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Abstract

Background: Chromosomal architecture, which is constituted by chromatin loops, plays an important role in
cellular functions. Gene expression and cell identity can be regulated by the chromatin loop, which is formed by
proximal or distal enhancers and promoters in linear DNA (1D). Enhancers and promoters are fundamental non-
coding elements enriched with transcription factors (TFs) to form chromatin loops. However, the specific
cooperation of TFs involved in forming chromatin loops is not fully understood.

Results: Here, we proposed a method for investigating the cooperation of TFs in four cell lines by the integrative
analysis of DNA sequences, ChIP-Seq and ChIA-PET data. Results demonstrate that the interaction of enhancers and
promoters is a hierarchical and dynamic complex process with cooperative interactions of different TFs synergistically
regulating gene expression and chromatin structure. The TF cooperation involved in maintaining and regulating the
chromatin loop of cells can be regulated by epigenetic factors, such as other TFs and DNA methylation.

Conclusions: Such cooperation among TFs provides the potential features that can affect chromatin’s 3D architecture
in cells. The regulation of chromatin 3D organization and gene expression is a complex process associated with the
hierarchical and dynamic prosperities of TFs.
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Background
The spatial structure of the genome is important to cel-
lular functions, such as gene expression and regulation,
cell differentiation and identity, and tissue development
[1–3]. Linear DNA, which is 2 m long in one human
cell, is highly packed into chromatin and adapts to the
size of the cell nucleus. With the development of
high-throughput sequencing technologies, new methods,
such as high-throughput chromosome conformation
capture (Hi-C) [4], in situ Hi-C [5], have been developed
and applied to study the spatial organization of chromatin

in various human cells. The structure of genomic DNA
can be compartmentalized into four hierarchical struc-
tures [6–8] with different resolutions: chromosome terri-
tories (50–250MB bases), A/B compartments (~ 5MB
bases), topologically associated domains (TADs) (~ 1MB)
or sub-TADs (0.1–1MB), and chromatin loops (5–300 kb)
[7]. Among these structures, the chromatin loop is the
architectural basis of other higher structures. The chroma-
tin loop can bring distal regulatory elements, such as en-
hancers in linear DNA, to the promoters of target genes
in 3D space. As an example, recently, Chen and Levo et
al. [9] reported that gene activation in Drosophila embryos
is required for the sustained proximity of enhancer to its
target promoters. Although the chromatin loop has an
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important role in gene regulation and disease [10], the
specific mechanism, especially the involved molecules,
such as proteins, and the cooperation of transcription fac-
tors (TFs) participating in the chromatin loop, remains
poorly understood.
Genome-wide profiling of the TF binding sites is ex-

tensively studied across linear genomic DNA [11–13].
For example, information on many TF binding sites of
various cells is deposited in the Encyclopedia of DNA El-
ements (ENCODE) project at the UCSC [11]. The co-
operation between regulatory factors, such as TFs,
histones, and DNA-associated proteins, is investigated
by ChromNet using the public ENCODE ChIP-Seq
(Chromatin Immunoprecipitation Sequencing) datasets
[14]. Different combinations of TFs can result in various
expression types in different tissues and specific expres-
sion types in different cell types and stages [13]. Although
these works reported many instances of cooperation be-
tween different TFs, only linear DNA sequence informa-
tion and the co-localization of different proteins across
the linear genome were considered. However, substantial
evidence indicates that different TFs can cooperate in 3D
space and mediate interactions between distant sequences
in the linear genome [5, 10, 15].
Recently, the molecular mechanisms and proteins in

chromatin interactions have been studied. In situ Hi-C
[5] can produce a one kilo-base resolution map of the
global human 3D chromosome, and the results show
that CTCF plays a predominant role in loop anchors.
Further work using promoter capture Hi-C [16] demon-
strated that the interacting regions between enhancers
and promoters, especially long-range interactions, are
important to cell lineage and human diseases [17].
Moreover, a previous study revealed that TFs mediate
long-range enhancer–promoter interactions [18]. On the
basis of 5 kb-resolution in situ Hi-C datasets and incorp-
oration of public ChIP-Seq data, DBPNet [19] has been
developed to identify protein combinations that mediate
chromatin loops. A 1 kb resolution is relatively high for
traditional Hi-C data but still low for TF binding sites,
which are usually 5 to 25 base pairs long. These works also
revealed the global map of human chromosome 3D infor-
mation with a low resolution for TF DNA binding sites.
To obtain a nucleotide resolution map of cells, scien-

tists have developed the ChIA-PET (Chromatin Inter-
action Analysis by Paired-End Tag sequencing) [10, 20]
to search for the chromatin interactions associated with
particular proteins, such as CTCF and RNA polymerase
II. The ChIA-PET method incorporates ChIP-based en-
richment, chromatin proximity ligation, and paired-end
tags to determine chromatin interactions across the
whole 3D genome. Our previous work revealed that
CTCF, together with RAD21 and SMC3, mediates the
3D genome architecture of cells [10]. Our method

