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Abstract

Background: The interferon-induced transmembrane (IFITM) protein family comprises a class of restriction factors
widely characterised in humans for their potent antiviral activity. Their biological activity is well documented in
several animal species, but their genetic variation and biological mechanism is less well understood, particularly in
avian species.

Results: Here we report the complete sequence of the domestic chicken Gallus gallus IFITM locus from a wide
variety of chicken breeds to examine the detailed pattern of genetic variation of the locus on chromosome 5,
including the flanking genes ATHLT and B4GALNT4. We have generated chIFITM sequences from commercial breeds
(supermarket-derived chicken breasts), indigenous chickens from Nigeria (Nsukka) and Ethiopia, European breeds
and inbred chicken lines from the Pirbright Institute, totalling of 206 chickens. Through mapping of genetic variants
to the latest chIFITM consensus sequence our data reveal that the chIFITM locus does not show structural variation
in the locus across the populations analysed, despite spanning diverse breeds from different geographic locations.
However, single nucleotide variants (SNVs) in functionally important regions of the proteins within certain groups of
chickens were detected, in particular the European breeds and indigenous birds from Ethiopia and Nigeria. In
addition, we also found that two out of four SNVs located in the chIFITM1 (Ser36 and Arg77) and chIFITM3 (Val103)
proteins were simultaneously under positive selection.

Conclusions: Together these data suggest that IFITM genetic variation may contribute to the capacities of different
chicken populations to resist virus infection.
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Background

The chicken IFITM (chIFITM) locus is clustered on
chromosome 5 and contains five genes, of which three are
known to be interferon stimulated genes (ISGs) with po-
tent antiviral activity, namely chIFITM1, 2, 3 [1, 2]. These
proteins restrict viral infections by blocking fusion of the
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viral and host membranes, thereby interfering with viral
entry and replication. It is clear from in vitro studies that
genetic variation within IFITM gene sequences can affect
the proteins’ activity, their localization and thus the ability
to fully restrict viral infections. Indeed, in human IFITM3
(hIFITM3), substitutions at an amino acid residue known
to be the core site for binding of the E3 ligase NEDD4 can
lead to higher levels of IFITM3 protein abundance by pre-
venting IFITM3 degradation [3]. It was also shown that a
synonymous single nucleotide polymorphism (SNP),
rs12252-C and rs34481144, in hIFITM3 gene are associ-
ated with increased risk of severe influenza infections [4,
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5]. This suggests that as with other ISGs, genetic variation
may be linked to within and between species-specific dif-
ferences in susceptibility to infection or its severity. Al-
though different susceptibility to infection is known in
different avian species linked to IFITM variation [2], a sys-
tematic IFITM locus survey of genetic variation in differ-
ent chicken lines and breeds has not been undertaken,
due in part to the lack of a reliable chicken genome se-
quence of this locus.

To date, the study of IFITM genetic variation has only
been undertaken on a few chicken samples of different ori-
gins and no comprehensive breed analysis has been
conducted. It is known that chickens within inbred lines
display nearly complete homozygosity and thus, only com-
parison between different inbred lines or with other breeds
can shed light on their underlying genetic variation. Eluci-
dation of the chIFITM locus genetic variation can be
achieved by comparing different chicken inbred lines that
are being used for laboratory screening and kept under
SPF (specific-pathogen-free) conditions, commercial chick-
ens and poultry populations kept in geographically-isolated
villages in different areas of the world. These do not only
represent distinct populations of chickens but also reflect
different indigenous pathogen exposures and husbandry
considerations such as infection control measures and hu-
man selection for productivity and/or likeability traits. We
hypothesize that genetic variation across diverse groups of
birds will reveal genetic variants with enhanced adaptive
antiviral functions.

We have recently showed that targeted pull down of the
chIFITM locus can successfully and accurately characterize
this locus without the need of performing whole genome
sequencing [6]. Here we have used SureSelect probes to
pull down the chIFITM locus in a total of 206 chickens, we
have assembled the locus using as a reference a Red Jungle
Fowl (Gallus gallus) we previously sequenced [6] and we
performed genetic variation analysis using a modified ver-
sion of the GATK Best Practice pipeline [7]. Our results
catalogue the first comprehensive list of SNVs and INDELSs
for the chIFITM locus as well as within and between
groups of birds variation.

Methods
Sample preparation and analysis
A total of 206 chickens were used in this study. We have
used SureSelect probes to pull down the chIFITM locus
from: 37 European breeds from the Czech Republic,
Germany and Slovakia (birds from small farms and
hobby breeders), 63 inbred lines (Pirbright Institute), 26
commercial birds (from 8 UK-based supermarkets) and
80 indigenous birds from Nigeria and Ethiopia (Add-
itional file 1: Tables S1 to S4).

