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Abstract

Background: Topologically associating domains (TADs) are considered the structural and functional units of the
genome. However, there is a lack of an integrated resource for TADs in the literature where researchers can obtain
family classifications and detailed information about TADs.

Results: We built an online knowledge base TADKB integrating knowledge for TADs in eleven cell types of human
and mouse. For each TAD, TADKB provides the predicted three-dimensional (3D) structures of chromosomes and TADs,
and detailed annotations about the protein-coding genes and long non-coding RNAs (lncRNAs) existent in each TAD.
Besides the 3D chromosomal structures inferred by population Hi-C, the single-cell haplotype-resolved chromosomal
3D structures of 17 GM12878 cells are also integrated in TADKB. A user can submit query gene/lncRNA ID/sequence to
search for the TAD(s) that contain(s) the query gene or lncRNA. We also classified TADs into families.
To achieve that, we used the TM-scores between reconstructed 3D structures of TADs as structural similarities and the
Pearson’s correlation coefficients between the fold enrichment of chromatin states as functional similarities. All of the
TADs in one cell type were clustered based on structural and functional similarities respectively using the spectral
clustering algorithm with various predefined numbers of clusters. We have compared the overlapping TADs from
structural and functional clusters and found that most of the TADs in the functional clusters with depleted chromatin
states are clustered into one or two structural clusters. This novel finding indicates a connection between the 3D
structures of TADs and their DNA functions in terms of chromatin states.

Conclusion: TADKB is available at http://dna.cs.miami.edu/TADKB/.

Keywords: Topologically associating domains, TADs, Family classification, Single-cell 3D genome structures, Long
non-coding RNAs, lncRNAs

Background
Topologically associating domains (TADs) are DNA seg-
ments that are considered the structural and functional
units of the mammalian genomes [1, 2]. The length of
TADs varies from hundreds of kilobases up to a few mil-
lion bases [1]. The boundaries of TADs are enriched
with different factors [1], including the insulator binding
protein CTCF and housekeeping genes. TADs pervade
the whole genome, remain consistent across different

cell types, and are highly conserved between humans
and mice [2]. Recently, TADs have been widely consid-
ered as the unit of chromosome organization [3] and
being studied together with genes, CTCF, cohesion, and
chromatin loops [2, 4, 5]. There are many methods that
have been developed to detect topologically associating
domains [1, 2, 6–13]. Most of them are based on the
finding that the Hi-C contacts within a TAD are appar-
ently more frequent and enriched than those between
two different domains [1], which is the fundamental rule
for defining domain locations in mammalian
chromosomes.* Correspondence: zheng.wang@miami.edu
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The Hi-C experiments [14] can capture the genome-
wide proximate relationship between genomic locations
based on millions of cells. The resolution of Hi-C exper-
iments has been largely improved from originally 1Mb
in [14] to recently 1 kb in [2]. This high resolution
makes it possible to detect enough Hi-C contacts within
a TAD or detect genome-wide loops. For example, the
study [2] identified about 10,000 loops, which often indi-
cate promoter and enhancer interactions that is highly
related to gene regulation. Studies also found that the
loops usually are conserved between different cell types
and species [2, 15].
The availability of high-resolution Hi-C contacts also

makes it possible to reconstruct the three-dimensional
(3D) structure of chromosomes. The Hi-C contact data
indicate the proximate relationship between two gen-
omic locations, with enough number of which computa-
tional algorithms can be used to construct a 3D
structure that meets the Hi-C contacts. The early work
conducted by Duan et al. [16] constructed the 3D struc-
ture of yeast genome based on 4C-related experiment
(4C, a type of chromosome conformation capture ex-
periment that was designed before the invention of Hi-C
experiment). ChromSDE [17] uses semi-definite pro-
gramming to construct 3D models, whereas Trieu et al.
[18] applied optimization after obtaining the in-contact
and not-in-contact relationships for bead pairs. PASTIS
[19] uses metric multidimensional scaling to construct
3D structures, which at first calculates a wish distance
between every pair of beads (a chromosome is evenly di-
vided into beads with the same length). This wish dis-
tance is calculated directly from the number of Hi-C
contacts by d ~ c-1/3 (d is the wish distance; and c is the
number of Hi-C contacts) so that higher number of
Hi-C contacts indicate shorter wish distances. The
multidimensional scaling algorithm tries to find a 3D
structure that best meets all the wish distances.
The converting formula d ~ c-1/3 has a drawback, that

is, when c is larger than 10 the converted distances are
converged to a very small value. To overcome the draw-
back, instead of using the same parameter (1/3) for all
Hi-C contacts we [20] defined a novel type of complex
network based on Hi-C contacts and assigned a convert-
ing parameter for each pair of Hi-C contacts based on
their affinity to the neighbors, from which we further in-
ferred the wish distance for each bead pair. Based on the
bead-pair specific wish distances, we reconstructed the
3D structures of chromosomes and TADs at the 40
kb resolution [20]. Although this technique was not
used in TADKB, it is worth mentioning it for a broad
review of the algorithms used to reconstruct genome
3D structures.
Given a distance matrix, reconstructing a 3D structure

can be considered as a dimensionality reduction problem.

