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Abstract

Background: Cardiac cell fate specification occurs through progressive steps, and its gene expression regulation
features are still being defined. There has been an increasing interest in understanding the coordination between
transcription and post-transcriptional regulation during the differentiation processes. Here, we took advantage of
the polysome profiling technique to isolate and high-throughput sequence ribosome-free and polysome-bound
RNAs during cardiomyogenesis.

Results: We showed that polysome-bound RNAs exhibit the cardiomyogenic commitment gene expression and
that mesoderm-to-cardiac progenitor stages are strongly regulated. Additionally, we compared ribosome-free and
polysome-bound RNAs and found that the post-transcriptional regulation vastly contributes to cardiac phenotype
determination, including RNA recruitment to and dissociation from ribosomes. Moreover, we found that protein
synthesis is decreased in cardiomyocytes compared to human embryonic stem-cells (hESCs), possibly due to the
down-regulation of translation-related genes.

Conclusions: Our data provided a powerful tool to investigate genes potentially controlled by post-transcriptional
mechanisms during the cardiac differentiation of hESC. This work could prospect fundamental tools to develop new
therapy and research approaches.
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Background
Recent approaches regarding hESCs differentiation made
it possible to mimic features of developmental biology
and address the key events that regulate early lineage
commitment [1]. Cardiomyocytes have been derived
from hESCs as an in vitro model to study cardiomyoge-
nesis and as an attempt to produce clinically relevant
cell populations [2–5]. Modeling congenital abnormalities
of the heart or testing the cardiac toxicity of new drugs
strengthen a particular interest in deriving cardiovascular
lineages from pluripotent stem cells [2]. Additionally, in
vitro cardiomyocyte generation and promotion of an en-
dogenous regenerative capacity offers new therapeutic

strategies to replace heart tissue damaged by age or
disease [6, 7]. Activation of a specific genetic program is
essential to drive cells into the cell type of interest and
contribute to these challenging goals. Cardiac tissue
formation is controlled by sequential gene regulatory steps
that define specialized cell fates [8], although understan-
ding of molecular signatures of intermediate differenti-
ation states of the cardiomyogenic lineage are still lacking.
Gene expression regulation acts at both transcriptional

and post-transcriptional levels. There has been an
increasing interest in understanding how these regula-
tory mechanisms interact and coordinate along the
differentiation processes [9]. Large-scale studies help to
uncover the complex and dynamic multi-layered regula-
tion involving chromatin modifications, transcriptional,
and post-transcriptional networks that control the
reconfiguration of ESC gene expression program when
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cells are stimulated to differentiate [10, 11]. Genome-
wide expression profiling, using microarrays or RNA-seq
analysis, has provided the possibility to investigate
transcriptional changes during cardiomyogenic
differentiation [12–17]. However, most of these studies
were centered at total transcriptome analysis. Since the
cellular abundance of proteins is also controlled at the
translation level [18], the most-reliable gene expression
patterns cannot be based solely on total RNA analysis.
The role of translational control as a key regulatory

node in gene expression during development and disease
is still being established. Actively translated mRNAs are
predicted to be associated with many ribosomes, which
form large complexes called polysomes [19]. These com-
plexes define the translatome, the subpopulation of
mRNAs that are engaged with the translation machinery.
Methods to infer the translatome have helped to expand
our knowledge of protein synthesis control and revealed
post-transcriptional mechanisms involved in cell fate
commitment [20–22]. A classical technique called poly-
some profiling has been used to assess the mRNAs
bound to ribosomes through ultracentrifugation in a
sucrose gradient, and further identify them by high-
throughput methods [23–25]. Previously, we used poly-
some profiling to study the fate of human adipose stem
cells (hASCs) and their commitment to adipogenesis
[25, 26]. We showed that 60% of the genes, which were
differentially expressed after 72 h of differentiation induc-
tion, were controlled by post-transcriptional regulation.
Here, we used polysome profiling to assess the ribo-

some-free and polysome-bound mRNAs during the de-
velopmental steps of cardiomyogenic commitment and
investigate genes potentially controlled by post-tran-
scriptional mechanisms. Our results showed that 60–
80% of differentially expressed genes (DEG) showed
some degree of post-transcriptional regulation, suggest-
ing its crucial role in shaping of the developmental path-
ways. Additionally, committed cells showed decreased
protein synthesis rates compared to hESC.

Results
Polysome profiling during hESCs cardiomyogenic
differentiation
The hES-NKX2–5eGFP/w reporter human embryonic
stem cell (hESC) line [27] was used to derive cardio-
myocytes using a developmentally staged protocol [2,
28] that includes the induction of a cardiac mesoderm
population on days 3 and 4 and a NKX2–5+/cTNT+

population by day 15 (Fig. 1a and b). Cardiomyogenesis
progression was followed by flow cytometry using CD56
as a mesoderm marker [29] on day 4 (cut off < 40%) and
NKX2–5/eGFP expression on day 9 as a cardiac progeni-
tor marker (cut off < 50%) (Fig. 1b). Beating clusters

were observed after 10 days of differentiation (Fig. 1c and
Online Additional file 1: Video S1), yielding a popula-
tion of 50–60% cTNT+ cardiomyocytes on day 15
(D15) (Fig. 1b). At day 20, cTNI immunostaining
showed the striations characteristic of sarcomere struc-
tures (Fig. 1c).
To investigate the differential association of mRNAs