DNA was extracted using the Qiagen DNA or Tissue ex-
traction kit according to the manufacturer’s instructions.
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Up to 5 pg of the extracted DNA were sent to the Well-
come Sanger Institute sequencing facility where the sam-
ples were sequenced using Illumina MiSeq sequencers,
following targeted SureSelect pull-down of the locus of
interest according to the manufacturer’s protocol [6, 8].

Commercial chickens refer to chicken breasts pur-
chased from supermarkets in UK, namely Cambridge,
Cambourne and Saffron Walden. Three groups were
analysed: standard, free range and organic chicken
breast (where available) (Additional file 1: Table S3).
European chicken samples (muscle, blood or feathers)
were provided by the Genetic bank of the Department
of Zoology, Charles University, Prague, Czech Republic.
The samples were collected from free-ranging and
yarding fowl kept by small farmers and hobby breeders
from the Czech Republic, Germany and Slovakia, with
one sample per breed for a total number of 37 breeds
(Additional file 1: Table S2). The lines belonging to the
Pirbright Institute are inbred chickens that have been
housed in sterile conditions only for laboratory use
(Additional file 1: Table S1). The Nigerian and Ethiop-
ian samples are indigenous chickens from small villages
and grown in captivity [9]. The Nigerian indigenous
chickens are left to roam in the village, feed from pick-
ing earthworms, insects, herbage, household refuse,
crop residues, seeds from the ground or in farms and
return in the evening to their enclosures. These
chickens have never been vaccinated nor treated with
antibiotics. Five strains were collected from Nsukka,
Nigeria. Each strain represents a genotype. The Ethiop-
ian chickens are native local birds which belong to
smallholder farmers from several villages in Addis
Ababa, except for Dz-16 and Dz-18 chickens (Add-
itional file 1: Table S4). These two are an indigenous
ecotype under a breed improvement program of an
agricultural research station performing selection for
improved egg and meat yield. None of the Ethiopian
chickens have been vaccinated except for the two chick-
ens under selection and similarly all the birds have been
fed by free scavenging and occasional left over grain
and food supplementation (maize, wheat, rice, teff and
sorghum and anything like sands, worms etc.) except
for Dz-16 and Dz-18.

Following MiSeq sequencing, FASTQ files were first ana-
lysed for low quality reads with FastQC and assembled
using as a reference the PacBio consensus reference se-
quence we previously generated [6]. Mapping and sequence
analysis were performed as described in ref. [6]. For variant
analysis, the GATK pipeline was used (Genome Analysis
Toolkit). In absence of any reliable SNPs/INDELs data-
bases, the analysis was performed as suggested in the Best
Practice by the bootstrapping method ([7] GATK Toolkit
v3.7). The final list of variants was generated as a VCF file
(Variant Call Format) which we were able to visualize using
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IGV (Integrative genome Visualization tool) from the Broad
Institute. SNP densities were calculated using SNiPlay [10].

Adaptation of the GATK pipeline for analysis of the
chicken samples

At the point of this study the NCBI recorded 133 SNP
batches submitted since 2002 [11]. These were gener-
ated using Samtools and were directed to specific loci,
exome or promoter regions; in addition, most of them
are mapped to the older version of the chicken genome.
None of these batches focused on the IFITM genes nor
has analysed several chicken breeds, rather one or two
types at the time or per study. A complete list of SNPs
and INDELs for each of the chicken chromosomes is
available from the NCBI website [12].

The GATK pipeline, a well-established protocol for
variant analysis, mainly of human samples, was used
for our analysis. The GATK pipeline has been success-
fully adopted for variant discovery on other species,
with small modifications to overcome a lack of a well
curated SNPs/INDELs databases. For this study, we
used the bootstrapping method as suggested by the
Best Practice protocol and analysed separately the 37
European, 26 commercial, 63 inbred lines and 80 indi-
genous chickens. A database of all SNPs/INDELs rela-
tive to the reference genome was generated and used
to recalibrate the variant calling from the samples. Re-
calibration graphs were generated for each of the 206
samples with one round of recalibration performed for
each sample. The final, filtered SNPs and INDELs were
annotated and studied further. Given the number of
samples analysed, we refer to single nucleotides vari-
ants (SNVs) rather than single nucleotide polymor-
phisms (SNPs) in our results.