Generally speaking, the methods to achieve that can be
classified to linear (e.g., principal component analysis)
and non-linear (e.g., multi-dimensional scaling [21]
and t-distributed stochastic neighbor embedding [22])
methods. Non-linear methods are more complicated
than the linear ones and can capture the non-linear
relationships from the input data. Among most of the
non-linear methods, t-distributed stochastic neighbor
embedding (t-SNE) used Gaussian joint probabilities
to represent affinities in the original space and Stu-
dent’s t-distributions to represent affinities in the em-
bedded space [22]. It has been claimed in [22] that
the t-SNE method has advantages such as being able
to reveal the structures at different scales. Therefore,
it can be used to capture and reconstruct local struc-
tures from single-cell Hi-C contact matrices [23, 24].
Long non-coding RNA (lncRNA) is defined as tran-

script of > 200 nucleotides that cannot be translated into
protein. It has been found that > 74% of human genome
is transcribed to RNA; however, only 2% of the tran-
scripts are finally translated into proteins [25]. There-
fore, non-coding RNAs take a large portion in human
genome and have been considered as “junk”. It is until
recently that more and more research has confirmed
lncRNA’s functions in gene expressions regulation [26, 27],
epigenetic modification [28–30], and chromatin structures
controlling [31]. For example, Xist is a lncRNA with gene
locus located in the X-chromosome of mammal cells. Its
important function is to inactivate one copy of X chromo-
some in female cells. Because every diploid wild-type fe-
male mammal cell has two copies of X chromosomes, in
order to balance the amount of gene expressions or to per-
form “dosage compensation”, one of the X chromosomes
in female is inactivated with highly compacted structure
and silenced in terms of gene expression. This inactivation
process is done by Xist lncRNAs that alter the 3D structure
of X chromosome and eventually inactivate one copy of X
chromosomes in female [32]. There are multiple data-
bases for lncRNA such as NONCODE 2016 [33],
LNCipedia 4.0 [34], and lncRNAdb 2.0 [35]. However,
different lncRNA databases have different naming stan-
dards, which causes the problem that the same lncRNA
has different IDs in different databases.
We built topologically associating domain know-

ledge base (TADKB), a knowledge base for TADs in-
tegrated with annotations of protein-coding genes and
lncRNAs. TADKB defined TADs’ families based on
the common TADs shared in two types of clusters:
(1) structural clusters based on 3D structural similar-
ities; (2) chromatin-state clusters from the fold en-
richment similarities of chromatin states. Moreover,
TADKB unifies three lncRNA databases allowing users to
cross-reference between them when they have different
IDs for the same lncRNA.
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Fig. 1 The webpage of TADKB that allows a user to browse all the TADs for a cell or cell line

Fig. 2 The annotation page of TADKB showing the information about a single TAD with MDS-based reconstructed 3D structure
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Construction and content
TADKB provides the TADs called from eleven cell types:
GM12878, HMEC, NHEK, IMR90, KBM7, K562, and
HUVEC for human [2], and CH12-LX, ES, NPC, and
CN for mouse [36]. The normalized Hi-C contact matri-
ces were downloaded from the Gene Expression Omni-
bus (GEO) with ID GSE63525 for the first eight cell
types at the resolutions of 50 kb and 10 kb and GEO
GSE96107 for the last three cell types at the resolutions
of 50 kb and 10 kb. The TAD locations for all of the cell
types were detected using three different methods: (1)
Directionality Index (DI) [1], Gaussian Mixture model
And Proportion test (GMAP) [37], and Insulation Score
(IS) [38]. For IS, we first combined the overlapping
boundary regions and called domains between two suc-
cessive boundaries. We also used two Hi-C variants:
HiChIP [39] and SPRITE [40], and both the variants
provided two cell lines’ high-resolution chromatin con-
tact data, including GM12878 and mES. The details of
domain-detection results are shown in Additional file 1:
Table S1. Hi-C data are normalized using KR [2, 41],
whereas HiChIP and SPRITE data are normalized using
Hi-Corrector [42] with 100 iterations. All TAD annota-
tions described in Additional file 1: Table S1 can be
downloaded from TADKB’s download webpage.
Because the scale of Hi-C contacts widely varies and

the contact-to-distance converting formula d = (1/c)(1/3)

as defined in [19] is sensitive to the scale of the number
of Hi-C contacts [20], we first rescaled the Hi-C contacts
of each TAD to the range [1, 30] via linear transform-
ation without considering missing Hi-C values. We then

used the formula d = (1/c)(1/3) to convert Hi-C contacts
(c) into wish distances (d). We reconstructed each TAD’s
3D structure using two manifold learning methods in-
cluding metric multidimensional scaling (MDS) and
t-distributed Stochastic Neighbor Embedding (t-SNE)
[22] implemented in Scikit-learn [43] by reducing the di-
mensionality to three components. We found that the
reconstructed 3D structures of TADs using t-SNE are
very sensitive to two parameters (i.e., perplexity and
learning rate). Therefore, we generated multiple 3D
structures for each TAD using t-SNE with different con-
figurations of the two parameters, superimposed these
structures with the one predicted by MDS method [44],
and selected the structure with the minimum root-
mean-square deviation (RMSD) as the final structure
from t-SNE.
We evaluated the reconstructed 3D structures using

the correlation between exponent parameter (measuring
the contact probability against genomic distances based
on Hi-C contact maps, see definition in Additional file 1)
and radius of gyration (measuring the compactness of re-
constructed 3D structures) as described in our previous
work [45]. Because a better reconstructed 3D structure
should have a high consistency between the 2D structural
characteristics represented by exponent parameter and
the 3D compactness represented by radius of gyration, we
calculated the correlations between all TADs’ exponent
parameters and radius of gyration for MDS- and
t-SNE-inferred structures in GM12878. The Pearson’s and
Spearman correlation coefficients between contact-probability-
based exponent parameters and MDS-based radius of