with polysomes and, therefore, post-transcriptional
changes in gene expression during cardiac differenti-
ation, we first performed polysome profiling on days D0,
D1, D4, D9 and D15, which represent pluripotency,
embryoid body (EB) aggregation, cardiac mesoderm,
cardiac progenitor and cardiomyocyte stages, respectively
(Fig. 1a). After 10min of cycloheximide treatment, active
ribosomes got arrested with associated RNAs and we
analyzed cellular extracts by ultracentrifugation in a
sucrose gradient (Fig. 1d). Differential density through-
out the gradient allowed the isolation of ribosome-free
(fractions 1–3) and polysome-bound (fractions 9–22)
RNAs. Based on the polysome profile, pooled ribo-
some-free and polysome-bound RNA fractions were se-
quenced using the Illumina platform, yielding nearly 30
million reads for each sample. Approximately 70–80% of
the reads were mapped onto the reference genome
(GRCh38), and more than 17,000 genes were detected in
each type of fraction (Additional file 2: Figure S1). As a
control, D15 cells were also treated with puromycin to
disassemble the polysomes and cardiomyocyte markers
were evaluated by qPCR (Additional file 2: Figure S2).
Correspondence analysis (COA) showed that samples

were grouped according to the type of RNA fraction
(ribosome-free vs. polysome-bound) (Fig. 1e) and
according to the day of differentiation (D0, D1, D4, D9
and D15) (Fig. 1f and g). Polysome-bound samples
showed more distinct groups relative to the day of diffe-
rentiation, indicating high similarity between translated
genes in experimental replicates (Fig. 1g). On the other
hand, ribosome-free samples showed more dispersion
and less similarity between the replicates.

The translatome delineates cardiomyogenic gene expression
During heart development, temporal gene expression
changes occur to define each step of cardiogenic com-
mitment [6, 30]. RPKM values (reads per kilobase per
million mapped reads) for polysome-bound RNA frac-
tion showed the expression levels of known lineage-spe-
cific genes throughout cardiac differentiation (Fig. 2a)
which were confirmed by qPCR (Additional file 2:
Figures S2 and S3). Pluripotency marker genes, including
SOX2, POU5F1 (OCT4) and NANOG, were expressed at
higher levels on D0 and D1 and down-regulated at fol-
lowing time-points. The mesoderm marker genes T
and EOMES, and early cardiac gene MESP1 were
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Fig. 1 Polysome profiling of hESC during cardiomyogenic differentiation. (a) Schematic representation of cardiomyogenic differentiation protocol
indicating developmental stages and timing of sample collection. (b) Flow cytometry analysis of D4 (CD56), D9 (eGFP) or D15 (cTnT and eGFP)
differentiating cells. Representative dot plots (n = 3). (c) Representative images of EBs during differentiation showing NKX2–5/eGFP expression on
D15 (top panel) and immunostaining of cTNI on D20 (bottom panel). Cells were co-stained with DAPI to visualize the nucleus. (d) Representative
polysome profile obtained by sucrose gradient of cells at distinct time-points of differentiation (n = 3). Ribosome-free (red) and polysome (blue)
fractions are indicated. Correspondence analysis (COA) of (e) all sequenced samples (total 30 samples), (f) ribosome-free and (g) polysome-bound
samples at days D0, D1, D4, D9 and D15 (n = 3). See also Additional file 2: Figure S1
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highly specifically expressed on D4. Expression of car-
diac-related genes such as GATA4, NKX2–5 and TBX5 as
well as cardiomyocyte-specific sarcomeric genes TNNI,
TNNT, MYL7 and MYH6 were observed from D9 to D15.
In contrast, the endoderm (PECAM1 and PDX1) and
ectoderm (PAX6 and FOXP2) marker genes did not
change their polysome association during cardiomyogenic
differentiation (Fig. 2a).
Comparisons between each differentiation time-point

and the preceding time-point, considering an overall
FDR of ≤0.05 and − 2 ≥ logFC ≥2, identified differentially
expressed genes (DEGs) in polysome-bound RNA
fractions (Fig. 2b, data available in Additional file 3).

Aggregation of embryoid bodies during the first 24 h of
differentiation induced differential expression of 288
genes. Mesoderm commitment from D1 to D4 showed
1264 DEGs, and cardiac progenitor progression to D9
showed 1582 DEGs. The final step of differentiation
analysis on D15 showed 743 DEGs compared to D9. In
general, the majority of DEGs were up-regulated, except
for D15 compared to D9, where the number of
down-regulated genes was slightly higher than up-regulated
genes (Fig. 2b). Similar numbers of genes and patterns of
up- and down-regulated genes were shown in the
ribosome-free samples (Additional file 2: Figure S4A and
Additional file 4). Regarding the protein-coding and

Fig. 2 Polysome-bound RNA-seq revealed massive regulation of developmental genes. (a) Expression of lineage marker genes quantitated by -log2
RPKM. Stage markers are color-coded. Blue: pluripotency. Green: mesoderm. Light red: cardiac progenitors. Dark red: cardiomyocytes. Uncolored:
endoderm and ectoderm. (b) Numbers of differentially expressed genes at each differentiation time-point, compared to the preceding time-point
(FDR < 0.05, − 2 > logFC> 2). Numbers of protein-coding and non-coding genes are also shown (bottom panel). (c) Gene Ontology analysis of EnrichR
Biological Process (BP) enriched terms for up-regulated (FDR < 0.05, logFC> 2) genes during cardiomyocyte differentiation when compared to each
preceding time-point. (d) Gene expression pattern clusters of pluripotency (top) and cardiac (bottom) related genes and their EnrichR BP enriched
terms. Six terms with lower p-values are shown. See also Additional file 2: Figures S4 and S5
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non-coding genes in polysome-bound samples, appro-
ximately 20% of DEGs in each time-point analysis are
annotated as non-coding RNAs, in which 39% correspond
to “lincRNA”, 22% to “antisense” and 18% to “processed
pseudogene” RNAs (Additional file 2: Figure S4B).
Gene Ontology (GO) analysis of polysome-bound