Positive selection acting on the chIFITM locus

Detection of positive selection on the chIFITM gene se-
quences was performed separately using the methods FEL
(Fixed Effects Likelihood) [13], FUBAR (Fast, Uncon-
strained Bayesian AppRoximation) [14] and MEME (Mixed
Effects Model of Evolution) [15], all accessible from the
Datamonkey Adaptive Evolution server [16, 17]. FUBAR
was used under the assumption that selection at the chl-
FITM sites is pervasive throughout the entire phylogeny,
whereas MEME assumes selection happened episodically in
only subset or subsets of branches. This means MEME is
likely to be the more sensitive method and can detect epi-
sodic selections that FUBAR misses. FEL is similar to
FUBAR except that it was developed to cater to smaller
data sets. As we cannot ascertain which assumption is
correct, we opted for a consensus approach to interpret
the results. Likewise, due to a lack of prior knowledge, we
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accepted the respective suggested significance levels (cut--
off values) for the purpose of discussing the results.

Structural analysis of the chIFITM proteins

A predicted structure of chIFITM3 was built using the
MODELLER package [18]. Secondary structure was
predicted by PSIPRED (PSI-blast based secondary struc-
ture PREDiction) [19], and the topology built using the
previously described human IFITM3 structure [20] as a
template. The model of chIFITM3 (43-137) was built
after initially removing the disordered N-terminus. The
resulting structure was energy minimized and embedded
in an explicit DOPC (1,2-Dioleoyl-sn-glycero-3-phospho-
choline) membrane. We conducted molecular dynamics
as a refinement step, maintaining the secondary structure
elements by applying a harmonic restrain on the alpha-
helical segments of the model, as described previously for
other systems [21]. The AMBER99SB-ILDN force field
(from the Assisted Model Building with Energy Refine-
ment” (AMBER) package) [22] was employed, with the
Tip3p water model [23]. The simulation was run for 50
ns, using the GROMACS package (GROningen MA-
chine for Chemical Simulations) [13] under the NPT
(isothermal—isobaric) ensemble at 300K and 1 bar,
with temperature coupled under the V-rescale method
[24] (every 0.1 ps) and pressure coupled with the semi-
isotropic Berendsen method [13] (every 1ps). The
resulting chIFITM3 model was used as a template for
chIFITM1 and chIFITM2, which were threaded on the
chIFITM3 structure by aligning the secondary struc-
ture features. The disordered N-termini were added a
posteriori as a random coil for illustration purposes.

Ethics approval and consent to participate

Ethiopian samples were collected as part of Mr. Abe-
babay Kebede PhD study, blood samples procedures
were approved by and followed International Live-
stock Research IAUC guidelines (Reference Number
IACUC-RC2017-21). Samples were dispatched in the
UK following International Guidelines (Nagoya Proto-
col) and the approval of the Ethiopian Institute of
Biodiversity. Czech Republic samples were collected
under the approval of the Czech Ministry of Educa-
tion, Youth and Sports (permits no. 34712/2010-30
and 13,882/2011-30). Nigerian birds handling and ex-
periments were conducted following the guidelines
stipulated by University of Nigeria Research Ethics
Committee on animal handling and use. Pirbright in-
bred samples were collected from birds housed at
The Pirbright Institute, as authorised under its Home
Office Establishment Licence and in accordance with
the Code of Practice for the Housing and Care of An-
imals Bred, Supplied or Used for Scientific Purposes.
Birds were euthanized following neck dislocation. The
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method results in immediate death and is recognized
as an approved method under the UK Home Office
legislation, Animals (Scientific Procedures) Act 1986.