provides an alternative means to show the TF binding
sites in nucleotide resolution and 3D mode. Recently,
3CPET has been developed to search for the co-factor
complexes in chromatin interactions from ChIA-PET
data [21]. This work used the proximal sequence infor-
mation between DNA–DNA contacts in 3D space and
calculated the enrichment between different TF binding
sites across the 3D space of DNA contacts. However,
few studies have explored the hierarchical and dynamics
analysis of TF cooperation using both ChIA-PET and
ChIP-Seq data. There is a great need to develop a
method for systematically evaluating the role of different
combinatorial TFs involved in chromatin interactions
that uses various data, such as 3D ChIA-PET and
ChIP-Seq linear information.
In the present study, we provided the HidPET (Hier-

archical and Dynamics Analysis of TF Cooperation with
ChIA-PET and ChIP-Seq Data) method to study the
hierarchy and dynamics of TF cooperation by integrating
ChIP-Seq and ChIA-PET datasets. This method mainly
focuses on enhancer–promoter interactions, which play
a dominant role in chromatin interaction. The networks
are constructed by using the enrichment information of
the 3D chromatin data of ChIA-PET and the 1D linear
genomic data of ChIP-Seq. Then, the networks are fused
with the additional protein–protein interactions (PPIs).
The hierarchy and local network parameters are ana-
lyzed across four cell lines. Hierarchical structure, com-
munity and clique analysis revealed the hierarchical and
dynamic features of synergistic cooperative TF interac-
tions in regulating gene expressions and chromatin 3D
architecture.

Results
Promoter–enhancer interaction analysis
We developed the HidPET method to combine
ChIA-PET and ChIP-Seq data with PPI data to systemat-
ically study the hierarchy and dynamics of TFs in four
cell lines. The flow chart of the HidPET method is pre-
sented in Fig. 1. The ChIP-Seq data of 237 human TFs
from the ReMap database [22] are used to calculate the
similarities between different pairs of TFs along the 1D
linear genome as the 1D similarity matrix (See Methods).
ChIA-PET datasets for four human cell lines, such as the
human immortalized myelogenous leukemia line (K562),
human breast adenocarcinoma cell line (MCF7), human
umbilical vein endothelial cell line (HUVEC), and B
lymphocyte cell line (GM12878), are downloaded from
public databases [10, 15, 23–25] (Additional file 1) to gen-
erate a 3D similarity matrix.
In general, the genomic segments of chromatin inter-

actions are enriched in promoters and enhancers. En-
hancers extensively interact with promoters, which form
loops and regulate the expressions of distant or proximal
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genes [18]. In our method, the anchors of loops are an-
notated with chromatin states from the same cell line
and the loops included both enhancers and promoters
were selected for further study. The anchor regions of
enhancers and promoters were scanned with the pos-
ition weight matrices (PWMs) of 980 TFs with known
motifs in the database of the predrem [26]. Then, we ob-
tain all the TFs appearing at least once in the enhancer
anchors as TF list A and all the TFs appear at least once
in the promoter anchors as TF list B. The shared PPIs
from both STRING and BioGRID are overlapped with
the intersection of the TF list A and B and kept as 3D
similarity matrix. The similarity between TFs from the
ChIP-Seq datasets was calculated using a method from

IntervalStats [27] as 1D similarity matrix. The 3D and
1D similarity matrices are fused depending on their
shared TFs with the similarity network fusion method
[28], and the interactions are changed to the connection
network (as fused matrix). Finally, the fused matrix is
used to calculate the hierarchical and dynamic properties
of TF combinations (See Methods).

Network community construction
A community of PPI is a candidate functional module
[29, 30]. The fused matrix of 1D and 3D matrices for
TFs is used to identify the community structures. In the
fused matrix, each set of TFs in a community is densely
and sparsely connected between communities.

Fig. 1 Schematic of the HidPET pipeline. TF represents the transcription factors. L represents the hierarchy of the TF network. “1D similarity” refers
to the matrix for the network with TF similarities from the ChIP-Seq datasets in linear DNA sequence. “3D similarity” is the network with protein–
protein interactions of TFs that are shared in both enhancers and promoters. PPI represents protein–protein interactions. Such PPI interactions
include the intersection between those from STRING and BioGRID databases
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Community structures of a network can be divided into
non-overlapping communities, where a given node can
only be included in one group, and overlapping commu-
nities, where a given node may be included in multiple
groups. In biology, previous studies indicated that one
protein can participate in several regulatory pathways
[29, 31] with different roles; an example is YY1 (Yin
Yang 1) [31], which is involved in activating or repres-
sing gene transcription. Here, we adopt the fused net-
work of GM12878 as an example to illustrate the
network communities of TFs and applied ClusterONE
[29] (Clustering with Overlapping Neighborhood Expan-
sion) to identify the overlapping communities for the
fused matrix. Nine groups are calculated, and the spe-
cific list of TFs in each community is listed in Add-
itional file 2. The global network of GM12878 for 73
TFs is given in Fig. 2a. Results indicate that 65.8% (48/