Fig. 3 The annotation page of TADKB with the 3D structure of the chromosome displayed in single-cell Hi-C (red color highlights the TAD and
blue color highlights the starting and end positions of the 3D structure)
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gyrations are − 0.71 (P-Value < 2.2e-16) and− 0.77 (P-Value <
2.2e-16), respectively, whereas the correlations between
contact-probability-based exponent parameters and t-SNE-
based radius of gyrations are − 0.08 (P-Value = 8.2e-06) and−
0.02 (P-Value= 0.2487). Our evaluation results indicate that
the structures inferred by MDS share higher consistency than
the structures inferred by t-SNE. Therefore, we used
MDS-based structures in the downstream analysis. The 3D
structures of the chromosomes and TADs were inferred using
the same method.
We used our in-house tool named SCL (manuscript

submitted) to reconstruct the 3D structures of chromo-
somes based on single-cell Hi-C data. The single-cell
haplotype-resolved chromosomal 3D structures at 40 kb
resolution of 17 GM12878 cells were generated based on
the single-cell Hi-C data released from [46]. For the
chromosomes 10 and 19 of cell 1, chromosomes 1, 2, 4,
and 11 of cell 4, all chromosomes of cell 8, and

chromosome 6 of cell 10, the raw single-cell Hi-C con-
tacts (file name *.raw.con.txt.gz) were used to infer their
3D structures. For all other chromosomes and cells, the
single-cell Hi-C contact after imputation were used (file
name *.impute3.round4.con.txt.gz). All single-cell Hi-C
data were downloaded from [46].
After obtaining the reconstructed 3D structures, we

used 3D structure alignment tools to compare the struc-
tural similarity between any given two TADs. In this
study, we used TM-align [47] to superimpose two TADs’
structures and obtained the TM-score as the structural
similarity score normalized by the length of the smaller
TAD. Therefore, given the reconstructed 3D structures
of all TADs in a genome we used TM-score to generate
a structural similarity matrix.
We next used chromatin-state annotation [48] to ex-

plore the chromatin-state similarity between any two
TADs. We downloaded the 25-state annotations from

Fig. 4 The TADKB page showing the annotations of protein coding genes. When a user selects gene(s) from the list in the middle, the
annotations of that gene(s) will be displayed on the panel on the right. Meanwhile, the location of the gene(s) will be highlighted on
the 3D structure of the TAD on the left
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the roadmap epigenomics project [49] for six cell types
including GM12878, HMEC, HUVEC, IMR90, K562,
and NHEK. The 25 states are (1) active TSS, (2) pro-
moter upstream TSS, (3) promoter downstream TSS 1,
(4) promoter downstream TSS 2, (5) transcribed-5′ pref-
erential, (6) strong transcription, (7) transcribed-3′
preferential, (8) weak transcription, (9) transcribed &
regulatory (Prom/Enh), (10) transcribed 5′ preferential
and Enh, (11) transcribed 3′ preferential and Enh, (12)
transcribed and weak Enhancer, (13) active enhancer 1,
(14) active enhancer 2, (15) active enhancer flank, (16)
weak enhancer 1, (17) weak enhancer 2, (18) primary
H3K27ac possible Enhancer, (19) primary DNase, (20)
ZNF genes & repeats, (21) heterochromatin, (22) poised
promoter, (23) bivalent promoter, (24) repressed poly-
comb, and (25) quiescent/low. For each TAD in each of
the six cell types with available chromatin-state annota-
tions, we computed its fold enrichment of each state
using the OverlapEnrichment function in ChromHMM
[48]. Given any two TADs in a cell type, we calculated
the Pearson’s correlation coefficient between their fold

enrichment values and treated the absolute value of the
correlation as the chromatin-state similarity score. In
this way, we generated a functional similarity matrix for
each cell type.
After that, we clustered TADs based on their simi-

larities at the structural and chromatin-state aspects.
We used Spectral Clustering [50] implemented in
Scikit-learn [43] as the clustering algorithm as it out-
performs the other algorithms (e.g., Affinity Propaga-
tion [51]) when dealing with non-convex clusters.
We downloaded protein-coding gene annotations from

Ensembl [52] and lncRNA annotations from NONCODE
2016 [33], LNCipedia 4.0 [34], and lncRNAdb 2.0 [35].
Since we use hg19 and mm9 as reference genomes
when identifying domain locations, gene data that are
inconsistent with the two reference genomes are first con-
verted using liftOver [53] to hg19 human or mm9 mouse
genome coordinates. We mapped genes onto TADs for
each of the eleven cell types by comparing their genomic
positions. For example, if a lncRNA’s genomic position has
an overlap with a TAD’s genomic positions (i.e., start and

Fig. 5 The TADKB page showing the annotations of protein coding genes with a TAD’s reconstructed 3D structure of extracted from 3D structure
of single-cell chromosome
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end positions), then we labeled this lncRNA to belong to
this TAD. The sequence search function was implemented
based on BLAST [54].

Utility and discussion
Overview
TADKB has the following main components: browse,
family view, acrossCells, search, and download. Detailed
description of each component will be presented as
follows.

Browsing component
The browse component allows users to select species,
cells or cell lines, reference genomes, chromosomes,

resolutions, and domain-caller methods. After a user
makes the selection, all the TADs that meet the criteria
will be displayed in a list as shown in Fig. 1. The TADs
are listed with their starting positions in the chromo-
some. The ID, start genomic position, end genomic pos-
ition, and length for each TAD will be displayed. Given
two points on a chromosome, TADKB can check
whether the two points are in a same TAD.
Once the user clicks one TAD, the main information

page of that TAD will be displayed as shown in Fig. 2.
This information page contains the Hi-C 2D
visualization along with TAD annotations and 1D tracks
(gene and various histone modifications from roadmap
epigenomics project [49]) via Juicebox.js [55], the