Results

Distribution of SNVs and INDELs across the 40 kb red
jungle fowl reference locus

Initial analysis across the 40kb region encompassing the
chIFITM locus (including the flanking genes ATHLI and
B4GALNT4) showed the presence of 793, 630, 431 and
860 SNVs for the European, commercial, Pirbright inbred
and indigenous chicken samples, respectively, together
with 89, 69, 56 and 128 INDELSs relative to the reference
genome, respectively across the coding and non-coding
regions of the locus (Fig. 1). All SN'Vs are reported in the
Variant call file (VCF) Accession number ERP113091. The
total number of variants were visualized on IGV by
uploading the 40kb consensus reference sequence we
have previously characterized and the VCF files generated
by GATK, for each set of the chicken groups. Figure 1
shows the overall SNVs/INDELs distribution expressed as
allele fraction for each single locus. We analysed the over-
all distribution across the 40 kb region in 5 kb intervals as
well as the distribution of the SNVs which were common
between the four groups of chickens analysed (Fig. 2a-b).
In addition to allele frequency, we were able to visualize
the genotype within each group (Additional file 1: Figure
S1A-D) to investigate the homo-or heterozygosity levels
across the samples. This reveals there are a larger number
of genetic variants observed in the commercial and village
chickens, while the least variation is observed, as expected,
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in the Pirbright lines. Within this group, most of the SN'Vs
are homozygous for the alternate allele with very few het-
erozygotes (these samples are colour coded in Additional
file 1: Figure S1A-D). Among the groups analysed, a few
samples showed limited variation from the reference,
namely one commercial line, an Aldi free range chicken
sample (Additional file 1: Figure S1B), one of each bio-
logical replicates from the Pirbright chicken lines: N, C, P
and 6 (Additional file 1: Figure S1C), and nine chicken
samples from the Ethiopian and Nigerian group, namely
Ibile/wild type, Opipi/featherless, Tssg-07h, Tssm-68c,
Amam-4 h-115, Amam-5c¢-147 and two Onigbaogbe/Rose
chickens (Additional file 1: Figure S1D).

SNV distribution in the coding regions of the IFITM1, 2
and 3 genes

Next, we focused specifically on variant analysis of the
IFITM genes concentrating on INDELs and SNVs, an-
notating them within each of the IFITMs genes (Table 1,
Fig. 3). We analysed separately the four chIFITMs
genes, focusing only on the coding regions (two exons/
IFITM) of the three antiviral cZIFITM1I,2,3. Overall,
there were INDELs within the exons for 3 indigenous
chicken samples (3 INDELSs) in the chIFITM2 and chi-
FITM3 genes, and a total number of 10, 15, 7 and 18
SNVs distributed over the European, commercial, Pirb-
right and indigenous chicken samples, respectively in
their IFITM genes (Tables 1 and 2). We calculated the
number of SNVs per 100 bp across each of the genes
(exons and intron), indicating that chIFITM2 had the
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Fig. 1 SNVs and INDELS frequency across the 40 kb region. The figure shows the overall distribution of the SNVs and INDELS across the 40 kb
reference region. Blue and red bars length indicate the number of samples showing that particular SNVs or INDEL for that position (allele fraction for a
single locus). Blue: reference allele, Red: alternate allele. Shaded blue or red indicate filtered entries for that locus in a fraction of the samples. Although
many SNVs and INDELs occur cross the chlFITM genes, most of these are found in the non-coding regions (genes coding blocks shown). The total
number of SNVs found within each group and the total number of samples analyzed per group are indicated (right and left). The PacBio consensus
sequence was used as a reference (namely the 40 kb region encompassing the chIFITM locus, including the flanking genes)
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Table 1 List of the total number of SNVs and INDELs within
each of the IFITM genes

IFITM1

IFITM2 IFITM3 IFITM5  Total/group

SNVs
European 2 3 2 2 10
Commercial 1 10 2 1 15
Pirbright - 4 1 1 7
Indigenous - 10 2 - 18
INDELSs
European - - - - -
Commercial - - - - -
Pirbright - - - - -
Indigenous - 2 1 - 3

highest number of variants compared to chIFITMI, 3
and 5 (Fig. 3 and Table 1).

For chIFITM?2 there were a total of 12 SNVs among all
the groups of chickens of which 6 were new SNVs, not an-
notated in other studies of chicken variants. These were dif-
ferently distributed among the chicken groups (Table 2 and
Fig. 4): synonymous, R111R, A54A and S14S were found in
all the chicken groups with no particular preference for
chicken breed or homo/heterozygosity status; synonymous
G72G (new) was only observed in 3 of the 80 indigenous
chickens (Nigerian chickens Frizzle, Abolorun/Naked and
Ibile/Wild type); non-synonymous G72S (new) was found
only in 2 of the 26 commercial chickens (Morrison’s and
Tesco organic chicken) and 1 of the 80 indigenous
chicken (Nigerian chicken Onigbaogbe/Rose); codon
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71 of chIFITM2 had two SNVs: synonymous V71V
and non-synonymous V711, the latter being found in
2 of the 26 commercial chickens, namely commercial
Aldi and Morrisons chicken; while V71V was ob-
served in all the groups with no particular prefer-
ence for chickens or breeds. Synonymous F70F (new)
was present only in 2 of the 80 indigenous chickens
(Ethiopian chickens Amam-3 h-144 and Amam-10
h-108); synonymous F48F was observed only in one
of the Nigerian indigenous chicken group, namely
the Abolorun/rose group; non-synonymous K32R
(new) was found in 2 of the 26 commercial lines
(Sainsbury’s free range and Morrisons organic chicken)
and one Nigerian sample (Onigbaogbe/rose); synonymous
Y15Y (new) was found only in 2 of the 26 commercial
samples, namely Aldi and Morrisons; non-synonymous
M12V (new) was observed only in 2 of the 80 indigenous
samples, namely the Ethiopian chicken AMAM-3H-124
and AMAM-1H-031. chIFITM?2 also showed two INDELSs
at codons 23 and 31 respectively resulting in a frameshift
altering the length of exon 1 (Table 2 and Fig. 4). Because
of this, the conserved IM1 of chIFITM2 domain is altered
and thus it is likely that these INDELs would result in
non-functional proteins (Fig. 4). These INDELs were only
observed in 1 of the 80 indigenous chickens, Onigbaogbe/
Rose (Table 2).