73) TFs participate in two or more communities. This
finding implies that a TF may operate in two or more
pathways and has multiple functional roles in gene regu-
lation. However, most of the TFs (97.2%, 71/73) are
grouped in less than four communities. Only SMARCA4
and REST TFs participate in more than four groups.
SMARCA4 is a part of the ATP-dependent chromatin
remodeling complex SNF/SWI and can regulate gene
transcription by altering the chromatin structure around
the genes [32]. SMARCA4 is involved in the pathway of
DNA damage and translational control; the TF can bind
to chromatin and has a transcription coactivator activity
[33]. REST is a transcriptional repressor that regulates
gene expression by binding to a repressor element [34]
and is related to the chromatin organization pathway.
REST can regulate the SMARCA4 gene and is linked to
schizophrenia [35]. Figure 2a also indicates that 34.2%

Fig. 2 Communities and hierarchical structures of the GM12878 TF network. a Communities of the GM12878 TF network. The green circle
represents TFs in one group. The light-coral diamond represents TFs in two groups. The pink triangle represents the TFs in three groups. The red
V represents the TFs in more than four groups. b Hierarchical structures of the GM12878 TF network. Each level is represented in different colors.
The regulation is represented by a dash line
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(25/73) of the TFs are grouped in one community; this
finding implies that these TFs may be functional in a
specific pathway. Moreover, 38.4% (28/73) and 24.7%
(18/73) of the TFs can simultaneously participate in two
and three communities, respectively. These TFs may
have multiple roles in gene regulation. For example, sev-
eral chromatin structure-related TFs, such as CTCF,
RAD21, SMC3, and YY1, are involved in three groups.
Figure 2a shows that the TFs from different communi-
ties are connected. Most of the TFs rarely independently
regulate gene expression but usually work synergistically
with other TFs from different communities.

Construction of hierarchical network
The directed biological network can be compared with
the “chain-of-command” structures in social networks
[36]. A previous work proposed a model with three hier-
archical levels (top, core, and bottom) for representing
the network architecture of a yeast transcription net-
work [37]. They suggested [37] that the top TFs are re-
sponsible for conditional changes while the core and the
bottom TFs are responsible for information propagation
with noise minimization. However, the model cannot
calculate the number of levels and the position of ambi-
guity nodes with the probability to remain at each level.
Recently, the hierarchy score maximization (HSM) algo-
rithm [38] has been proposed to calculate the hierarch-
ical structure capable of overcoming the problems of the
number of levels and the ambiguous nodes. A simulated
annealing approach was used to calculate the number of
hierarchical levels of a directed network by the HSM al-
gorithm, and the probability is calculated for any ambi-
guity node to be at each level [38]. To quantify the
hierarchical structure of the fused TF matrix, we calcu-
late for the corrected hierarchical score by using the
HSM algorithm. For the fused TF matrix, the direction
between two TFs retains the same direction as that in
the 1D matrix. One pair of TFs without direction in the
1D matrix is removed, and the final matrix has 71 TFs with
directions for the GM12878 cell. The number of levels is
optimized from 2 to 8 with an interval of 1 by calculating
for the corrected hierarchy score. A higher corrected hier-
archy score indicates a higher likeliness of the level in ques-
tion. For the GM12878 cell, the 6-level possesses the largest
corrected hierarchy score (Additional file 3: Figure S1a) and
is selected as the final hierarchical structural level. The glo-
bal hierarchical structure of TFs in the GM12878 cell is
given in Fig. 2b. The figure shows that the chromosome
architecture proteins, such as CTCF, RAD21, and SMC3,
are in the same level 2. Figure 2b also indicates many inter-
actions across different levels. The 2nd and 5th levels have
the largest numbers of TFs (16). To quantify the trend of
connections between different levels, we calculate for the
number of links between different levels. The ratio of the

number of links between different levels to the largest the-
oretical number of links between different levels is also cal-
culated (Additional file 3: Figure S1b). The results indicate
that the 1st, 2nd, 3rd, and 4th levels tend to be enriched
links with other levels. The number of links for the TFs
from different levels is higher than that of the links for the
TFs from the same levels. For the 6th, 5th, and 4th levels,
the larger ratio tends to be connected with the 1st and 3rd
levels. This result means that the TFs tend to be
cross-talked from different levels, and the high levels tend
to be linked to the low levels. For the links of TFs within
the same level, the 1st level has the largest ratio of interac-
tions with the other TFs. These results reveal the presence of
a hierarchical structure organization in the TF network, and
the TFs from different levels tend to be cross-linked. We fur-
ther mapped the TFs from communities to different levels.
The results indicate that all nine communities are distributed
in the six levels. This result means that a community tends
to be constituted by TFs derived from different levels.
In addition, because the TFs do not arise simultan-