Fig. 6 The TADKB page showing the annotations of lncRNAs. Three major lncRNA databases NONCODE, LNCipedia, and lncRNAdb are integrated.
Different IDs from different lncRNA databases will be unified. The locations of the selected lncRNA(s) will be highlighted on the 3D structure of
the TAD on the left
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reconstructed 3D structures (MDS-based) of the selected
TAD, the 3D structure of its chromosome with the
selected TAD highlighted (need to click the corre-
sponding tab), the 3D structure of its chromosome in
single cells with the selected TAD highlighted (cur-
rently only structures for GM12878 are available), the
numbers of protein coding genes, the lncRNAs
(NONCODE, LNCipedia, and lncRNAdb) existent in
the selected TAD, and the loops or peaks detected in
the selected TAD which usually indicate promoter-en-
hancer interactions.
When a user clicks the tab of 3D structure of the

chromosome, the 3D structure of the chromosome will
be displayed with the selected TAD highlighted. Figure 3
shows an example page of single-cell chromosomal 3D
structure. This function allows users to know the 3D lo-
cation of the selected TAD in the chromosome.
When a user clicks the panel for protein coding gene

information, a new page will be displayed as shown in
Fig. 4 for MDS-based 3D structure of TAD using popu-
lation Hi-C and Fig. 5 for single-cell structure of TAD

using single-cell Hi-C. The user can select the coding
gene(s) of interest, which will be highlighted in the 3D
structure of the TAD. In this way, the user can know
whether two genes are spatially proximate. The annota-
tions of selected coding gene(s) will be automatically
listed in the panel on the right, which contains: the gene
ID in Ensembl, all the transcript IDs, all the protein IDs,
description, gene start position, gene end position, and
additional information. Once the user clicks additional
information, he/she will be redirected to the annotation
page on Ensembl.
Once the user clicks the lncRNAs page, all the

lncRNAs defined in NONCODE, LNCipedia, and
lncRNAdb will be listed. Similarly, when a user selects
any lncRNA(s), the annotations will be displayed in the
panel on the right as shown in Fig. 6. For each lncRNA,
TADKB provides the information of lncRNA start and
end locations, predicted functions, binding protein and
class predicted by lncRNAtor [56], exons number, tran-
scripts, and links to the three major lncRNA databases
for more details. An important feature of TADKB is that

Fig. 7 The TADKB page showing the loops or peaks. Loops in DNA can indicate the enhancer-promoter interaction
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it combines the three different databases for lncRNAs.
These three databases have their own scheme of assign-
ing IDs to lncRNAs, which causes inconvenience for
biologists to cross-reference the definitions in these da-
tabases. In TADKB, the definitions or IDs for the same
lncRNA will be combined. The ID from another lncRNA
database(s) will be shown in the “Alternative lncRNAs”
drop list on the panel on the right. Figure 6 shows the
example of a lncRNA in NONCODE that is also over-
lapped with a lncRNA definition in LNCipedia.
When the user clicks the Loops/Peaks tab, all the

peaks will be displayed as shown in Fig. 7. Loops or
peaks can indicate enhancer-promoter interactions. The
selected peaks will be highlighted in the 3D structure of
the TAD. If the user also highlighted coding gene(s) or
lncRNA(s) previously, he/she can see whether a peak
existed between genes or lncRNAs.
Under the Fold enrichment of chromatin states tab,

users can see the fold enrichment of each chromatin

state as shown in Fig. 8. Rows with red color indicate
that fold enrichment of that state is larger than one (i.e.,
enriched for the state), whereas blue color highlights the
depleted chromatin states.

TAD family component
As described in the construction and content section,
we used spectral clustering algorithm to cluster the
TADs in a cell type based on their structural and
chromatin-state similarities. Since spectral clustering
needs the number of clusters as input, we predefined
three numbers of clusters (i.e., 10, 20, and 30) for
chromatin-state clustering with Pearson’s correlation be-
tween two TADs’ fold enrichments of chromatin states
as similarity, and predefined four numbers of clusters
(i.e., 2, 3, 5, and 10) for structural clustering with
TM-score between two TADs’ MDS-inferred 3D struc-
tures as similarity. After obtaining the chromatin-state
clusters, we gathered all TADs in a same cluster,

Fig. 8 The TADKB page showing the fold enrichment of chromatin states. Red color indicates fold enrichment larger than 1, otherwise blue color
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Fig. 9 (See legend on next page.)
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computed their fold enrichment for each chromatin
state, and found that each cluster has a unique state en-
richment pattern. We also found that some clusters are
apparently enriched with most of the states (log2 of fold
enrichment larger than zero), whereas some other clus-
ters are heavily depleted of chromatin states (log2 of fold
enrichment less than zero). An example for GM12878
with the number of chromatin-state clusters equal to 20)
can be found in Fig. 9(a), which shows that there are at
least three clusters apparently depleted of chromatin
states (i.e., clusters 2, 12, and 20).
We compared the clusters of chromatin states and 3D

structures and found that there are overlapping TADs,
that is, the same TADs were found in both types of

clusters. An example shown in Fig. 9(c) has the numbers
of chromatin-state and structural clusters equal to 20
and 5, respectively. We then normalized the number of
overlapping TADs by the sizes of the two types of clus-
ters to obtain the overlapping TAD enrichment, which is
insensitive to the size of clusters. For example, the num-
ber of overlapping TADs between the structural cluster
number 1 and chromatin-state cluster number 1 is 18
(see Fig. 9(c)); This value 18 was divided by 167 (the size
of chromatin-state cluster number 1) and further divided
by 338 (the size of structural cluster number 1), which
results in 0.00031 (times 1000 for better visualization);
and the final value is 0.3 (see the value in the
left-bottom in Fig. 9(b)).