up-regulated DEGs (FDR ≤ 0.05 and logFC ≥2) revealed
developmental and cardiac-related “biological process”
(BP) during cardiac differentiation (Fig. 2c). BP terms
p-values (−log10) of DEGs for each time-point compared
to the preceding one are represented in Fig. 2c heatmap.
“Cardiac muscle tissue morphogenesis” and “regulation
of muscle contraction” are highly enriched on D9 (com-
pared to D4) and only slightly enriched on D15 (com-
pared to D9), indicating that on D9, most cardiac
characteristics are already committed. This pattern is
similar for “muscle system process” and “muscle con-
traction”. “Extracellular matrix organization” seems to
have important roles in two distinct phases: mesoderm
commitment (D4) and cardiomyocyte final differen-
tiation (D15) (Fig. 2c and Additional file 2: Figure S5).
To assess more information about variations in gene ex-

pression during cardiac differentiation, we performed gene
clustering using logCPM (counts per million mapped
reads). Distinct pattern expression groups were shown:
genes with decreased expression during the differentiation,
called pluripotency-related cluster and enriched in early
developmental BP terms, such as “anterior/posterior axis

specification” and “BMP signaling pathway”; and genes with
increased expression during cardiac differentiation, called
cardiac-related cluster and enriched in lineage specific
commitment terms, such as “muscle tissue develop-
ment” and “regulation of heart contraction” (Fig. 2d).

Strong gene expression coordination is observed during
mesoderm-to-cardiac progenitor commitment
When considering polysome-bound RNAs, the largest
gene expression variation showing 1582 DEGs occurred
during the D4 to D9 shift, which represents mesoderm-
to-cardiac progenitor commitment (Fig. 2b). GO analysis
revealed that some of D4 up-regulated BP terms were
also enriched in the D9 down-regulated analysis (Fig. 3a
and Additional file 2: Figure S5), such as “pattern specifi-
cation process” and “embryonic morphogenesis”. These
findings suggest a crucial gene expression regulation at
this stage. Comparisons between D4 up-regulated and
D9 down-regulated genes showed 217 in common,
which are related to “mesoderm development” and
“embryonic pattern specification” BP terms (Fig. 3b).
Moreover, an expression gene clustering pattern showed

a distinct group of genes highly and specifically expressed
on D4 (Fig. 3c). Those genes are called mesoderm-related
genes and are enriched on developmental processes, such
as “pattern specification process”, “regionalization” and
“somitogenesis”. Altogether, these results indicate that the
developmental progress of mesoderm-to-cardiac

Fig. 3 Mesoderm and cardiac progenitor commitment gene expression. (a) GO EnrichR BP enriched terms for D4 up-regulated (FDR < 0.05,
logFC> 2) and D9 down-regulated genes (FDR < 0.05, logFC<− 2). Overlap is shown inside the bars for each term in each condition. (b) Venn
diagram and GO EnrichR BP enriched terms of common D4 up-regulated (FDR < 0.05, logFC> 2) and D9 down-regulated genes (FDR < 0.05,
logFC<− 2). Six terms with lower p-values are shown. (c) Gene expression pattern cluster of mesoderm-related genes and their GO EnrichR BP
enriched terms. Six terms with lower p-values are shown
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progenitor is carefully regulated and can be assessed by
polysome-bound RNA analysis.

Cardiac commitment is intensely tuned by differential
mRNA association with polysomes
Gene expression fluctuations could be a consequence of co-
ordination or lack thereof between transcription and trans-
lation rate changes. To assess the post-transcriptional
regulation during the cardiomyogenic differentiation, we
performed the two step-analysis: (1) DEGs were identified
through the comparison between each differentiation
time-point and the preceding time-point, considering an
overall FDR ≤ 0.05, − 2 ≥ logFC ≥2 and RPKM > 1 on
ribosome-free or polysome-bound samples (Additional files
3 and 4, respectively); and (2) ribosome-free DEGs and
polysome-bound DEGs were compared and classified ac-
cording to the following categories (Additional file 5).
Genes that were up- or down-regulated in both fractions
were labeled “up-coordinated” or “down-coordinated”.
Transcripts that were up-regulated in ribosome-free frac-
tion but might be neutralized by post-transcriptional mech-
anisms were labeled “up-buffered”, or in the opposite case,

as “down-buffered”. Moreover, genes showing that their
polysome association was increased or decreased, were la-
beled “up-loaded” or “down-loaded”, respectively (Fig. 4a).
We used the coordinated, buffered and loaded clas-

sification of DEGs and included one more label
category considering the final gene expression as co-
ordinated, post-transcriptional positive or negative
regulation (Fig. 4a). Therefore, when compared to the
preceding time-point, genes up- or down-coordinated were
labeled being under coordinated regulation, genes
up-buffered and down-loaded under post-transcriptional
negative regulation and genes down-buffered and
up-loaded under post-transcriptional positive regulation.
Approximately 60–80% of DEGs showed one or another
kind of post-transcriptional regulation, positive or negative,
suggesting a crucial role of this level of gene expression
control (Fig. 4b). Interestingly, during the initial steps of dif-
ferentiation (D0-D1 and D1-D4), there was a prevalence of
up- (10/19 and 142/271) or down-loaded (60/138 and 190/
351) genes, suggesting a strong post-transcriptional regula-
tion at these stages. During cardiac progenitor commitment
on D9, numbers of coordinated, buffered and loaded genes

