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Abstract

Background: The last 10 years have seen the rise of countless functional genomics studies based on Next-
Generation Sequencing (NGS). In the vast majority of cases, whatever the species, whatever the experiment, the
two first steps of data analysis consist of a quality control of the raw reads followed by a mapping of those reads to
a reference genome/transcriptome. Subsequent steps then depend on the type of study that is being made. While
some tools have been proposed for investigating data quality after the mapping step, there is no commonly
adopted framework that would be easy to use and broadly applicable to any NGS data type.

Results: We present ALFA, a simple but universal tool that can be used after the mapping step on any kind of NGS
experiment data for any organism with available genomic annotations. In a single command line, ALFA can
compute and display distribution of reads by categories (exon, intron, UTR, etc.) and biotypes (protein coding,
miRNA, etc.) for a given aligned dataset with nucleotide precision. We present applications of ALFA to Ribo-Seq and
RNA-Seq on Homo sapiens, CLIP-Seq on Mus musculus, RNA-Seq on Saccharomyces cerevisiae, Bisulfite sequencing
on Arabidopsis thaliana and ChIP-Seq on Caenorhabditis elegans.

Conclusions: We show that ALFA provides a powerful and broadly applicable approach for post mapping quality
control and to produce a global overview using common or dedicated annotations. It is made available to the
community as an easy to install command line tool and from the Galaxy Tool Shed.
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Background
Software programs such as FastQC [1] have become rou-
tine to get information about raw high-throughput se-
quenced material. Most of the time, this first analysis step
is followed by a second step where the reads are mapped
to a reference genome using a sequence aligner such as
STAR [2]. However, the subsequent steps are often very
specific to the type of NGS experiment that is being run.
For instance, in ChIP-Seq [3] or CLIP-Seq [4] experi-
ments, peaks will need to be detected prior to further pro-
cessing; in RNA-Seq, a differential analysis will often be
performed on aligned reads; in BS-Seq experiments, a
dedicated analysis of sequence will be applied in order to

obtain a methylation ratio per nucleotide prior to further
processing. To sum up, only two steps are common to a
large majority of NGS data analysis pipelines: sequencing
quality control and mapping. The subsequent steps are
most often specific to the considered application.
Dedicated categorization of reads for specific kinds of NGS

data were employed in past studies performing RNA-Seq [5],
Ribosome profiling [6], ChIP-seq [7] or miR-seq [8]. How-
ever, they were not designed to be broadly applicable. That
is, none of these dedicated methods would be suitable for
the analysis of another type of NGS data. For instance, a peak
calling was a prerequisite to ChIP-Seq data categorization in
[9] which would be meaningless for an RNA-Seq experiment.
Alternatively and with some coding effort, programs such as
BEDTools [10], BEDOPS [11], featureCounts or Bam2x [12]
can be combined to intersect positions with feature intervals
and produce read feature distributions (see Table 1 for a
comparison). However, combining those is not straightfor-
ward and the overall process is often largely sub-optimal
[13]. To the best of our knowledge, there is no available tool
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that provides a broadly applicable and fast quantitative over-
view of several samples with nucleotide precision.
Here, we introduce ALFA (Annotation Lanscape For

Aligned reads), a simple and broadly applicable tool that
produces a global overview of the distribution of mapped
reads, both in terms of genomic categories (stop codon,
5′-UTR, CDS, intergenic, etc.) and biotypes (protein
coding, miRNA, ncRNA, etc.) with nucleotide precision.
ALFA turned out to be a very useful systematic
post-mapping quality control tool for a broad range of
NGS applications we have been dealing with. We describe
here the results obtained with ALFA using datasets pro-
duced by several types of NGS experiments on various
model organisms. Even though its primary purpose was to
offer a quality control step right after mapping, we show
that ALFA occasionally provided a first global functional
insight prior to a more dedicated analysis.

Implementation
Common genomic databases (e.g. Ensembl) mostly
propose two types of functional annotations: genomic
categories (5́ -UTR, CDS, intron, intergenic region, etc.)
and gene biotypes (protein-coding, miRNA, IG-gene,
etc.). An annotation file with both the category and bio-
type information is required to run ALFA. In order to
compute the proportions of reads from a given NGS
dataset falling into these annotated regions, ALFA pro-
ceeds in three steps. In a first step, ALFA generates re-
usable index files from genomic annotations. In a
second step, ALFA computes the actual nucleotide count
per category from a given set of NGS samples using
those index files. Finally, ALFA can display bar plots of
the raw and normalized distributions. Importantly, the
three steps described in detail below can be processed at
once with a single command line call.