(See figure on previous page.)
Fig. 9 a Each chromatin-state cluster’s fold enrichment of 25 states. b The normalized overlapping TAD enrichment between chromatin-state
clusters and structural clusters. c The original overlapping TAD numbers between chromatin-state clusters and structural clusters. d, e, and
f The distribution of exponent parameters, radius of gyration, and gene density of the TADs in structural clusters. The cell type is GM12878
and the predefined numbers of chromatin-state and structural clusters are 20 and 5, respectively. Gene density is calculated by normalizing the
number of protein-coding genes found within a TAD by the TAD’s number of bins

Fig. 10 The family browsing page of TADKB listing all the families of a species. In this example, the families of human GM12878 are listed
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From Fig. 9(a) and (b), we observed that most of the
TADs in the chromatin-state clusters that are depleted
of chromatin states (e.g., 2, 12, and 20) can be found in
the second and third structural clusters, especially in the
third structural cluster. We tested all the possible
number-of-cluster combination configurations (i.e.,
select one from 10, 20, and 30 as the number of
chromatin-state clusters, and select one from 2, 3, 5, and
10 as the number of structural clusters) for TADs de-
tected by DI at 50 kb resolution of the six human cell
types, including GM12878, HMEC, HUVEC, IMR90,
K562, and NHEK (6 × 3 × 4 = 72 heat-maps; all can be
downloaded from the TADKB website) and observed the
same patterns, that is, most of the TADs in the
chromatin-state clusters that are depleted of chromatin
states can be found in one or two structural clusters, in-
dicating that this observation does not occur by acci-
dent. This observation may provide a novel way to

connect TADs’ 3D structures with DNA functions indi-
cated by chromatin states.
We plotted the distributions of exponent parameters and

radius of gyrations of the mutual TADs overlapped in (1)
the structural cluster number 3 and the chromatin-state
cluster number 2 (86 mutual TADs), and (2) the structural
cluster number 3 and the chromatin-state cluster number
12 (23 mutual TADs) (Fig. 9(d) and (e)) and found that
compared with the other mutual sets, the TADs in these
two mutual sets have smaller exponent parameters and lar-
ger radius of gyrations, which may indicate that these TADs
have a less compacted 3D structure and they all have de-
pleted chromatin-state enrichment. We also plotted the
gene density distribution (Fig. 9f ), showing that the
TADs in these two mutual sets have apparently
smaller gene density.
We next explored whether our observations are re-

sulted from heterochromatins or gene desert. First, we

Fig. 11 The distribution of Pearson’s correlation coefficients between two acrossCells’ fold enrichment of chromatin states and TM-scores between
two acrossCells’ MDS-inferred 3D structures. TADKB provides acrossCells for 15 cell pairs from six human cell types (x labels)
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downloaded the gap table for hg19 from UCSC genome
Table Browser, compared the gaps of heterochromatins
and centromeres with the 2773 TADs from GM12878,
and found that (1) only 15 TADs (see Additional file 1:
Table S2 for details of the 15 TADs) are overlapped with
some heterochromatin or centromere regions; (2) only
three out of 15 TADs belong to the two structural clus-
ters (clusters 2 and 3 in Fig. 9) with depleted chromatin
state enrichment. Therefore, we think our observations
are not related to heterochromatins or centromeres.
Second, from Fig. 9 we can observe that most of the
TADs have positive gene densities, indicating that
most of the TADs do not belong to gene desert.
Therefore, we think our observations may not be re-
lated to gene desert neither.
We listed the chromosomes, coordinates, exponent

parameters, and radius of gyrations of the TADs in the
overlapping sets between (1) the chromatin-state clus-
ter number 2 and the structural cluster number 3
(Additional file 1: Table S3), (2) the chromatin-state
cluster number 12 and the structural cluster number
3 (Additional file 1: Table S4), and (3) the chromatin-state

cluster number 20 and the structural cluster number 3
(Additional file 1: Table S5). We gathered the coding-
genes existent in the TADs in these three sets and run a
GO enrichment test using AmiGO2 (http://amigo.geneon
tology.org/rte). The enriched GO terms in biological
process ontology (BPO), cellular component ontology
(CCO), and molecular function ontology (MFO) are also
listed in the caption of corresponding Additional file 1.
TADKB defines the overlapping/common TADs be-

tween chromatin-state and structural clusters as a fam-
ily. In this way, both structural and chromatin-state
features of TADs are considered when grouping TADs
into families. Each family comes with a score assigned to
that specific family. For the families constructed based
on chromatin states, the score is the percentage of posi-
tive values in fold enrichment of each chromatin state
(log2). Notice that a smaller score (e.g., < 0.5) indicates
that on average the corresponding chromatin-state clus-
ter/family is depleted of chromatin states. An example of
the details of one family is shown in Fig. 10. We next
calculated the average Hi-C heat map for each family.
Since the sizes of TADs (number of bins) in each family

Fig. 12 The acrossCells browsing page of TADKB listing all the acrossCells between two cell types. In this example, the acrossCells between human
GM12878 and human HMEC are listed
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vary, we cannot directly calculate the average Hi-C
matrix for a family. Therefore, for each TAD we ex-
tracted a 30 × 30 Hi-C submatrix from the large matrix
of the whole chromosome by evenly extending the sizes
of smaller TADs (< 30 bins) and evenly reducing the
sizes of bigger TADs (> 30 bins). After that, all TADs’
Hi-C matrices were with the same sizes (30 × 30) and we
then calculated the average Hi-C heatmaps. The average
heatmap (log2 scale) can be found under Table of family
members on the Family webpage. An example of the
average heatmaps of three families can be found in
Additional file 1: Figure S1, which shows that they
have different patterns in terms of their average Hi-C
contact matrices.

acrossCells component
We defined acrossCells as the set of two TADs from
the same species that are in different cell lines but
exist in the same chromosome and with the same co-
ordinates (start and end positions in the chromo-
some). We provided acrossCells of 15 cell-pairs
among the six cell types in human with available
chromatin-state annotations. For each pair of across-
Cells, we computed the Pearson’s correlation coeffi-
cient between their fold enrichment of 25 chromatin
states and the TM-score between their MDS-inferred
reconstructed 3D structures. The distribution of these

two similarity measures can be found in Fig. 11,
which shows that the acrossCells found in HMEC
and NHEK have very similar enrichment pattern of
chromatin states, and acrossCells always have very
high TM-scores. An example of the TADKB webpage
showing the acrossCells between GM12878 and HMEC
can be found in Fig. 12. Users can also browse the two dy-
namic Hi-C heatmaps side by side for TAD pairs in
acrossCells by clicking the chromosome column in the
selected acrossCells TADs table. An example figure
can be found in Additional file 1: Figure S2.