Fig. 4 Post-transcriptionally regulated genes during cardiomyogenesis. (a) Gene categories based on the ribosome-free and polysome-bound
comparison analysis. (b) Number of DEGs (FDR < 0.05, − 2 > logFC> 2, RPKM> 1) classified at the gene regulation categories. See also Additional
file 2: Figure S6
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Fig. 5 Post-transcriptionally regulated genes during cardiomyogenic differentiation were involved in diverse biological processes. GO Reactome
pathways enriched terms for up- (FDR < 0.05, logFC> 2, RPKM> 1) and down- (FDR < 0.05, logFC<− 2, RPKM> 1) buffered and loaded genes. Ten
terms with lower p-values are shown
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were similar, either on positive or negative regulation. On
the other hand, between D9 and D15 most genes were
classified as buffered, in particular, on positive regulation
(234/370), indicating that transcriptional variations might
be controlled by post-transcriptional mechanisms. These
results corroborate our previous findings showing that
most of cardiac characteristics are already committed on
D9 (Fig. 2).
Considering that Gene Ontology-annotated genes are

usually protein-coding, we filtered our data and performed
GO analysis using only protein-coding genes. Analysis of
coordinately regulated genes showed well-established
pathways during hESC differentiation, such as the Reac-
tome pathway terms “POU5F1 (OCT4), SOX2, NANOG
repress genes related to differentiation”, “Transcriptional
regulation of pluripotent stem cells” and “Developmental

Biology”, which were upregulated on D1 and D4 and
down-regulated later (D9 and D15) (Additional file 2:
Figure S6). Additionally, the cardiac-related pathway
“Muscle contraction” and cardiac-specific pathway
“Cardiac conduction” were coordinately up-regulated at
D9 and D15 time-points (Additional file 2: Figure S6).
Genes classified as buffered or loaded showed enriched

pathway terms with a diversity of biological processes
(Fig. 5). The Reactome pathways “Developmental Biol-
ogy” and “NCAM signaling for neurite out-growth” were
up-loaded on D4 and down-loaded on D9, once more
suggesting the critical regulation at this stage. For in-
stance, developmental-related genes, such as NOTUM,
CER1 and SOX17, appeared as up-loaded on D4 and
down-loaded on D9 (Additional file 5 and Additional file
2: Figure S7A), indicating the polysomal loading

Fig. 6 Non-DEGs showed differences on polysome recruitment and dissociation on D1 vs. D4 and D4 vs. D9. (a) Venn diagram and (b) GO
EnrichR BP enriched terms of polysome recruitment (FDR < 0.05, logFC> 2) or dissociation (FDR < 0.05, logFC<− 2) for non-DEG based on
polysome/ribosome-free ratio. (c) Polysome/ribosome-free ratio variation of the Notch and Wnt pathways genes during cardiomyocyte
differentiation (FDR < 0.05, − 2 > logFC> 2). See also Additional file 2: Figure S8
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Fig. 7 Cardiomyocytes (D15) showed down-regulation of translation and RNA processing genes. (a) GO EnrichR BP RNA-related terms enriched
for D15 down-regulated genes (FDR < 0.05, logFC<− 1) compared to hESC (D0). (b) Genes classified on RNA-related BP terms (a) according to the
co-regulated, buffered and loaded classification as indicated. (c) KEGG pathway analysis of D15 down-regulated ribosomal proteins. Down-loaded
proteins showed in solid color, down co-regulated proteins showed as a green outline. (d) Venn diagram and (e) GO EnrichR BP enriched terms
of polysome recruitment (FDR < 0.05, logFC> 2) or dissociation (FDR < 0.05, logFC<− 2) for non-DEG based on polysome/ribosome-free ratio of D0
vs. D15. (f) Translation genes showed polysome/ribosome-free ratio decreasing on D15 (FDR < 0.05, logFC<− 2). (g) Representative images of D0
and D15 cells cultured with OPP to stain nascent proteins. (h) Quantification of Alexa488 fluorescence intensity (OPP incorporation) at the
cytoplasm region around the nucleus. For each condition (D0 and D15), 1400 cells were randomly chosen for intensity analysis. Statistical analysis
was performed using the Mann-Whitney test (nonparametric t test). ****p < 0.0001
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regulation. The “M phase” and “Mitotic Metaphase and
Anaphase” terms were shown as down-loaded on D15,
while “Cyclin A/B1 associated events during G2/M tran-
sition” as down-buffered, indicating the fine adjustment
of cell cycle during differentiation. The E2F Transcrip-
tion Factor 1 plays a crucial role in the control of cell cycle
[31] and was shown as involved in myoblast proliferation
and differentiation through the auto-regulation loop with
miR-20a-5p and miR-20b-5p [32]. E2F1 gene appeared less
associated to polysomes on D9 (FDR < 0.05, logFC − 1.73,
not included on down-loaded group), and down-buffered
on D15, illustrating an initial polysomal dissociation
followed by transcriptional down regulation of this gene
(Additional files 3 and 4).
We have previously shown that “Extracellular matrix

organization” seems to have an important role during dif-
ferentiation (Fig. 2c), and it is probably also being
post-transcriptionally regulated once it showed as
enriched for up-loaded genes on D4, D9 and D15 (Fig. 5).
Between the D15 up-loaded genes are LUM, COL6A3 and
COL3A1 (Additional file 5). COL3A1 was already shown
as post-transcriptionally regulated by the interaction of
the heterogeneous nuclear ribonucleoprotein (hnRNP) A1
mRNA-binding protein with its 3′-UTR [33]. Interest-
ingly, the cardiac-specific NKX2–5 gene was shown as
up-buffered on D4, suggesting that its RNA was tran-
scribed but not translated yet. On D9, this gene was
shown as up-coordinated, suggesting, in this case, its tran-
scription and translation (Additional file 2 and Additional
file 5: Figure S7B). In addition, other crucial cardiac tran-
scription factors, such as MEF2A and TBX5 appeared as
up-loaded on D9, indicating their polysome-bounding in-
crease on this stage (Additional file 5 and Additional file
2: Figure S7C).
To further characterize how recruitment to and dissoci-

ation from ribosomes influence gene expression, we per-
formed polysome/ribosome-free ratio analysis using
RPKM values. The results showed genes affected by poly-
some recruitment (FDR ≤ 0.05, logFC ≥2) or dissociation
(FDR ≤ 0.05, − 2 ≥ logFC) during cardiomyocyte differenti-
ation (Additional file 6). Some of them are also DEGs in
polysome-bound or ribosome-free fractions, but most are
not differentially expressed (Fig. 6a and Additional file 2:
Figure S8). GO analysis for these non-differentially
expressed and ratio-variated genes showed a variety of
BP terms (Fig. 6b and Additional file 2: Figure S8). For
instance, the development-related pathways JUN, Wnt
and Notch were strongly regulated between D1, D4 and
D9, were recruited from D1 to D4 and dissociated from
D4 to D9 (Fig. 6b). The polysome/ribosome-free ratio
of the JUN, Wnt and Notch pathway genes MTCH1,
GALNT11, NCLN and TMEM237 were plotted to
visualize the variations on D1, D4 and D9 as an example
(Fig. 6c).