eously, they generally occur through the re-organization
of pre-existing genes or de novo [39]. De novo genes are
also believed to emerge through the evolution of lineages
[39]. A recent study has systematically investigated the
differences of gene expressions in tumors on the basis of
the evolutionary history of genes from 16 clades, which
range from cellular organisms (phylostratum 1) to Homo
sapiens (phylostratum 16) [40]. To understand the evo-
lutionary history difference of all these TFs from 16
clades, we grouped the TFs into two classes, namely, be-
fore and after the Bilateria clade (phylostratum 6). The
percentage of TFs from different levels in such two clas-
ses are given (Additional file 3: Figure S2). The results
reveal that the TFs in each level consist of both classes.
The TFs in levels 1 and 2 tend to be enriched before the
Bilateria clade (phylostratum 6), and the TFs in levels 5
and 6 tend to be enriched in and after the Bilateria clade.
This finding suggests that the new TFs tend to be
enriched in higher levels and may regulate the interac-
tions of enhancers and promoters.

Maximal clique analysis
Although TFs have a community structure and hierarch-
ical structure to synergistically work together, the spe-
cific cooperation between TFs is not fully understood.
To further analyze the cooperation between TFs, we cal-
culate for the maximal cliques for the fused matrix of
TFs in different cell types. The clique of a network is a
fully connected sub-graph, which is a basic topological
module of a network. In this work, we apply the MCli-
que method in Cytoscape [41] to detect the maximal cli-
ques. The number of TFs in the maximal clique is
optimized from 3 to 10 with an interval of 1. The Venn
diagram of the maximal cliques in the GM12878, K562,
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HUVEC, and MCF7 cell lines is presented (Fig. 3a). The
specific TF in each maximal clique for the four cell lines
is listed in Additional file 4. The total numbers of max-
imal cliques for GM12878, K562, HUVEC, and MCF7
are 279, 273, 231, and 241, respectively. Most cliques are
shared by two or more cell lines, and the number of
maximal cliques shared by all four cell lines is 74. This
result suggests that these shared cliques may have simi-
lar functions in different cell types, and the shared cli-
ques may be involved in the basic regulated pathway,
which is conserved in cells and tissues. The numbers of
cell line-specific cliques in each cell line are 28, 9, 104,
and 58 for GM12878, K562, HUVEC, and MCF7, re-
spectively. This result means that the specific cliques
may execute cell specific functions that can shape the
specific cell.
To further characterize the synergistic feature of TFs

in a given clique, we calculate for the Spearman’s rank
correlation coefficients of the TFs’ expression. For each
cell line, the corresponding expression levels of these

TFs are collected from the RNA-Seq data deposited in
the ENCODE project. The Spearman‘s rank correlation coef-
ficient is calculated for the expression of all pairs of TFs
within the same maximal clique. The same procedure is ap-
plied to all pairs of TFs that are not in the same maximal
clique. The distribution of Spearman’s rank correlation coef-
ficients is shown in a violin plot (Additional file 3: Figure S3).
The Spearman’s rank correlation coefficient of the TFs
within the same maximal clique is significantly larger
than that of the TFs randomly selected by Wilcoxon
test. The p-values for the GM12878, K562, HUVEC,
and MCF7 cell lines are 0.00265, 2.2e-16, 2.2e-16, and
0.00125, respectively. This result means that the corre-
sponding genes of the TFs in the maximal clique tend
to be co-regulated and work synergistically.
To analyze the hierarchical and community properties

of maximal cliques, we calculate the distribution of TFs
in maximal cliques across different hierarchies and com-
munities. The TFs in each clique are mapped to the hier-
archical structures and the communities. The results are

Fig. 3 Relationship of maximal cliques, communities, and hierarchical levels. a Venn diagram of maximal cliques in four cell lines. b Clique
distribution in different levels for the GM12878 cell. Here, Cn represents the clique with n TFs in the corresponding clique. Ln represents the level
n in the hierarchy. c Clique distribution in different communities. Mn represents the community
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presented in Fig. 3b. The cliques are represented with
Cn, where C refers to clique and n refers to the number
of TFs in such clique. Because the number of TFs in the
cliques ranges from 3 to 10, the vertical axis ranges from
C3 to C10.
For the hierarchical structures of TFs in cliques, the

TFs in a given clique tend to lie across several levels of
hierarchical structures. The cliques with four and five
TFs tend to operate synergistically working across three
or four levels. However, the cliques with more than five
TFs tend to synergistically work across four or five
levels. Meanwhile, the cliques with three TFs tend to
synergistically function in two or three levels. Few cli-
ques execute their function within only one level. These
observations reveal that the TFs of a maximal clique
usually originate from different levels in hierarchical
structure and tend to cooperate in executing functions.
For the communities of TFs in cliques, a given TF in a

clique can participate in multiple communities. Because
a TF can participate in two or more pathways, TFs may
be grouped into several communities. Figure 3c shows
that most TFs in cliques are involved across five or six
communities and enriched in three, four, or five commu-
nities. The cliques with smaller sizes tend to participate
in a greater number of communities, and the larger cli-
ques tend to be restricted within a community. In par-
ticular, the cliques with three TFs participate in six
communities, and the cliques with four TFs have a simi-
lar result. This observation indicates that a TF tends to
form multiple cliques across multiple communities.
Moreover, TFs in a clique tend to participate across dif-
ferent communities, and communities can share the
same clique in different cell types.