TAD search component
A user can submit gene (protein coding gene or
lncRNA) names, IDs, or query DNA sequences; and
TADKB will search against in-house sequence sets
and provide matched genes and their associated
TADs. Figure 13 shows the web page of searching. If
there are hits found, TADKB will display the TADs
that contains the hit sequences as shown in Fig. 14.
A user can then further click one of the TADs and
then browse detailed information of it.

Downloading component
The download component allows users to download 90
TAD annotation files as described in Additional file 1:

Fig. 13 The searching page of TADKB that allows a user to input a query DNA sequence to search against human and mouse genomes
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Table S1 and 72 heatmaps about the overlapping TAD
analysis between chromatin-state and structural clusters.

Conclusion
TADKB, a database for topologically associating do-
mains, has been built that integrates the 2D and 3D
structures of TAD, 3D structure of chromosome, anno-
tations of coding genes and lncRNAs, loops or peaks,
and family classification of TADs. TADKB allows users
to view the genomic locations of coding gene, lncRNAs,
and loops on the 3D structure of TAD. It also integrates
three major lncRNA databases so that the different IDs
from different lncRNA databases can be unified. The
TAD families in TADKB are defined as the overlapping
TADs found in chromatin-state and structural clusters.
We also found that most of the TADs in depleted
chromatin-state clusters also exist in one or two struc-
tural clusters; and these TADs mostly have smaller expo-
nent parameter and larger radius of gyration. TADKB
provides a convenient searching function so that based
on a query DNA sequence the TADs that contains the
hits of the query sequence will be outputted. Based on
the other TADs within the same family of the hit
TAD(s), more annotations may be provided for the
query sequence. The role that lncRNA plays in forming
up chromosome 3D structures is not yet clear or

determined. However, lncRNAs have been eventually
found to be playing an important role in either assisting
or regulating many important DNA functions although
lncRNAs had been originally considered not functioning
at all in the genome. Therefore, the annotations of
lncRNAs are also integrated into TADKB.

Additional file

Additional file 1: Figure S1. The 30 × 30 average Hi-C contact matrices
calculated from all members in a TAD family. The family is from GM12878
with 20 predefined chromatin-state clusters and five predefined structural
clusters. Figure S2. An example of two Hi-C heat maps for TAD pairs in
acrossCells. Table S1. Number of TADs detected by three different
domain-caller methods at the resolutions of 50 kb and 10 kb for Hi-C,
HiChIP, and SPRITE data. Table S2. The details of the 15 TADs overlapped
with heterochromatins or centromeres. Table S3. The TADs are from the
overlapping between the second chromatin-state cluster and the third
structural cluster in Fig. 8. The genes from the following TADs are enriched
for GO terms: GO:0044278 ‘cell wall disruption in other organism’,
GO:1905874 ‘regulation of postsynaptic density organization’, GO:1905606
‘regulation of presynapse assembly’, and GO:1905606 ‘regulation of presynapse
assembly’ from BPO; GO:0016342 ‘catenin complex’, GO:0099061 ‘integral
component of postsynaptic density membrane’, and GO:0005913 ‘cell-cell
adherens junction’ from CCO; GO:0005004 ‘GPI-linked ephrin receptor activity’,
GO:0005003 ‘ephrin receptor activity’, and GO:0030594 ‘neurotransmitter
receptor activity’ from MFO. The overrepresentation test was generated
with PANTHER. Table S4. The TADs are from the overlapping between the
twelfth chromatin-state cluster and the third structural cluster in Fig. 8. The
genes from the following TADs are enriched for GO terms: GO:0050911

Fig. 14 The result page from the searching function of TADKB showing all the TADs that contains the query sequence. A user can further click
any of the hit TADs and view more information about it
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‘detection of chemical stimulus involved in sensory perception of smell’,
GO:0050907 ‘detection of chemical stimulus involved in sensory perception’,
and GO:0007608 ‘sensory perception of smell’ from BPO; GO:0005886
‘plasma membrane’ and GO:0016021 ‘integral component of membrane’
from CCO; and GO:0005549 ‘odorant binding’, GO:0004984 ‘olfactory receptor
activity’, and GO:0004930 ‘G protein-coupled receptor activity’ from MFO. The
overrepresentation test was generated with PANTHER. (PDF 332 kb)

Abbreviations
2D: Two dimensional; 3D: Three dimensional; lncRNA: Long non-coding RNA;
TAD: Topologically associating domain

Acknowledgements
Not applicable.

Funding
Research reported in this publication was supported by the National Institute
of General Medical Sciences of the National Institutes of Health under Award
Number R15GM120650 to ZW and start-up funding from the University of
Miami to ZW. The content is solely the responsibility of the authors and does
not necessarily represent the official views of the National Institutes of
Health or the University of Miami.

Availability of data and materials
TADKB can be freely accessed at http://dna.cs.miami.edu/TADKB/.