mRNA loading into polysomes fine-tunes crucial
processes during hESC cardiomyogenesis
To better understand the changes in translation between
hESC and cardiomyocytes, we performed Gene Ontology
(GO) analysis with DEGs of D0 (hESC) vs. D15 (cardio-
myocytes), considering FDR ≤ 0.05, − 1 ≥ logFC ≥1 and
ribosome-free and polysome-bound data combined
(Additional file 7). Genes down-regulated on D15 were
enriched in Biological Process (BP) terms such as “rRNA
processing”, “tRNA aminoacylation for protein transla-
tion” and “cytoplasmic translation”, which were grouped
as “RNA-related terms” (Fig. 7a). Combining the genes
annotated in this group (143 genes down-regulated on
D15) and analyzing their post-transcriptional regulation
classification, 44 (30.7%) of them were down-coordinated
and 72 (50.3%) were down-loaded (Fig. 7b and Additional
file 7). In addition, many ribosomal proteins were shown
down-regulated on D15, predominantly down-loaded
(90.9%) (Fig. 7c). Other translation machinery proteins
were also down-regulated after cardiomyocyte commit-
ment, for instance, the initiation factors EIF5AL1 and
EIF4E1B, and elongation factor EEF1E1 (Additional file 7).
On the other hand, the cardiac elongation factor EEF1A2
[34] was up-regulated on D15 (Additional file 7).
Moreover, to explore if non-differentially expressed

genes could have been affected by the variation in
polysome occupancy (recruitment vs. dissociation), we
also compared the polysome/ribosome-free RPKM ra-
tio between hESCs (D0) and cardiomyocytes (D15)
(Additional file 6). Interestingly, genes related to
translation processes also showed polysomal dissoci-
ation on D15 when compared to D0, illustrated by
the decreased polysome/ribosome-free ratio (Fig. 7d
and e). Among them, there are translation initiation
factors (EIF4A3, EIF4E, EIF4B), ribosomal proteins
(RPL6, RPL14) and RNA helicases (DDX52), whose ra-
tios are plotted in Fig. 7f (Additional file 6). Some of these
observations were confirmed by qPCR (Additional file 2:
Figure S9).
To further confirm that the down-regulation of

translation-related genes after cardiomyogenic differ-
entiation could affect protein synthesis, we per-
formed a protein synthesis quantification assay. Cells
on D0 (hESC) and D15 (cardiomyocytes) were
treated with O-propargyl-puromycin (OPP) which is
incorporated into newly translated proteins and then
fluorescently labeled. Quantification of fluorescence
intensity showed a decrease in protein synthesis after
cardiac commitment compared to undifferentiated
cells (Fig. 7g and h). Taken together, these findings
suggest a translation adjustment during hESC-to-car-
diomyocyte differentiation.
Interestingly, other crucial cellular processes also

showed regulation by post-transcriptional mechanisms.
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For instance, on D1 down-buffered and D15 up-buffered
GO analysis, the Reactome pathway terms related to cel-
lular metabolism were enriched, suggesting an important
post-transcriptional regulation of this process during
cardiomyogenic differentiation. Metabolic properties dif-
fer between cardiomyocytes and hESCs [35], thus, to
understand the regulation of metabolic genes, we
grouped the genes annotated as the Reactome pathway
terms related to cellular metabolism and called them
“Metabolism-related genes” (Additional file 2: Figure
S10A and Additional file 7). Comparing the
ribosome-free and polysome-bound data, 494 genes were
up-regulated on D15, among which 243 (49.2%) were
up-loaded, 46 (9.3%) were up-buffered and 205 (41.5%)
were up coordinated (Additional file 2: Figure S10B).
This likely reflects the post-transcriptional contribution
to cardiomyocyte metabolic remodeling demonstrated
by metabolic gene recruitment to polysomes.

Discussion
In this report, we differentiated hESC to cardiomyocytes
and analyzed distinct time-points during this process to
assess the temporal cell fate transition. The polysome
profiling approach followed by ribosome-free and
polysome-bound RNA-seq allowed us to evaluate gene
regulation during the cardiogenic commitment. Poly-
some profiling analysis has been used as a robust
method to assess the association of ribosomes with
mRNAs, providing information about their translational
status [23–25]. Here, we show that polysome-bound
RNAs reflect the cardiac commitment phenotype, illus-
trated by down-regulation of pluripotency core regula-
tory circuitry (OCT4, SOX2 and NANOG) [36] followed
by up-regulation of cardiomyogenesis-related genes. The
recapitulation of developmental steps is a powerful strat-
egy to control a specific cell fate [1], where the first step
is the transition into one of the three embryonic germ
layers. The heart originates from the mesoderm emer-
ging from the primitive streak [30]. Mesodermal devel-
opment genes were found to be strongly regulated on
D4, which represents the cardiac mesoderm commit-
ment time-point. The massive number of DEGs between
D4 and D9, added to the up-regulation of developmental
pathways and pattern specification genes on D4 followed
by their down-regulation at progenitor specification
stage (D9) are consistent with the complexity of multiple
mesodermal lineage choices, recently mapped by Loh et
al. (2016) [37].
Moreover, we showed that 60–80% of DEG along car-