chIFITM1I and 3 had the least number of variants, with
2 and 3 SNVs each, respectively. chIFITM1 had two
SNVs one in each exon, of which one is synonymous,
namely S56S (Table 2 and Fig. 4). S56S was a new SNV
within exon one within the IM1 domain. S56S it is

detected as a heterozygous SNV and only in 1 of the 37
European chicken samples, namely Plymouth rock. The
other SNV in c¢hIFITM]I, is the non-synonymous R77W,
which is heterozygous in 2 of the 37 European chickens
(Frizzle and Brahma) and in 10 of the 26 commercial
samples and with no particular preference among the
various chickens (Table 3 and Fig. 4). This SNV is found
in exon two, within the highly conserved CIL domain,
and could, therefore, be of functional relevance.

chIFITM3 had three SNVs (all three non-synonymous
one of which was a missense mutation), namely M119E,
V103I and C59STOP, with the first and last SN'Vs being
new (Table 3 and Fig. 4). The truncated non-sense sub-
stitution in chIFITM3 is expected to be non-functional,
missing the full-length exon 2. This mutation was ob-
served only 1 of the 37 European chickens, Maranas
where it is heterozygous for the alternate allele. Further,
M119E was observed only 1 of the 80 indigenous chick-
ens, Asa/Frizzle. On the other hand, V103I was found in
all the chicken groups analysed (both at homo- and het-
erozygosity) in most of the samples, with no particular
preference for chicken groups. We also identified an
INDEL in exon 1 of ¢chIFITM3, a 1 bp insertion which al-
ters the length of exon 1, effectively elongating exon 1
the coding region but prematurely ending the protein,
thus generating a putative non-functional chIFITM3
(Fig. 4). Interestingly, this INDEL also disrupts the double
cysteine residues (CC motif), which is well conserved
across the IFITM proteins of several species (Figs. 4 and
5). This insertion was observed in only 1 of the 80 indi-
genous samples, namely Ko Shamo Bantam.
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Table 2 Annotation of each SNV and INDEL across the chIFITM1,2,3 genes

“Genomic location  Reference/Variant ~ European  Commercial ~ Pirbright  Indigenous  Amino acid change (5'-3) Codon  Exon
3-5"(5-3)
IFITM1  SNVs
13,141 G/A (C/T) V Y X X CGGtoTGG ArgtoTrp 77 2
14,105 C/T (G/A) N, X X X TCG to TCA Ser to Ser 56 1
IFITM2 ~ SNVs
14,960 G/T (C/A) V v v V CGG o AGG  Argto Arg 111 2
15,078 G/A (C/T) X X X N, GGC to GGT  Gly to Gly 72 2
15,080 /T (G/A) V X v GGC to AGC ~ Gly to Ser 72 2
15,081 T/C (A/G) v v Vv v GTAto GTG  ValtoVal 71 2
15,083 T (G/A) X V X X GTAto ATA  Valto lle 71 2
15,084 G/A (C/T) X X N TICto TIT ~ PhetoPhe 70 2
16175 A/C (T/G) Vv v Vv v GCTto GCG  AlatoAla 54 1
16,193 G/A (C/T) X X X N TTICto TTT Phe to Phe 48 1
16,242 T/C (A/G) X N X N AAG to AGG  Lys to Arg 32 1
16,292 G/A (C/T) V X X TACto TAT  Tyrto Tyr 15 1
16,295 G/A (C/T) \J V \J N TCC to TCT Ser to Ser 14 1
16,303 T/C (A/G) X X X N ATGto GTG ~ Met to Val 12 1
INDELs
16,243-16,244 TG/T (CA/A) X X X N, Frameshift 31 1
16,269 A/ACC (T/GGT) X X X N Frameshift 23 1
[FITM3  SNVs
18814 T/C (A/G) N, X X X ATG to GAG  Met to Glu 119 2
18,862 T (G/A) v V v v GTCto ATC ~ Valto lle 103 2
19,572 G/A (C/T) X X X V TGCto TGA  Cysto STOP 59 1
INDELs
19,576-19,577 AC/A (GT/T) X X X N Frameshift 58 1