Authors’ contributions
TL generated most of the knowledge in the website and designed and built
the website. TL acquired most of the data, analyzed and interpreted the
data, and generated the figures in the manuscript. JP participated in the
design and building of the database at the early stage of development. CZ
acquired the data related to protein functions, conducted functional analysis
of TADs, and wrote related parts of the manuscript. HZ acquired the single-cell
Hi-C data, generated the three-dimensional structures of chromosomes based
on single-cell Hi-C data, and wrote related part of the manuscript. TL and ZW
drafted the manuscript. NW, ZS, and YM provided scientific advices and
participated in the design of the database. All authors edited the manuscript.
ZW conceived and advised the research. All authors have read and approved the
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science, University of Miami, 1365 Memorial Drive,
Coral Gables, FL 33124-4245, USA. 2School of Computing Sciences and
Computer Engineering, University of Southern Mississippi, 118 College Drive,
Hattiesburg, MS 39406, USA. 3Department of Computer Science, New Jersey
City University, 2039 Kennedy Blvd, Jersey City, NJ 07305, USA. 4Department
of Electrical and Computer Engineering, California Baptist University, 3739
Adams Street, Riverside, CA 92504, USA. 5Department of Pharmacology and
Toxicology, University of Mississippi Medical Center, 2500 N State St, Jackson,
MS 39216, USA.

Received: 11 September 2018 Accepted: 21 February 2019

References
1. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B.

Topological domains in mammalian genomes identified by analysis of
chromatin interactions. Nature. 2012;485(7398):376–80.

2. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT,
Sanborn AL, Machol I, Omer AD, Lander ES. A 3D map of the human
genome at kilobase resolution reveals principles of chromatin looping.
Cell. 2014;159(7):1665–80.

3. Dixon JR, Gorkin DU, Ren B. Chromatin domains: the unit of chromosome
organization. Mol Cell. 2016;62(5):668–80.

4. Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, Brouwer RW, van de
Corput MP, van de Werken HJ, Knoch TA, van IJcken WF. Cohesin and CTCF
differentially affect chromatin architecture and gene expression in human
cells. Proc Natl Acad Sci. 2014;111(3):996–1001.

5. Rudan MV, Barrington C, Henderson S, Ernst C, Odom DT, Tanay A, Hadjur S.
Comparative hi-C reveals that CTCF underlies evolution of chromosomal
domain architecture. Cell Rep. 2015;10(8):1297–309.

6. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M,
Parrinello H, Tanay A, Cavalli G. Three-dimensional folding and functional
organization principles of the Drosophila genome. Cell. 2012;148(3):458–72.

7. Chen Y, Wang Y, Xuan Z, Chen M, Zhang MQ. De novo deciphering three-
dimensional chromatin interaction and topological domains by wavelet
transformation of epigenetic profiles. Nucleic Acids Res. 2016;44(11):e106.

8. Filippova D, Patro R, Duggal G, Kingsford C. Identification of alternative
topological domains in chromatin. Algorithms Mol Biol. 2014;9(1):14.

9. Lévy-Leduc C, Delattre M, Mary-Huard T, Robin S. Two-dimensional
segmentation for analyzing hi-C data. Bioinformatics. 2014;30(17):i386–92.

10. Libbrecht MW, Ay F, Hoffman MM, Gilbert DM, Bilmes JA, Noble WS. Joint
annotation of chromatin state and chromatin conformation reveals
relationships among domain types and identifies domains of cell-type-
specific expression. Genome Res. 2015;25(4):544–57.

11. Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, Bell JS,
Ong C-T, Hookway TA, Guo C, Sun Y. Architectural protein subclasses shape
3D organization of genomes during lineage commitment. Cell. 2013;153(6):
1281–95.

12. Shin H, Shi Y, Dai C, Tjong H, Gong K, Alber F, Zhou XJ. TopDom: an
efficient and deterministic method for identifying topological domains
in genomes. Nucleic Acids Res. 2015;44(7):e70.

13. Weinreb C, Raphael BJ. Identification of hierarchical chromatin domains.
Bioinformatics. 2015;32(11):1601–9.

14. Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T,
Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO. Comprehensive
mapping of long-range interactions reveals folding principles of the
human genome. Science. 2009;326(5950):289–93.

15. Javierre BM, Burren OS, Wilder SP, Kreuzhuber R, Hill SM, Sewitz S, Cairns J,
Wingett SW, Várnai C, Thiecke MJ. Lineage-specific genome architecture
links enhancers and non-coding disease variants to target gene promoters.
Cell. 2016;167(5):1369–84 e1319.

16. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure
J, Fields S, Blau CA, Noble WS. A three-dimensional model of the yeast
genome. Nature. 2010;465(7296):363–7.

17. Zhang Z, Li G, Toh K-C, Sung W-K. 3D chromosome modeling with semi-
definite programming and hi-C data. J Comput Biol. 2013;20(11):831–46.

18. Trieu T, Cheng J. Large-scale reconstruction of 3D structures of human
chromosomes from chromosomal contact data. Nucleic Acids Res. 2014;
42(7):e52.

19. Varoquaux N, Ay F, Noble WS, Vert J-P. A statistical approach for inferring
the 3D structure of the genome. Bioinformatics. 2014;30(12):i26–33.

20. Liu T, Wang Z. Reconstructing high-resolution chromosome three-dimensional
structures by hi-C complex networks. BMC Bioinformatics. 2018;19(Suppl 17):
496.

21. Kruskal JB. Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika. 1964;29(1):1–27.

22. Lvd M, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;
9(Nov):2579–605.

23. Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ, Disteche CM, Noble
WS, Duan Z, Shendure J. Massively multiplex single-cell hi-C. Nat Methods.
2017;14(3):263–6.

Liu et al. BMC Genomics          (2019) 20:217 Page 16 of 17

http://dna.cs.miami.edu/TADKB/


24. Liu T, Wang Z. scHiCNorm: a software package to eliminate systematic biases
in single-cell hi-C data. Bioinformatics. 2018;34(6):1046–7.

25. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A,
Lagarde J, Lin W, Schlesinger F. Landscape of transcription in human cells.
Nature. 2012;489(7414):101–8.

26. Monnier P, Martinet C, Pontis J, Stancheva I, Ait-Si-Ali S, Dandolo L. H19
lncRNA controls gene expression of the imprinted gene network by
recruiting MBD1. Proc Natl Acad Sci. 2013;110(51):20693–8.