diomyogenic differentiation were under some degree of
post-transcriptional regulation. Uncoupling between the
transcriptome and translatome changes, characterized by
the independency of the machineries responsible for
mRNA availability and engagement in translation, has

been observed in most cell types [38]. Here, we observed
that many metabolic and cellular processes are regulated
exclusively at the level of polysomal association, prob-
ably because of post-transcriptional regulatory mecha-
nisms in cellular development [25, 39, 40]. Surprisingly,
genes with coordinated regulation (additive regulation)
represent a minority of DEGs. In addition to that,
changes in the abundance of mRNAs do not directly in-
fluence their polysomal engagement, represented by the
buffered expression genes. The mRNA access to the
translation machinery is governed by the interaction of
translation factors with its sequence and structural mo-
tifs and is mediated by a complex network of
trans-acting proteins and regulatory RNAs [41, 42].
While mRNA levels in the cytoplasm can randomly fluc-
tuate due to transcriptional bursts, the final gene expres-
sion levels are adjusted at the time of protein synthesis
[43]. McManus et al. (2013) [44] showed that buffering
effects on gene expression (translation efficiency oppos-
ite to mRNA abundance) were common and would re-
duce divergent interspecies expression at the protein
level. Translational regulation has already been reported
in mouse mesoderm commitment [45] and hESC neur-
onal differentiation [46]. Here, we show unprecedented
data about post-transcriptional regulation during human
cardiomyogenic commitment.
We also found that the translational activity is reduced

during differentiation; this became more evident when
comparing hESC on D0 to cardiomyocytes on D15. Protein
synthesis rate in cardiac tissue decreases from fetal to adult
development, and in adult heart is lower than in other tis-
sues [47, 48]. Chorghade et al. (2017) showed that the
translation initiation RNA-binding protein PABPC1 is
post-transcriptionally down-regulated in the adult heart tis-
sue, which possibly decreases the translational capacity of
the heart. Our data showed that the D15 down-regulated
genes were enriched in RNA processing and translation
genes, which were mostly down-regulated only in the
polysome-bound fraction. Translation-related genes also
showed polysomal dissociation on D15 when compared to
D0, illustrated by the decreased polysome/ribosome-free ra-
tio, further suggesting a strong post-transcriptional regula-
tion and corroborating previous observations [38, 49, 50].
Protein synthesis is an indispensable process for main-

taining homeostasis in the cell, and aberrations in its
regulation may contribute to a wide range of diseases
[51]. We have previously investigated the translational
regulation during cell commitment to adipogenesis in
hASCs. Our results showed the translational control as a
key mechanism regulating the early steps of adipogenic
differentiation, with a significant reduction in protein
synthesis and a lower translational efficiency of riboso-
mal proteins [52]. In vitro differentiation of other cell
types also showed decreasing translation rate, due to,
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e.g., eIF2a phosphorylation or rRNA biogenesis [53–57].
Blair et al. (2017) reported the translational down-regu-
lation of translation-related genes after hESC neuronal
differentiation (including translation initiation factors
and ribosomal proteins) [46], indicating that this mech-
anism doesn’t seem to be cardiac-specific. In contrast,
Blanco et al. (2016) showed that adult stem cells have
lower protein synthesis rates than committed cells, using
skin as a model. In normal skin, the RNA methyltrans-
ferase NSUN2 expression is restricted to committed hair
follicle populations. They have demonstrated that loss of
NSUN2 causes hypomethylation of tRNAs, accumula-
tion of 5′ tRNA fragments, which repress cap-dependent
protein translation [58–60]. This reduced translation in
adult stem cells is probably related to the biology of
these specific cell types. Adult stem and progenitor cells
are metabolically quiescent and low, if at all, prolifera-
tive. After stimulation by injury, they enter an activation
state where they proliferate and show increased transla-
tional rates [61]. These particular characteristics make
the comparison of the regulatory pathways and mecha-
nisms underlying translational regulation in adult and
embryonic stem cells not possible as these cells are in
different stages of differentiation and in completely dif-
ferent biological environments. Our model recapitulates
embryonic differentiation, where highly proliferative
stem cells commit and differentiate into cell types with
defined gene expression patterns and, in most cases,
lower proliferative rates.
Noncontractile stem cells require less energy than

beating cardiomyocytes, therefore, a transition in ener-
getic infrastructure is necessary to support the increased
energetic needs during cardiac differentiation [62, 63].
This switch in energy metabolism is associated with
increased mitochondrial maturation and oxygen con-
sumption and reduced glycolysis, due to a metabolic
transcriptome remodeling [35, 62]. We showed that
the metabolic reconfiguration is also a consequence of
post-transcriptional level gene regulation. Almost 50%
of metabolism-related genes regulated on D15 were
increased only in polysome-bound fraction, character-
izing the higher recruitment of these genes to the
translational machinery. Increasing evidence has been
showing the role of translational control in regulating
metabolic function and that its defect is implicated in
the pathogenesis of metabolic disorders [64, 65]. Add-
itionally, cardiomyocyte mRNA interactome revealed
that metabolic enzymes can act as RBPs [66], and en-
ergy metabolism proteins were found associated with
ribosomes in ESCs, for instance, controlling the trans-
lation of mRNAs [67]. All these lines of evidence sug-
gest a close relationship between cellular metabolism
and translational control which deserves further
exploration.

