bolic tangent function. However, in the output layer, the

output was further transformed using: OT
i ¼

expOi
.X

expOi
; i ¼ 1 and 2. In which, Oi and OT

i are

the original output and transformed output, respectively.

Training and validation
Each DANN predictor is trained and validated in one
of the eleven predictor-specific datasets. For each of the
datasets, 20% of all samples were randomly taken out
to compose an independent test dataset, the other 80%
of samples were randomly and equally split into mul-
tiple subsets for multi-fold cross-validation. Based on
the number of samples in each dataset, either five-fold
or three-fold cross-validation was used. The corre-
sponding DANN was trained and validated using
multi-fold cross validation in its corresponding
predictor-specific dataset, as well as then validated in
its independent test dataset.

Preprocessing predictive results of individual predictors
and information gain
The outputs of the afore-mentioned four individual pre-
dictors have different numerical ranges as follows: mi-
Randa (− 1.364, − 0.1), miRDB (50, 100), PITA (− 43.24,
21.4), and TargetScan (− 9.05, 0). The default threshold
values for true predictions of these predictors are <− 1.0,
> 80, <− 10, and < − 0.36, respectively. For the simplicity
of future data analysis, miRDB’s predictive scores are
inversed by multiplying − 1, and all the scores from each
individual predictor are scaled into the range (− 1,1).
Thus, the corresponding true prediction threshold values

Table 2 Numbers of samples in each of the eleven newly-designed datasets

Dataset Associated individual
predictors

No. of original
samples

No. of non-redundant
samples

No. of positive
samples

No. of negative
samples

No. of
miRNAs

No. of
mRNAs

D4 miRanda, MiRDB, PITA, TargetScan 45,517 22,446 1844 20,602 211 6747

D3–1 miRanda, MiRDB, PITA 29,486 9271 1339 7932 212 4619

D3–2 miRanda, MiRDB, TargetScan 7584 2478 198 2280 201 1097

D3–3 miRanda, PITA, TargetScan 107,813 5529 1220 4309 205 3541

D3–4 MiRDB, PITA, TargetScan 66,384 2984 864 2120 323 1946

D2–1 miRanda, MiRDB 5269 892 199 693 186 641

D2–2 miRanda, PITA 216,923 974 457 517 202 883

D2–3 miRanda, TargetScan 32,566 429 151 278 162 342

D2–4 MiRDB, PITA 29,531 810 455 355 165 645

D2–5 MiRDB, TargetScan 256,784 430 174 256 259 337

D2–6 PITA, TargetScan 384,944 363 179 184 175 288
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for four predictors in their default settings are <− 0.424,
<− 0.2, < 0.028, and < 0.920, accordingly.
Information Gain (IG) was calculated as a function of

predictive score as follows:

IG xð Þ ¼
X
i¼1;2

pi log2pi−
X
j¼1;2

f j xð Þ
X
k¼1;2

pj;k log2pj;k

In which, pi is the fraction of positive (i = 1) or negative
(i = 2) samples in the dataset. “x” is the threshold predic-
tion score to split the dataset into two groups, fj(x) is the
fraction of samples with prediction score higher than the
threshold (j = 1) or the fraction of samples with prediction
score lower than the threshold (j = 2), pj,k refers to the
fraction of positive samples (k = 1) or negative samples (k
= 2) in the j-th group.
Figure 9 shows the information gain as a function

of the scaled prediction score for each individual pre-
dictor in the D4 dataset, as well as the distribution of
positive and negative samples at different prediction
scores in the D4 dataset (see Additional file 1: Figure
S2 for data in the other ten datasets). Clearly, the
plots of information gain of four predictors are very
different from the curves of distribution of positive

and negative samples. In other words, information
gain provides additional information that cannot be
easily produced by the comparison of distribution be-
tween positive and negative samples. By notation, a
spike in the plot of information gain indicates that
the predictive score associated with this spike is able
to split positive samples from negative samples in an
optimal way. Therefore, all the spike-associated pre-
diction scores are candidates of threshold values. By
taking into consideration that positive samples’ pre-
diction scores are smaller in the scaled prediction
scores, the threshold values for true predictions
should be smaller than the threshold values for false
predictions. In addition, the 1st-step threshold values
should be more stringent than the 2nd-step threshold
values. With that said, the 1st-step threshold values
for true predictions should be smaller than 2nd-step
threshold values for true predictions, and the 1st-step
threshold values for false predictions should be larger
than the 2nd-step threshold values for false predic-
tions. When selecting the parameters for each
DANN-x module, an initial set of parameters that sat-
isfy the afore-mentioned conditions were selected to
evaluate the final prediction accuracy. At this point,