27. Schuldt A. Gene expression: an ncRNA relocation package. Nat Rev Mol Cell
Biol. 2011;13(1):1–1.

28. Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;
338(6113):1435–9.

29. Morlando M, Ballarino M, Fatica A, Bozzoni I. The role of long noncoding
RNAs in the epigenetic control of gene expression. ChemMedChem. 2014;
9(3):505–10.

30. Maia BM, Rocha RM, Calin GA. Clinical significance of the interaction
between non-coding RNAs and the epigenetics machinery. Epigenetics.
2014;9(1):75–80.

31. Magistri M, Faghihi MA, St Laurent G III, Wahlestedt C. Regulation of
chromatin structure by long noncoding RNAs: focus on natural antisense
transcripts. Trends Genet. 2012;28(8):389–96.

32. Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C,
Kadri S, Xing J, Goren A, Lander ES. The Xist lncRNA exploits three-
dimensional genome architecture to spread across the X chromosome.
Science. 2013;341(6147):1237973.

33. Zhao Y, Li H, Fang S, Kang Y, Hao Y, Li Z, Bu D, Sun N, Zhang MQ, Chen R.
NONCODE 2016: an informative and valuable data source of long non-coding
RNAs. Nucleic Acids Res. 2015. https://doi.org/10.1093/nar/gkv1252.

34. Volders P-J, Verheggen K, Menschaert G, Vandepoele K, Martens L, Vandesompele
J, Mestdagh P. An update on LNCipedia: a database for annotated human
lncRNA sequences. Nucleic Acids Res. 2015;43(D1):D174–80.

35. Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B, Clark MB, Gloss BS,
Dinger ME. lncRNAdb v2.0: expanding the reference database for functional
long noncoding RNAs. Nucleic Acids Res. 2015;43(Database issue):D168–73.

36. Bonev B, Cohen NM, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, Xu X,
Lv X, Hugnot J-P, Tanay A. Multiscale 3D genome rewiring during mouse
neural development. Cell. 2017;171(3):557–72 e524.

37. Yu W, He B, Tan K. Identifying topologically associating domains and
subdomains by Gaussian mixture model and proportion test. Nat
Commun. 2017;8(1):535.

38. Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ, Uzawa S,
Dekker J, Meyer BJ. Condensin-driven remodelling of X chromosome
topology during dosage compensation. Nature. 2015;523(7559):240.

39. Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, Chang
HY. HiChIP: efficient and sensitive analysis of protein-directed genome
architecture. Nat Methods. 2016;13(11):919.

40. Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E, Lai MM,
Shishkin AA, Bhat P, Takei Y et al. Higher-Order Inter-chromosomal Hubs
Shape 3D Genome Organization in the Nucleus. Cell. 2018;174(3):744–57
e724.

41. Knight PA, Ruiz D. A fast algorithm for matrix balancing. IMA J Numer Anal.
2013;33(3):1029–47.

42. Li W, Gong K, Li Q, Alber F, Zhou XJ. Hi-corrector: a fast, scalable and
memory-efficient package for normalizing large-scale hi-C data. Bioinformatics.
2015;31(6):960–2.

43. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel
M, Prettenhofer P, Weiss R, Dubourg V. Scikit-learn: machine learning in
python. J Mach Learn Res. 2011;12(Oct):2825–30.

44. Kabsch W. A discussion of the solution for the best rotation to relate two
sets of vectors. Acta Crystallogr Sect A: Cryst Phys, Diffr, Theor Gen
Crystallogr. 1978;34(5):827–8.

45. Liu T, Wang Z: Measuring the three-dimensional structural properties of
topologically associating domains. In: 2018 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM): 2018: IEEE; 2018:
21–28.

46. Tan L, Xing D, Chang C-H, Li H, Xie XS. Three-dimensional genome structures
of single diploid human cells. Science. 2018;361(6405):924–8.

47. Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm
based on the TM-score. Nucleic Acids Res. 2005;33(7):2302–9.

48. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and
characterization. Nat Methods. 2012;9(3):215.

49. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A,
Kheradpour P, Zhang Z, Wang J, Ziller MJ. Integrative analysis of 111
reference human epigenomes. Nature. 2015;518(7539):317.

50. Shi J, Malik J. Normalized cuts and image segmentation. IEEE T Pattern Anal.
2000;22(8):888–905.

51. Frey BJ, Dueck D. Clustering by passing messages between data points. Science.
2007;315(5814):972–6.

52. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins
C, Clapham P, Fitzgerald S, Gil L. Ensembl 2016. Nucleic Acids Res. 2015;
44(D1):D710–6.

53. Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H,
Diekhans M, Furey TS, Harte RA, Hsu F. The UCSC genome browser
database: update 2006. Nucleic Acids Res. 2006;34(suppl 1):D590–8.

54. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D.
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res. 1997;25(17):3389–402.

55. Robinson JT, Turner D, Durand NC, Thorvaldsdóttir H, Mesirov JP, Aiden EL.
Juicebox. js provides a cloud-based visualization system for Hi-C data. Cell
Syst. 2018;6(2):256–8 e251.

56. Park C, Yu N, Choi I, Kim W, Lee S. lncRNAtor: a comprehensive resource for
functional investigation of long noncoding RNAs. Bioinformatics. 2014.
https://doi.org/10.1093/bioinformatics/btu325.

Liu et al. BMC Genomics          (2019) 20:217 Page 17 of 17

https://doi.org/10.1093/nar/gkv1252
https://doi.org/10.1093/bioinformatics/btu325

	Abstract
	Background
	Results
	Conclusion

	Background
	Construction and content
	Utility and discussion
	Overview
	Browsing component
	TAD family component
	acrossCells component
	TAD search component
	Downloading component

	Conclusion
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