@ These locations refer to the position on the PacBio consensus reference sequence already published and submitted [5]

Positive selection analysis

Positive selection analysis of the chIFITM locus has been
done previously, however it was performed in the con-
text of the whole class Aves which included many other
avian species rather than only chickens. It is likely that
these results would overestimate selection if considered
from the perspective of the chicken lineage [2], in con-
trast to the analysis reported herein which looks to de-
tect intraspecific selection within the species Gallus
gallus. As expected, compared to Smith et al., our ana-
lyses yielded far fewer positively selected sites. Using the
default cut-off value, FUBAR reported the detection of 2
(chIFITM1-36 and chIFITM1-77) and 1 (chIFITM3-—
103) positively-selected sites in chIFITM1 and chl-
FITM3, respectively (Fig. 6 and Table 3). ChIFITM1-36
(codon 36) is a Serine in the reference genome and chl-
FITM1-77 (codon 77) is a Arginine in the reference
genome and chIFITM3-103 (codon 103) is an Valine in
the reference genome. MEME reported no significant
sites in all four chIFITM data sets, although the three

FUBAR-reported sites were near to (but did not surpass)
the default p-value cut-off for MEME (Additional file
1: Figure S2). We also investigated codons that are
under negative selection using FUBAR and found a
larger number of sites (Table 3). Positive selection de-
tection using the FEL algorithm vyielded relatively
more hits at p-value threshold of <0.1 than FUBAR
and MEME, but upon closer examination these hits
were assessed as most likely to be spurious and there-
fore not considered further excluded from Table 3
(data not shown).

Structural analysis of the chIFITM proteins

The structure of human IFITM3 has been studied and
well characterized by NMR [20]. In this study we built a
structural model for the avian form of IFITM3 using the
human structural information as a template. The mem-
brane topology of the protein was accurately reproduced,
with the structure featuring a single transmembrane
helix and two amphipathic helices that are adsorbed on
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Fig. 4 SNVs and INDELS localization across the chIFITM proteins. chIFITM proteins are comprised of two exons separated by one intron. SNVs and
INDELS locations from Table 3 are depicted in red (missense SNVs), green (silent SNVs) or in blue (INDELs) bars. An alternate structure is drawn for
chIFITM2 and 3 as a result of the frameshift caused by the respective INDELs. Greyed exons represent mutated proteins as a result of the
frameshift: in chIFITM2, the two frameshifts in exon 1 generate a novel protein which has lost the IM1 domain; in chIFITM3 the C59STOP
generates a shorter protein, with exon 2 completely missing. Aa =amino acid, IM1 =intramembrane domain 1. Bold blue SNVs regarded
to be deleterious for the protein as they would disrupt the overall structure (see structural data analysis for G72S and R77W)

the surface of the membrane. The N-terminal amino  suggests that they share the same topology, and they also
acids (1-45) are intrinsically unstructured, and thus present similar hydrophobicity patterns.

highly dynamic (Fig. 7). The surface charge of the pro- We were able to map the identified SN'Vs, and positively
tein (Fig. 8) further supports this topology. The hydro- and negatively selected codons onto our structural models
phobicity of the transmembrane helix is evident, with  of the proteins (Fig. 7c). In the case of chIFITM2, we found
the N-terminal amino acids (1-45) presenting the typical  that most SNVs are localized in the intracellular domains,
highly charged nature of disordered protein regions. The near the boundaries of secondary structure elements. In
helices resting on the surface of the membrane have the particular, Gly72 provides the N-terminal break of the
amphipathic pattern of hydrophobic residues pointing transmembrane helix, and the Ser alternative amino acid
towards the membrane and polar side-chains exposed to  may lead to a disruption of the overall topology. Further,
the aqueous solvent. Having an accurate model of the most negatively selected codons were in the intracellular
avian chIFITM3 allowed us to use it as a template to  domain implying its evolutionarily constrained functional
also construct models for chIFITM2 and chIFITM1 (Fig.  or structural significance. In the case of chIFITM1, the
7¢). Secondary structure prediction of all three proteins  positively selected Arg77 is also located at the N-terminal
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Table 3 Positive and negative selection of the chIFITM proteins by FUBAR and MEME