Pattern analysis of cliques in cells
To further analyze the cooperation of TFs in a given
clique shared by different cell types, we investigate the
patterns of cliques of the shared TFs and group these
patterns into three different classes. The patterns of cli-
ques are illustrated in a schematic (Fig. 4).
In one situation, a clique is shared by different cell types.

This situation can be further sub-divided into two patterns.
In the first pattern, although the target genes of a shared
clique are nearly the same in different cell types, the expres-
sion levels of the corresponding genes of the TFs in that
clique differ (Fig. 4a). For example, in the analysis of the
interaction loops of enhancers and promoters that are
shared by GM12878, K562, and MCF7 cells, a clique with
CTCF-RAD21-SMC3-YY1-ZNF143-CTCFL-SIX5 TFs is
shared by all these three cells. The expression levels of these
TF corresponding genes differ (Fig. 4b). Figure 4b indicates
that the expression levels of CTCF and CTCFL are dissimi-
lar among the GM12878, K562, and MCF7 cells. In
addition, Additional file 3: Figure S4 shows the distributions

of these seven TF binding sites and loops of enhancers and
promoters in hierarchical structures of chromatin in
chromosome 19. The results demonstrate that the binding
strength of seven TFs vary across loops in hierarchical
structures.
We further analyze the methylation extent of the pro-

moters of genes regulated by the clique of CTCF-RAD21-
SMC3-YY1-ZNF143-CTCFL-SIX5 and shared by GM12878,
K562, and MCF7 cells. The methylation extent is calculated
for these promoters of the shared regulated genes by using
cellMethy [42], which can quantify concordant methylation
regions (See Methods). Analyzing the different methylation
extents of the promoters of the shared regulated genes, we
observe that the BCOR gene is shared by all these seven TFs
(clique of CTCF-RAD21-SMC3-YY1-ZNF143-CTCFL-SIX5)
in the GM12878, K562 and MCF7 cells. A recent publication
has indicated that the BCOR gene has multiple methylated
sites and can impact allele-specific gene expression and regu-
late the accessible chromatin within TADs in mice [43]. This
finding suggests that the promoters of regulated genes by the
same clique can vary in methylation extent and impact on
cell-specific gene expression.
In the second pattern, although a clique is shared by

different cell types, it regulates different genes. For ex-
ample, the clique with GATA1-STAT2-ETS1-TAL1 is
shared by K562, MCF7, and HUVEC (Fig. 4c). The Venn
diagram of genes, which are regulated by this clique in
K562, MCF7, and HUVEC, is shown in (Fig. 4c). Only
five genes are shared by all these three cell lines. The ex-
pression levels of all these five genes differ from one an-
other, as revealed by the heatmap in Fig. 4c. The
shared genes between different cell types are also dis-
similar. The discrepancies suggest that such clique
may cross-talk with other TFs or cliques to synergis-
tically regulate gene expression.
In the third situation, cliques in different cell types

share part of the TFs. This pattern is the most common
in different cell types. For example, four different cliques
share TFs RAD21, YY1, and TFAP2A in K562,
GM12878, HUVEC, and MCF7 (Fig. 4d). The expression
levels of these shared TFs differ in the four cell types
and labeled in green color adjacent to the gene name.
Moreover, these shared TFs tend to work together with
other TFs in different cell types. Another example is the
cliques with SIX5, NRF1, and TFAP2A, which are shared
by all four cell lines (Fig. 4d). The expression of these
three TFs also differs among the four cell lines.
These results indicate that the synergistic cooperation

between TFs is dynamic in different cell types. Several
TFs can have conserved cooperation in different cell
types and be regulated by other cell-specific TFs. For a
given TF, numerous cooperation patterns may occur in
different cell types and can determine the cell-specific
gene expression and 3D organization of chromatin.
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Biclustering analysis of cliques and their regulated genes
To further investigate the possible cross-talk between
different cliques, we apply the biclustering method to
group cliques and genes simultaneously. We adopt the

51 cliques and 1223 regulated genes of K562 as an ex-
ample and apply the biclustering method fabia [44] to
group cliques and genes into 10 classes simultaneously
(Additional file 5). The iteration times are set to 10,000.