Creation of the index files
ALFA first processes a GTF annotation file and converts
it to two index files. This step needs to be performed

only once for a given annotation file. Its aim is to trans-
form the GTF file content, which is an unordered and
overlapping set of associations between intervals and
category-biotype pairs, into a list of category-biotype
pairs indexed by genomic coordinates. For instance,
in a GTF file, a nucleotide could be associated to an
exon interval but also to at least one transcript and
one gene interval. This hierarchy can be deeper for
the most precise features (UTR, CDS, start codon,
etc.). Consequently, in a GTF file most genomic coor-
dinates appear several times and in an unordered
fashion. In order to suppress this redundancy, this
indexing step splits intervals so as to remove overlaps
and so that each interval matches a list of
category-biotype pairs. It proceeds as follows: for each
row of the GTF file, if the category-biotype pair for the
considered interval does not overlap with any yet proc-
essed intervals, it is created. If a nucleotide sequence be-
longs to several overlapping features at the same
hierarchical level, it is considered as ambiguous by default
and discarded from further processing. Optionally, ALFA
can equally split the considered counts between the over-
lapping category-biotype pairs. At the end of the process,
the index is made of non overlapping intervals annotated
with one or more category-biotype pairs. In this way, all
category-biotypes of any given genomic coordinate can be
retrieved at once. Furthermore, in order to preserve the
DNA strand information, two index files are created. The
first one is a stranded index, which contains the features
for the sense and for the antisense strands separately. In
stranded mode, a nucleotide mapping to an unannotated
region on one strand facing an annotated region on the
opposite strand will be counted in the category “opposite
strand”. The second one is an unstranded index con-
taining all annotations from both strands. Con-
cretely, the systematic production of those two files
enables a flexible choice of strandness when process-
ing sample files at the next step using the strand
parameter.

Table 1 Comparison of available tools with functionalities possibly overlapping with ALFA. This table shows that none of them
offers all capabilities provided by ALFA

BEDOPS [11] BEDTools [10] featureCounts [25] CAP-miRSeq [8] HOMER [9] RSeqQC [26] bam2x [12] CEAS [7] ALFA

One line call ✔ ✔ ✔ ✔ ✔ ✔

Multiple samples ✔ ✔ ✔

Nucleotide resolution ✔ ✔ ✔

Hierarchical priorities ✔ ✔ ✔ ✔ ✔ ✔

Enrichment score ✔ ✔ ✔

Categories ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Biotypes ✔ ✔ ✔ ✔ ✔

Graphical output ✔ ✔ ✔ ✔

Any NGS data ✔ ✔ ✔ ✔ ✔ ✔
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Processing of the sample files
The processing of a set of mapped reads samples in
BAM format is performed in two steps. First the cover-
age per genomic position is obtained for each sample
using Bedtools genomecov [10] which produces a bed-
graph file per sample. The bedgraph format is a non
overlapping list of genomic intervals with counts. Fol-
lowing this, each bedgraph file is intersected with the
index previously computed from the GTF file (either the
stranded or the unstranded version, according to the
strand parameter chosen by the user). This intersection
consists in aggregating all counts falling into all intervals
of each category-biotype pair. Concretely, it is obtained
in the following way: each genomic interval defined in
the bedgraph files is split into as many genomic intervals

it covers in the index file and the list of category-biotype
associations found in those intervals are incremented by
the corresponding fraction of the count. As annotation
files reflect our current knowledge about a given gen-
ome, they are not strictly standardized. As a conse-
quence, elements can be unevenly described. To solve
this issue, ALFA adds virtual categories called “unde-
scribed” at the gene and the exon levels. For instance, if
ALFA is supposed to display the category distribution
up to the UTR regions level but a gene is only annotated
up to the exon level, the reads mapping to this exon of
this gene will be categorized as “undescribed exon” be-
cause there is no way to know which of the deeper cat-
egories (“UTR” or “CDS”) it should account for. At the
end of this process, a list of nucleotide counts per

Fig. 1 ALFA category plots (raw and normalized) for Cross-Linking and ImmunoPrecipitation Sequencing (CLIP-Seq) of eIF4A3 on Mus
musculus in three technical replicates samples (unpublished data from HLH available on demand). Here, ALFA highlights that replicate
Rep1 seems to be inconsistent with replicates Rep2 and Rep3 as CDS, 3′-UTR and intergenic categories seem to display
different proportions.
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category-biotype pair is obtained for each sample and
stored in one of the output files. Eventually, nucleotides
that map to a region that corresponds to two or more
distinct features from the same hierarchical level are
considered ambiguous and are discarded by default. In
this case, the percentage of ignored read counts is displayed
by the program directly on the standard output.

Displaying the results
The last step consists in creating plots from the file
produced at the previous step. From the counts file,
containing the number of nucleotides in the sample
for each category-biotype annotation pair, counts are
grouped by category and by biotype to produce two
images. On each image, two plots are displayed on
top of each other. The top plot represents the raw
distribution of reads among the selected type of fea-
tures (categories or biotypes). The bottom plot shows

the same counts divided by the total amount of the
corresponding features in the reference genome. This
second plot provides information about the sample
enrichment (or depletion) of categories/biotypes com-
pared to the genomic global distribution.