Codons under episodic positive/diversifying selection FUBAR Prob[a < &b] MEME p-value
chIFITM1-77 0.961 0.13
chIFITM1-36 0.936 0.16
chIFITM3-103 0.925 0.35
Codons under episodic negative/purifying selection FUBAR Prob[a > &b]

chlFITM1-7 0.958

chIFITM1-63 0.921

chIFITM1-95 0.910

chIFITM2-54 0.989

chIFITM2-112 0.988

chIFITM2-29 0.929

chIFITM2-14 0.928

chIFITM2-39 0.928

chIFITM3-136 0.929

chIFITM3-134 0.928

chIFITM3-114 0927

chIFITM3-78 0913

chIFITM5-58 0.990

chIFITM5-34 0.924

chIFITM5-99 0.905

Values with a threshold of 0.9 (FUBAR) or 0.1 (MEME) were considered

end of the transmembrane helix, on the intracellular surface
of the plasma membrane. Being at the bilayer interface, its
positively charged sidechains are likely to be involved in
protein-membrane contacts with negative phosphate lipid
head groups. The removal of that charge, with the
non-synonymous SNV A77T leading to a Ile, could
therefore lead to an altered membrane topology with
putative functional consequences (Fig. 7c). In contrast,
chIFITM3 had negatively selected amino acids and the
non-synonymous SNV M199E on the endosomal luminal
and cytoplasmic domains. The only non-synonymous and
positively selected SNV V103l in contrast is localized on
the transmembrane region for chIFITM3. However, no
key structural features would be evidently disrupted by
this mutation. The SNV for the C59STOP mutation, on
the other hand, would result in the removal of the whole
transmembrane domain and an inactive protein (Fig. 4).

Discussion

In this study, we have analysed the genetic variation in
the chicken IFITM locus by determining the DNA se-
quence of the 40kbp locus from 206 chickens, compar-
ing four different chicken groups: European, inbred,
commercial and indigenous. We provide an extensive
list of SN'Vs not previously known, mapped to an accur-
ate reference genome, allowing easy re-mapping to
other chicken genomes available on NCBI [12]. Our
analysis shows genetic variation not only between the

groups of geographically distant chickens, but also
within groups of related chickens, identifying genetic
diversity in this important anti-viral gene locus that
may affect the ability to restrict different avian viruses.

Based on our analysis, chIFITM2 appears to be the
most variable gene compared to chIFITMI1 and chi-
FITM3, although the total number of variants was gen-
erally small with 17 SNVs and 3 INDELs identified
across the 206 samples for chIFTMI-3 genes (exons
only) (Table 2, Fig. 3). We found a total of 12 SNVs in
chIFITM?2, 6 of which were new and two INDELs, both
new. Interestingly, 8 of the SNVs were synonymous/si-
lent substitutions, thus presumably not altering the func-
tion of the protein. However, two non-synonymous
SNVs in the CIL (Conserved Intracellular Loop) domain
and two at the N terminus, before the IM1 (Intra-Mem-
brane 1) domain (Figs. 4, 6 and Table 2) were found in
10 chickens (5 commercial and three indigenous), none
of which were homozygous. Of note the non-synonym-
ous SNVs at codon 32 of commercial and indigenous
chickens changes one of the lysine residues regarded to
be a conserved codon important for regulation of pro-
tein turnover via ubiquitination [25]. Both INDELs, re-
sult in frameshifts predicted to lead to truncated,
non-functional proteins and occurred as rare events in 2
indigenous chickens.

Similarly, ¢hIFITM1 showed a non-synonymous SNV
in the CIL domain (R77W), described as conserved by
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Fig. 5 Multiple sequence alignment of the chIFITM proteins showing the mutations across the samples. Amino acid sequence containing the
chIFITM1,2,3 SNVs were aligned using Clustal Omega. IM1/2: intramembrane domain 1 and 2, CIL: conserved intracellular loop,
triangle: INDELs. Red circles highlight codons under positive selection, black circles codons under negative selection (Refer to Additional file 1: Table S4
for more details), black box: conserved localization signal, star: conserved lysine residues; yellow highlight: conserved double cysteine motif (CC)
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others [26]. The fact that this SNV occurs in heterozy-
gote form in 39% (10/26) of the samples from commer-
cial birds but no homozygotes were observed suggests
that this mutation maybe deleterious. Together our ana-
lysis suggests that rare deleterious mutations occur in chl-
FITM2-3 genes in chickens with some occurring (R77W
in chIFITMI) at high allele frequency in commercial
breeds. Whether these affect the susceptibility of some
birds to viral infections or alter the severity of such

infections should be tested and could be molecular targets
for breeding programmes.