Fig. 4 Schematic of the cliques and the corresponding gene expression levels in different cells. a Schematic of the cliques in different cell lines.
a, b, and c represent a clique with three TFs. The Cyan, green, and magenta circles represent different cell lines. b Examples of shared cliques
with seven TFs, Venn diagram of the number of overlapped regulated genes by the clique and gene expressions for these seven TFs in GM12878,
K562, and MCF7 cells. c Clique and gene expression in K562, MCF7, and HUVEC cells. Clique with four TFs shared by K562, MCF7, and HUVEC
cells. Venn diagram of the number of overlapped regulated genes by the clique in K562, MCF7, and HUVEC cells. The expression of the regulated
genes by the clique in K562, MCF7, and HUVEC cells. d Two examples of cliques with RAD21, YY1, and TFAP2A and cliques with SIX5, NRF1, and
TFAP2A shared by K562, GM12878, HUVEC, and MCF7. The shared TFs in cliques are colored blue, and the other TFs in cliques are colored orange.
The expression levels of the shared TFs are labeled with the corresponding genes
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The 10 groups of bipartite networks of cliques and
genes are given (Fig. 5). The specific clique and gene list
for each superclique (Si, represented by a blue square)
and gene group (Gi, represented by a gray circle) are
listed in Additional file 5. Figure 5 shows that one gene
group is regulated by more than one superclique, and
one superclique can regulate more than one gene group.
The regulated strength differs between the superclique
and the gene group. Cliques can form supercliques to
synergistically regulate the expression of a set of genes.
The results also suggest that the regulation of genes at
the clique level is hierarchical and dynamic.

Discussion
In this study, we develop the first method to investigate
the hierarchy and dynamics of TF cooperation by inte-
grating various data, such as ChIA-PET, ChIP-Seq, and
PPI. Using the high resolution and throughput data of
ChIA-PET and ChIP-Seq, our method can generate a
network with TFs from 3D and 1D chromosome infor-
mation and calculate the TFs’ hierarchical levels, such as
whole-cell networks, communities, cliques, and supercli-
ques. The TFs in enhancers and promoters have inten-
sive cross-talks and can form a hierarchical structure to
dynamically regulate gene expression. For example in

the GM12878 cell, the TFs can be grouped into six
levels. A given TF can participate in several communi-
ties, and a community can contain several TFs across
different communities. One TF can synergistically work
together with other TFs from different hierarchical levels
and communities to play multiple roles in gene expres-
sions. The cooperation of TFs can form the maximal cli-
ques, which may shape the specific gene expression of
cells. TFs in a clique tend to participate in several
hierarchical levels and communities. The genes in the
same clique tend to be co-expressed and synergistically
co-regulated. The cooperation of given TFs in cliques
can have three patterns in different cell types. In one
pattern, a clique is shared by different cell types, and the
regulated genes of such clique are nearly the same across
different cell types. However, the expression of TFs in
such clique can differ among the cell types involved. The
sites and bindinpromoters is a hierarchical and strength
of TFs in linear DNA are dissimilar in different cell
types. The methylation extent and sites for the regulated
genes also vary. This pattern demonstrates that beside
the cooperation of TFs, the expression, binding strength,
and sites of the TFs in linear DNA can impact gene ex-
pression and chromatin structure. In the second pattern,
cells share the same clique, but the regulated genes

Fig. 5 Biclustering analysis of cliques and their regulated genes. The line strength of interactions between supercliques and gene groups is
proportional to the numbers between them
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differ. In the third pattern, cliques in different cell types
share a part of TFs, and the regulated genes are dissimi-
lar. Some cooperative interactions of TFs tend to be
conserved in different cell types and work together with
other TFs to form cliques to synergistically regulate and
shape cell-specific gene expression. This occurrence
shows the dynamic proprieties of TFs in cooperation. All
these three patterns imply that the TF cooperations are
dynamic and can be regulated by epigenetic factors, such
as other TFs and DNA methylation. Biclustering analysis
of the cliques and their regulated genes indicate that a
clique can function together with other cliques to form a
superclique to synergistically regulate gene expression. This
observation further suggests the presence of a hierarchical
propriety among the TFs in cooperation. All these results
demonstrate that the interaction of enhancers and pro-
moters is a hierarchical and dynamics complex process
with cooperative interactions of different TFs synergistically
regulating gene expression and chromatin structure. These
results also indicate that the regulation of chromatin 3D
organization and gene expression is a complex process as-
sociated with the hierarchical and dynamic prosperities of
TFs. Cell type-specific chromatin 3D organization and gene
expression can be achieved on the basis of the dynamic fea-
ture of TF synergistic potential functions in different cell
types.

Conclusions
This study provides a systematic approach to study the
hierarchy and dynamics of TF cooperation in chromatin
3D and 1D space by using various data, such as the
ChIA-PET, ChIP-Seq, and PPI data. The technique will
pave the way toward research on chromatin 3D layer archi-
tecture mediated by TF cooperation through the hierarch-
ical and dynamic properties of TFs. Such investigation can
improve our understanding of the regulation of gene ex-
pression and the basis of the 3D chromosome structure.