Conclusions
Polysome profiling followed by ribosome-free and
polysome-bound RNA-seq of hESC cardiogenic commit-
ment allowed us to evaluate gene expression regulation,
revealing a massive control of developmental steps.
Post-transcriptional regulation might be acting on 60–80%
of DEG along cardiomyogenic differentiation, contributing
to the final phenotype. Cardiomyocytes translational activ-
ity was reduced when compared to undifferentiated cells
showing that translation regulation is also controlled dur-
ing differentiation. Understanding the biological processes
that trigger differentiation is crucial for an improvement
of in vitro differentiation strategies and discovery of en-
dogenous regenerative pathways. Our results helped to
uncover transcriptional and post-transcriptional regulation
involved in cardiomyogenic commitment gene expression,
collected unprecedented data regarding polysome-bound
RNAs and provided advances in comprehension of differ-
entiation processes. Altogether, this work could prospect
fundamental tools to develop new therapy and research
approaches.

Methods
Cell culture and cardiomyocyte differentiation
hES-NKX2–5eGFP/w cell line was a gift from Dr. David
A. Elliott (Monash Immunology and Stem Cell Labora-
tories, Monash University, Australia) [27]. Cells were
maintained on irradiated MEFs (mouse embryonic fibro-
blasts) using DMEM-F12 (Gibco™) with 20% KSR
(Gibco™), 0.1 mM non-essential amino acids, 55 μM
β-mercaptoethanol, 100 μg/mL penicillin-streptomycin,
2 mM L-glutamine and 10 ng/mL bFGF. The cardiomyo-
cyte differentiation protocol was adapted from the previ-
ously published one [2]. Seventy-two hr. before
differentiation, 7 × 105 cells/well were passaged onto a
6-well plate coated with Growth Factor Reduced BD®
Matrigel Matrix for feeder depletion. Then, cells were
dissociated with collagenase I (1 mg/mL) for 20 min
followed by trypsin-EDTA (0.05%) for approximately 30 s
and scraped to form small clusters. After washing, the
clusters were cultured in 6-well Ultralow Attachment
Corning plates using StemPro-34 (Invitrogen), supple-
mented with 100 μg/ml penicillin-streptomycin, 2mM
L-glutamine, 150 μg/mL transferrin, 50 μg/mL ascorbic
acid and 0.45mM monothioglycerol (MTG) and kept in
humid incubator at 37 °C, 5% CO2 and 5% O2. For embry-
oid bodies (EBs) aggregation (D0-D1), the basal medium
was supplemented with 1 ng/mL BMP4. On D1, the
medium was replaced with supplementation of 10 ng/mL
BMP4, 6 ng/mL Activin A and 5 ng/mL bFGF; on D4 with
10 μg/mL VEGF and 10 μM XAV 939, and starting on D8,
the medium was replaced every two or three days supple-
mented with 10 μg/mL VEGF and 1 ng/mL BMP4. Three

Pereira et al. BMC Genomics          (2019) 20:219 Page 12 of 16



independent differentiation assays were used as experi-
mental replicates.

Flow cytometry
EBs were dissociated on D4 using trypsin-EDTA (0.05%)
and incubated with the surface marker PE-conjugated
anti-CD56 (1:25 in 0.5% PBS/BSA, BD cat. 347,747) and
1 μg/μL DAPI. On D9, cells were disaggregated with
trypsin-EDTA (0.05%) for 5 min and resuspended in PBS
to evaluate eGFP expression. On D15, EBs were disag-
gregated using 1 mg/mL collagenase I for 16 h and
trypsin-EDTA (0.05%) for 5 min, fixed with 4% parafor-
maldehyde, permeabilized with 0.5% Triton X-100 and
incubated with anti-troponin T antibody (1:100 in 0.5%
PBS/BSA, cardiac isoform Ab-1, Thermo Scientific™, cat.
#MS-295-P0) followed by Pacific Blue-conjugated
anti-mouse antibody (11000). Analyses were carried out
using a FACSCanto II flow cytometer and FlowJo software.

Immunofuorescence and fluorescent microscopy
On D15, EBs were disaggregated using 1mg/mL collage-
nase I for 16 h and trypsin-EDTA (0.05%) for 5min and
plated on Matrigel-coated wells. After 2–5 days, cardio-
myocytes were fixed with 4% paraformaldehyde, perme-
abilized and blocked with 0.5% Triton X-100 and 1%
PBS-BSA. Overnight incubation with anti-troponin I
antibody (1:100 in 0.5% PBS/BSA, Santa Cruz Biotechnol-
ogy, cat.: sc-15,368) followed by Alexa 546-conjugated
anti-rabbit IgG (1:800, Invitrogen) and 1 μg/μL DAPI. EBs
or fixed cardiomyocytes were visualized using a Leica
DMI6000B optical microscope and images and videos ac-
quired by LAS AF software.

Polysome profile and RNA isolation
At the indicated time points, monolayer hESC on D0 or
differentiating EBs were treated with 0.1 mg/mL cyclo-
heximide (Sigma-Aldrich) for 10 min at 37 °C, disaggre-
gated with trypsin-EDTA (0.05%) for 10 min and washed
twice with PBS. Cells were resuspended in polysome
lysis buffer (15 mM Tris HCl, pH 7.4, 15 mM MgCl2,
300 mM NaCl, 1% Triton X-100, 40 U/μL RNAse Out,
24 U/mL DNAse and 100 μg/mL cycloheximide), incu-
bated for 10 min on ice and centrifuged at 12000 x g for
10 min at 4 °C. For the puromycin control, cells were
treated with 2 mg/mL puromycin for 1 h before disag-
gregated and the buffers were used without cyclohexi-
mide. The supernatants were loaded onto 10 to 50%
sucrose gradients (prepared with BioComp model 108
Gradient Master) and centrifuged at 150000 x g (SW40
rotor, HIMAC CP80WX HITACHI) for 160 min at 4 °C.
Different sucrose gradient fractions were separated using
ISCO gradient fractionation system (ISCO Model 160
Gradient Former Foxy Jr. Fraction Collector), connected
to a UV detector, which monitored the absorbance at

275 nm to record the polysome profile. RNA from
ribosome-free and pooled polysomal fractions was isolated
using the Direct-zol RNA MiniPrep (Zymo Research),
following the manufacturer’s instructions.