When considering evidence for positive and negative
selection across the chIFTMI1-3 genes we observed that
residues under negative selection predominate and are
often located on the intracellular N-terminus or extra-
cellular/intra-endosomal C-terminus. Rare positively se-
lected codons were identified mostly (two out of three)
at the intracellular N-terminus. The predominance of



Bassano et al. BMC Genomics (2019) 20:272 Page 11 of 14
g
A Episodic positive/diversifying selection in chIFITM1 B Episodic negative/purifying selection in chIFITM1
5 1
a5 36 77/° o . 63 , 95
08 . 038
7 . . . 0.7

e o
EY

OO B e a0 me, see M LeNT M mee o,
et e T T ap 9% % % e oo, o

FUBAR Prob[a<B]
o o o o
[T

3

o

*

o

o
e
.

o

0 20 40 60 80 100 120
chIFITM1 codon position

C Episodic positive/diversifying selection in chIFITM2

.
. .0
st e w000 T 0ty S e e 0 0 o "

FUBAR Prob[a<B]
o o
=&

03
0.2

0.1 .. =

chIFITM codon position

E Episodic positive/diversifying selection in chIFITM3

«103

F .
o e ST 0 N PE T2 O, W e, St O

FUBAR Prob[a<p]
o
&

0 20 40 60 80 100 120 140
chIFITM3 codon position

\
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negative selection may reflect a skewed chicken sam-
pling where 42% (89/211) samples were from commer-
cial or inbred chickens. Alternatively, our analysis may
support the view that modern chickens have lost a high
number of alleles in a relatively short period of time
from their genomes compared to the nineteenth century
breeds, which applies also to the important anti-viral
genes studied here [27]. We suggest therefore, that the
commercial-scale breeding of the chicken, does not pro-
vide a strong positive selection pressure acting on the
three short chIFITM genes for anti-viral traits. Larger
studies focusing on non-inbred chickens will be required

to identify more relevant genetic diversity relating to in-
fection by viruses.

Conclusions

Here we have generated the first time a list of true, high
confidence SNVs and INDELSs for the chIFITM locus. Our
results show that of the three IFITMs, chIFITM?2 contains
the highest number of SNVs, compared to chIFITM1, and
chIFITM3 shows the least. Positive and negative selection
analysis coupled with structure-based mapping of amino
acidic changes shows most genetic variation occurs in the
unstructured N-terminal cytoplasmic domain suggesting a
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functional significance. Furthermore, detailed experi-
mental assignment of infection restricting and promot-
ing phenotypes of the amino acids under selection or
the observed other non-synonymous variants is now
needed to determine if any confer traits of importance
for breeding.

Additional file

Additional file 1: Table S1. List of the inbred lines from the Pirbright
Institute (Adapted from http://www.narf.ac.uk/chickens/lineshtml). The
table shows a list of all the inbred lines from the Pirbright Institute
together with relevant information regarding each line. ENA ID is
provided for each group. Table S2. List of the European chicken breeds.
The table shows a list of all the European breeds and their origin
(muscle or blood). ENA ID is provided for each group. Table S3. List of
the commercial chickens purchased across UK The table shows a list of all
the supermarket-derived chicken breast purchased between Cambridge,
Saffron Walden and Cambourne in 2016. Chickens were also classified
based on their origin: standard, free range or organic. ENA ID is pro-
vided for each group. Table S4. List of the indigenous chickens from
Nigeria and Ethiopia. The table shows a list of all the indigenous
chickens from Nigeria and Ethiopia. Additional information regarding
the village of origin is shown. ENA ID is provided for each group.
Figure S1. IGV SNVs view and density across the 40Kb region. The
VCF file generated by GATK was uploaded using IGV. The figure
shows a snapshot of the fullHlength locus, including the flanking genes
ATHL1T and BAGALNT4. Samples showing high levels of heterozygosity are
highlighted on the right side of the figure. Blue: SNVs heterozygous for
the alternate allele, cyan: SNVs homozygous for the alternate allele,
grey: SNVs homozygous for the reference allele, white: no call from
GATK. A.: European breeds, B.. commercial chickens from UK super-
markets. C.: inbred lines from the Pirbright Institute, D.: indigenous
chickens from Ethiopia and Nigeria. Refer to Tables S1-S4 for additional
for information about the single samples. (PDF 5254 kb)
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