Methods
Datasets
The raw ChIA-PET sequence datasets for the K562,
GM12878, MCF7, and HUVEC cell lines are down-
loaded from the Gene Expression Omnibus (GEO) data-
bases [45]. The specific accession ID for each dataset of
a given cell line is listed in Additional file 1.
The chromatin states for K562, GM12878, and HUVEC

are downloaded from the ENCODE project at UCSC [46]
(Additional file 1). The chromatin states for MCF7 are
downloaded from the GEO database (GSE57498) [47].
The RNA-Seq datasets for K562, GM12878, and MCF7
are downloaded from the ENCODE project at the UCSC
(Additional file 1). Five replicates of the RNA-Seq datasets
for K562 and GM12878 are adopted. The RNA-Seq data
for HUVEC are downloaded from the GEO database

(GSE103672) [48]. The TAD structure data of GM12878,
K562, and HUVEC are downloaded from the dataset of
GSE635259 that is deposited in the GEO database [45].
The resolution of the TAD structure is 50 kb in this study.
The reference PPI is constructed using STRING [49] and
BioGRID [50]. The non-redundant peaks of 237 TFs are
downloaded from the ReMap database [22], and all these
peaks are calculated using ChIP-Seq datasets [22]. A full list
with 2684 PWMs for 980 TFs is collected from a previous
publication [26]. The bisulfite-sequencing (RRBS) methyla-
tion data of K562, GM12878, and MCF7 are downloaded
from ENCODE at UCSC [51] (Additional file 1). The methy-
lation site is calculated by using Bismark [52], and the methy-
lation extent is calculated for these shared promoters by
using cellMethy [42]. All the specific websites of the datasets
used in this study are found in Additional file 1.

Data processing
The DNA–DNA contacts are computed using our devel-
oped method CHIA-PET Tool [53], and the procedures
for processing of ChIA-PET sequence data are briefly
given as below. First, the raw ChIA-PET sequence datasets
for a given cell are linker filtered on the basis of the linker
information. Then, only filtered reads (non-chimeric
PETs) are mapped to the human reference genome hg19
and classified as non-mappable PETs, uniquely mapped
PETs, and multi-mapped PETs. All uniquely mapped PETs
with a 1–2 base pair difference are merged and classified
as self-ligation PETs and inter-ligation PETs. Self-ligation
PETs are used for peak calling, where inter-ligation PETs
are adopted to compute long-range DNA–DNA interac-
tions. All interactions with more than five tags are used
for downstream analysis. For the DNA–DNA contacts of
the four cell lines of the ChIA-PET datasets, each anchor
in two DNA–DNA contacts is annotated using the chro-
matin states of the corresponding cell line. Only the
DNA–DNA contacts with concurrent enhancer and pro-
moter annotations are retained and taken as the final 3D
interaction datasets. Because each antibody can only cap-
ture a fraction of DNA–DNA contacts of the whole cell,
the calculated DNA–DNA contacts are combined and the
duplicate contacts are merged. Then, the resulted DNA–
DNA contacts are taken as the final DNA–DNA contacts
for a given cell.

Network construction
To systematically construct the TF network, we calculate
for the co-localization of TFs by using their binding sites
on the basis of the ChIP-Seq and ChIA-PET data. We
also build the reference PPI on the basis of STRING [49]
and BioGRID [50].
For linear DNA sequences of all 237 TF ChIP-Seq

datasets, the binding sites of each TF pair are used to
calculate the significance overlap using IntervalStats
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[27]. The p-values of each peak of a given TF are calcu-
lated against the peaks of the other TFs. The ratio of the
significant overlapped peaks, in which their p-values are
smaller than 0.05 to all peaks, are computed as the simi-
larity of two TFs. Each TF is considered as a query set
only once with other TFs as reference. An asymmetric
matrix with similarities between all 237 TFs, which are
55,932 pairs of TFs, is calculated and named as 1D
matrix in the following study.
The promoter and enhancer sequences, which are an-

notated by chromatin states, are used to be scanned the
enriched TFs by using a given TF PWM. A full list with
2684 PWMs for 980 TFs is collected from a previous
publication [26] and used for TF enrichment analysis as
follows. The enriched TFs in each promoter are calcu-
lated using the PASTAA [54] and taken as the candidate
TFs that can bind to the promoters. The enriched TFs in
each enhancer are then calculated using the FIMO [55]
and taken as the candidate TFs that can bind to the en-
hancers. The number of selected TFs is related to the
choice of p-values of PASTAA and FIMO. A small
p-value can reduce the false positive rate, but the num-
ber of selected TFs also decreases. To balance the
p-value for PASTAA and FIMO and the number of se-
lected TFs of the four cell lines, we optimize the p-value
on the basis of the Jaccard similarity of the four cell
lines, with a range from 10− 7 to 10− 13 at a multiplication
interval of 10− 1. Then, the inflection point is calculated
(Methods in Additional file 1). In this study, the p-value
is set to 10− 10. The final TF list is the intersection of the
promoter and enhancer enrichment TF lists.
The reference PPI is constructed by using the STRING

[49] and BioGRID [50] databases. For the STRING data-
base, the human PPIs with scores of more than 400 are
retained. For the BioGRID database, the human PPIs with
experimental validated information are retained. Then, the
PPIs shared by both databases are taken as the final refer-
ence PPI. By using the above final TF list for a given cell
that is enriched in promoters and enhancers, the PPIs, in-
cluding the proteins in the final TF list, are selected on
the basis of the final reference PPI. These PPIs for the
given TF list of cells are taken as the 3D TF interactions.
Then, we obtain the TF interaction matrix for ChIA-PET
datasets for a given cell. This TF interaction matrix is
named as 3D TF interaction matrix. The number of TFs
in the 3D TF interaction matrix for the four cell lines are
given in Table 1(Column 3D TFs in Table 1).