High-throughput sequencing and data analysis
For cDNA library preparation, 200 to 500 ng of
ribosome-free or 2 μg of polysome-bound RNA were
used to perform three independent sample replicates.
The cDNA libraries were prepared using the TruSeq
Stranded mRNA Sample Preparation kit (Illumina, Inc.),
and RNA-seq was carried out in an Illumina HiSeq plat-
form. Mapping and counting of sequencing data was
performed with the Rsubread package [68] against the
new version of the human genome GRCh38. Mapping
parameters were set for unique mapping of the reads
(the rest were default). For some calculations, CPM
values (counts per million) were determined, where each
sample was normalized to one million reads to account
for the library size (Additional file 8).
To assess the quality of the experiment and reproduci-

bility of results, we performed a correspondence analysis
(COA), a dimension reduction method of the matrix of
counts. In COA, it is possible to simultaneously visualize
samples and genes, revealing associations between them.
Differential expression analysis was done using the

Bioconductor R package edgeR [69]. Several compari-
sons were performed for both ribosome-free and
polysome-bound RNA fractions - each sample against
the preceding time-point: D0 vs D1, D1 vs D4, D4 vs D9
and D9 vs D15; and D0 vs D15. For these analyses, we
retained only those genes with at least one count per
million in at least three samples. After a normalization
procedure using three recommended methods (estima-
teGLMCommonDisp, estimateGLMTrendedDisp, esti-
mateGLMTagwiseDisp), differential expression analysis
for all 10 comparisons was performed using the general-
ized linear mixed model (glmFit and glmLRT). Correc-
tion for multiple testing was performed with FDR and
RPKM values for each sample were also determined to
compare the expression between the samples (Additional
file 3, Additional file 4 and Additional file 7).
Clustering was performed with the k-means algorithm

on the table of read log-counts of each gene. Biological
replicates were averaged (mean of 3 replicates) and only
differentially expressed genes in either condition (D0
vsD1, D1 vs D4, D4vs D9, D9 vs D15) were considered.
Different numbers of k were tested by measuring the
within sum of squares. After visual inspection of within
sum of squares distribution, we decided on k = 9.
Polysome/ribosome-free ratio was determined by div-

iding RPKM values derived from the polysomal fraction
by the ones derived from the ribosome-free experiment
(three biological replicates were averaged).
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Gene ontology (GO) analysis was performed using
Enrich R (http://amp.pharm.mssm.edu/Enrichr/).

Protein synthesis rate analysis
Protein synthesis was measured using Click- iT® Plus
OPP Protein Synthesis Assay (Molecular Probes, Grand
Island, NY). Cells on D0 (hESC) or D15 (cardiomyo-
cytes) were seeded in matrigel-coated 96-well plates, and
after 48 h, the staining and detection was performed fol-
lowing the manufacturer’s instructions. The quantitative
analysis was performed using an Operetta HTS imaging
system (PerkinElmer, Waltham MA, USA). Images of 25
fields per well were evaluated with Harmony 3.5.2 soft-
ware (PerkinElmer). Fluorescence intensities were mea-
sured at the cytoplasm regions around the nucleus. For
each condition, 1400 cells were randomly chosen for in-
tensity analysis.

Additional files

Additional file 1: Video of beating D15 EBs. (MP4 1974 kb)

Additional file 2: Figure S1. Summary of high-throughput ribosome-free
and polysome-bound RNA-seq of distinct cardiomyogenic differentiation
time-points (n = 3). Figure S2. (A) Polysome profiling of D15 cells treated
with cycloheximide or puromycin. Ribosome-free (fractions 1–3), monosome
(fractions 5–7), light polysomes (fractions 9–15) and heavy polysomes
(fractions 16–22) fractions were pooled and isolated. (B) Cardiomyocyte
markers evaluated by qPCR on distinct polysome fractions. Figure S3.
Polysome-bound validation of developmental markers expression using
qPCR. Figure S4. (A) Number of differentially expressed genes on each
differentiation time-point, compared to previous time-point
(FDR < 0.05, − 2 > logFC> 2) on ribosome-free samples. Number of
protein-coding and non-coding genes are also shown (bottom panel).
(B) Non-coding genes categories of DEGs (all time-points combined,
each time-point against its previous for analysis) (FDR < 0.05, − 2 >
logFC> 2) on polysome-bound samples. Figure S5. Gene Ontology
EnrichR BP enriched terms for up (FDR < 0.05, logFC> 2) and down
(FDR < 0.05, logFC<− 2) polysome-bound regulated genes. Figure S6.
Genes coordinately regulated are under control of transcriptional and post-
transcriptional regulation during cardiomyogenic differentiation. Figure S7.
qPCR validation of DEG during cardiomyogenic differentiation. Figure S8.
Non-DEGs showed differences on polysome recruitment and dissociation
on D0 vs. D1 and D9 vs. D15. Figure S9. RNA related-genes validation by
qPCR. Figure S10. Cardiomyocytes (D15) showed up-regulation of cellular
metabolism genes. (DOCX 2575 kb)

Additional file 3: Polysome-bound RNA-seq data of comparisons of each
sample against the preceding time-point (FDR < 0.05). (XLSX 5476 kb)

Additional file 4: Ribosome-free RNA-seq data of comparisons of each
sample against the preceding time-point (FDR < 0.05). (XLSX 1508 kb)

Additional file 5: Polysome-bound vs. ribosome-free analysis. (XLSX 41 kb)

Additional file 6: Polysome-bound vs. ribosome-free ratios (FDR < 0.05).
(XLSX 17874 kb)

Additional file 7: Polysome-bound and ribosome-free RNA-seq data of
D0 vs. D15 comparison (FDR < 0.05). (XLSX 3849 kb)

Additional file 8: Counts and RPKM values of all mapped genes.
(XLSX 30119 kb)
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