Fig. 8 Infrastructure of decision-tree based meta-predictor. Query miRNA:mRNA sequences are firstly fed into miRanda, miRDB, PITA, and
TargetScan to get individual predictions. These individual predictions may be scored or unscored (null output). Based on the scored individual
predictions, a specific module of decision tree based artificial neural networks (DANN) will be selected. For example, if only miRanda and miRDB
have scored predictions, module DANN-2-1 will be selected. There are eleven modules in the pipeline, each module corresponds to one of the
eleven datatsets and uses scores different predictors as follows, DANN-4: miRanda, miRDB, PITA, and TargetScan; DANN-3-1: miRanda, miRDB, and
PITA; DANN-3-2: miRanda, miRDB, and TargetScan; DANN-3-3: miRanda, PITA, and TargetScan; DANN-3-4: miRDB, PITA, and TargetScan; DANN-2-1:
miRanda and miRDB; DANN-2-2: miRanda and PITA; DANN-2-3: miRanda and TargetScan; DANN-2-4: miRDB and PITA; DANN-2-5: miRDB and
TargetScan; DANN-2-6: PITA and TargetScan. “Y” above an arrow and “N” along an arrow represent “Yes” and “No”. “T/F” inside a circle stands for
true (T) or false (F) prediction. “NT1” is the number of predictors that make true prediction using the 1st-level true threshold values, and so on so
forth for NF1, NT2, NF2. “b1” and “b2” are the differences of the predictions score from their corresponding 1st-level threshold values. “c1” and
“c2” are the differences of the predictions score from their corresponding 2nd-level threshold values. “dT2” and “dF2” are the Euclidean distances
of prediction scores from their corresponding 2nd-level threshold values for true (T) predictions and false (F) predictions, respectively. The
infrastructure of the 2-hidden-layer ANN is described in the text. There are in total eleven DANNs
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normally the values associated with the largest four
peaks were used, and the accuracies associated with
the first-step true/false as well as the second-step
true/false are calculated. Then, one of the threshold
values was changed in a way satisfying the
afore-mentioned criteria, and the prediction accuracy
of this module is re-evaluated to compare with the
previously calculated accuracy. If the parameter has
been changed twice and the accuracy has been con-
tinuously decreasing, the selection of this parameter
will be terminated and the associated threshold value
will be determined. Apparently, the tuning of parame-
ters has four subsequent phases: first-step true,
second-step true, first-step false, and second-step
false. If the change of first-step threshold value (or
true/false threshold values) affected the corresponding
second-level threshold value (or false/true threshold
values), the second-level threshold value (or false/true
threshold values) will also be changed accordingly.
Consequently, multiple combinations of threshold
values were tested, and the final determined true/false
threshold values of miRanda, miRDB, PITA, and Tar-
getScan in the D4 dataset are (− 0.179/0.844, − 0.702/

0.059, − 0.449/0.257, 0.896/0.982) as the 1st-step
threshold values, and (0.067/0.199, − 0.480/− 0.269, −
0.203/− 0.107, 0.964/0.972) as the 2nd-step threshold
values (see Additional file 1: Table S1 for the final
threshold values of the other ten datasets).

Prediction performance evaluation
The performance of the newly designed meta-strategy
was evaluated using Sensitivity (Sens), Specificity
(Spec), Accuracy (Acc), F1 score (F1), and Matthews
Correlation Coefficient (MCC) under multi-fold
cross-validation and in independent datasets. The per-
formance was further compared with the correspond-
ing values of four individual predictors (miRanda,
miRDB, PITA, and TargetScan), as well as another
two recently developed meta-predictor: ComiR [30]
and Oliveira’s predictor [55]. ComiR is a recently de-
veloped meta-predictor for miRNA target prediction.
By using support vector machine to integrate the pre-
dictive results of miRanda [24], PITA [17], and Tar-
getScan [12], ComiR improved the overall prediction
accuracy remarkably, but still left room for further
improvement.

Fig. 9 Information gain compared to the distribution of positive and negative samples in the D4 dataset for (a) miRanda, (b) miRDB, (c) PITA, and
(d) TargetScan. X-axis shows the scaled prediction score, y-axis on the left shows the value of information gain, and y-axis on the right shows the
distribution of positive samples (red dashed) and negative samples (cyan solid)
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Additional file

Additional file 1: Table S1. The 1st-step and 2nd-step threshold values
for both true and false predictions in eleven DANN modules. Table S2.
Sensitivity (Sens), specificity (Spec), and accuracy (Acc) of miRanda,
miRDB, PITA, TargetScan, MTR*, and ComiR in the eleven non-redundant
datasets under multi-fold cross-validation. Table S3. F1 and Mathews
Correlation Coefficient (MCC) of miRanda, miRDB, PITA, TargetScan, MTR*,
and ComiR in the eleven non-redundant datasets under multi-fold cross-
validation. Table S4. Sensitivity (Sens), specificity (Spec), and accuracy
(Acc) of miRanda, miRDB, PITA, TargetScan, MTR*, and ComiR in the
eleven independent test datasets. Table S5. F1 and Mathews Correlation
Coefficient (MCC) of miRanda, miRDB, PITA, TargetScan, MTR*, and ComiR
in the eleven independent test datasets. Figure S1. ROC curves of
individual predictors in eleven newly designed datasets that contains
duplicate samples. Figure S2. Information gain compared to the
distribution of positive and negative samples in four D3 series datasets and
six D2 series datasets for (A) miRanda, (B) miRDB, (C) PITA, and
(D) TargetScan, when the prediction scores of these predictors are
available. (DOCX 642 kb)
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