Similarity matrix fusion
The above 1D and 3D matrices represent the TF interac-
tions in a particular viewpoint. We combine these two
matrices to obtain a comprehensive TF interaction network
for each cell. To fuse the similarity matrix of both 1D and
3D matrices, we calculate the shared TFs between 1D and

3D matrices. The result is shown in Table 1. The sub-matrix
with these shared TFs is extracted for the 1D and 3D matri-
ces, respectively. Then, the sub-matrix is fused by using the
similarity network fusion [28] algorithm, a network-based
heterogeneous data integration method. The fused matrix
with TFs shared by the 1D and 3D matrices is taken as the
final TF network and used in the following analysis.

Hierarchical network
The hierarchical structure is an important feature of so-
ciety networks [56] and genetic regulatory networks
[57]. The hierarchical structure of a TF network is ana-
lyzed with the hierarchical score maximization method
[38]. The corrected hierarchical score [38] is used to
quantify the level of TF network, and the number of
levels is optimized from 2 to 8 with an interval of 1. The
analysis is performed to determine whether a hierarch-
ical structure that can regulate the 3D chromosome
structure and gene regulation exists in the TF network.
The hierarchical organization of the TF network can re-
veal the synergistic mechanism and offer new insights
into the 3D chromosome structure and gene regulation.

Network community analysis
Because one protein may participate in several communities
in a cell, the community detection of a TF network should
include potentially overlapping TF complexes. In this work,
the ClusterONE method [29] is applied to calculate for the
communities with overlapping TF complexes. ClusterONE
proposes a metric of cohesiveness score to detect the densely
connected TFs through different seeds for a given network.

Maximal clique analysis
To understand the local structure property of the TF
network, we calculate the maximal clique by the MCli-
que method in Cytoscape [41]. The number of TFs in
maximal cliques ranges from 3 to 10. To further obtain
the synergistic working cliques, this study represents the
regulated gene for a given clique as 1 and the other
non-regulated genes as 0. Then, the biclustering method
fabia (factor analysis for bicluster acquisition) [44] is
used to group cliques and genes simultaneously. Fabia is
a factor analysis method based on the multiplicative
model. The grouped cliques are named as a superclique.
A graph with supercliques and gene groups is generated
using Cytoscape.

Table 1 Cell line-specific TFs

Cell lines 3D TFs 3D–1D fusion TFs

K562 423 72

GM12878 428 73

HUVEC 394 58

MCF7 410 70
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Additional file 1: All datasets used in this study (ChIA-PET, Chromatin
states, TAD structure, and bisulfite-sequencing [RRBS] RNA-Seq) with ac-
cession codes and Parameter selection. To balance the p-value for PAS-
TAA and FIMO and the number of selected TFs of the four cell lines, we
optimize the p-value on the basis of the Jaccard similarity of the four cell
lines, with a range from 10− 7 to 10− 13 at a multiplication interval of 10− 1.
Then, the inflection point is calculated. (DOCX 18 kb)

Additional file 2: Illustration of the fused network communities of TFs
and the overlapping communities of GM12878 cell line. Nine groups are
calculated, and the specific list of TFs in each community is listed. (XLSX
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Additional file 3: Supporting figures. Figure S1. Hierarchical structures
of the GM12878 TFs network. Figure S2. Percentage of TFs from different
levels in the phylostrata. Figure S3. Violin plots of Spearman’s rank
correlation coefficient for TF expressions in the same clique or not in four
cell lines. Figure S4. Distribution of ZNF143-YY1-SMC3-SIX5-RAD21-CTCF-
CTCFL seven TF binding sites and loops of enhancer and promoters in
hierarchical structures of chromatin in chromosome 19 of GM12878 cell
line. Figure S5. Parameter selection in motif scanning. (PDF 687 kb)

Additional file 4: Calculation for the maximal cliques for the fused
matrix of TFs in different cell types, the specific TF in each maximal clique
for the four cell lines is listed. (XLSX 12 kb)

Additional file 5: The biclustering results of cliques and genes. We
adopt the 51 cliques and 1223 regulated genes of K562 as an example
and apply the biclustering method fabia to group cliques and genes into
10 classes. The specific clique and gene list for each superclique (Si,
represented by a blue square) and gene group (Gi, represented by a gray
circle) are listed. (XLSX 22 kb)
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