Results
ALFA can detect inconsistencies between replicates
Comparing feature distributions right after mapping is a
simple and powerful way to easily detect possible inconsist-
encies between replicates. To illustrate this point, we used
ALFA to evaluate the consistency of three replicates in a
CLIP-Seq experiment on Mus musculus samples. CLIP-Seq,
for Cross-Linking ImmunoPrecipitation followed by high
throughput sequencing, is used to identify the binding sites
of RNA associated proteins. In Fig. 1, the category plots
produced by ALFA distinctly highlight that one of the repli-
cates behaves differently from the others, with an

Fig. 2 ALFA category plots (raw and normalized) for Bisulfite Sequencing (BS-Seq) data on Arabidopsis thaliana samples (public data available on
NCBI: SRA035939 and EBI: ERA051872). Datasets were gathered from two studies performed on the same model but in two different laboratories:
Lab1-Rep1 (SRR342381) and Lab1-Rep2 (SRR342391) from [14] and Lab2-Rep1 (ERR046552) and Lab2-Rep2 (ERR046553) from [15]. ALFA highlights
laboratory dependent differences between reads falling in CDS (t-test significant at a 5% level with a p-value of 4 × 10–2).
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enrichment of reads mapping within intergenic regions. In
this case, ALFA allowed to quickly point out, after the map-
ping step, that a replicate should be further investigated,
treated with special care or even discarded.

ALFA can detect inconsistencies between experimental
studies
Feature distributions can also be used to compare replicates
of a similar experiment performed in different places or ex-
perimental conditions. To illustrate this point, we used
ALFA to compare two BS-Seq experiments performed on
Arabidopsis thaliana by two different laboratories ([14,
15]). BS-Seq for Bisulfite treatment followed by high
throughput sequencing is used to determine the pattern of
methylation on DNA. In Fig. 2, a category plot produced by
ALFA permits the detection of discrepancies in the relative
amount of reads mapping within coding sequences (CDS)
and intergenic regions; indeed, the proportion of reads

mapping to intergenic regions was higher in the data from
[14] compared to [15]. Moreover, it also offered a quick
overview of the reproducibility between replicates for each
of these studies with [15] showing less divergence.

ALFA can be used to validate a protocol
Feature distributions can also be used to check if a
technique is working as expected. To illustrate this
point we used ALFA to validate the difference be-
tween two Ribosome Profiling protocols on Mus mus-
culus samples. The Ribosome Profiling technique,
which consists of the deep sequencing of ribosome-
protected mRNA fragments, produces a global snap-
shot of the translatome. Alongside two replicates
using the standard protocol, we produced two extra
replicates with an additional harringtonine treatment.
Harringtonine is a drug that inhibits the elongation
phase of translation, after initiation. In Fig. 3, the

Fig. 3 ALFA category plots (raw and normalized) for Ribosome Profiling (Ribo-Seq) data on Mus musculus samples (unpublished data from HLH
available on demand). Unt-Rep1 and Unt-Rep2 are two untreated samples while HA-Rep1 and HA-Rep2 are samples treated with harringtonine.
Harringtonine is a drug that inhibits the elongation phase of translation, after initiation. Here, ALFA shows that mRNAs are actively translated in
the untreated samples (t-test significant at a 1% level with a p-value of 6 × 10–3) while an expected shift towards the translation start site (i.e.
reads spanning the end of the 5’UTR (p-value = 7 × 10–5) and the start codons (p-value = 1 × 10–3) thanks to the depth argument set to 4) can be
observed in the samples treated with harringtonine.
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category plot produced by ALFA shows that Harring-
tonine decreased the CDS fraction of reads while increas-
ing the 5’UTR and start codon fractions of reads, thus
expectedly shifting the distribution of mapped reads to-
wards the start sites.

ALFA can help choosing between available methods
Comparing feature distributions can be helpful to choose a
method that is adapted to the user’s experimental purpose.
For instance, two Ribosome Profiling protocols have been
proposed, where the footprints are generated either by di-
gestion with MNase or with RNase I. In Fig. 4, a category
plot produced with ALFA on samples treated as in [16] or
as in [17] shows a substantial contamination of the

footprints obtained by MNase digestion with non-protein--
coding sequences, with an important fraction of reads an-
notated as intergenic and 3’UTR. In our hands, the MNase
procedure was thus less specific of ribosome-protected RNA
sequences than the RNAse I-based protocol.

ALFA can detect contaminations
Comparing feature distributions enables to quickly detect
a contamination. For instance, ALFA was used to identify
a mitochondrial ribosomal RNA (rRNA) contamination in
a RNA-Seq experiment on Homo sapiens samples. Con-
tamination by rRNA can reach a few percents to the vast
majority of reads depending on the experiment. In Fig. 5,
a biotype plot produced by ALFA confirms a substantial

Fig. 4 ALFA category plots (raw and normalized) for Ribosome Profiling (Ribo-Seq) data on Homo sapiens (unpublished data from AL available on
demand) performed with two different procedures for footprinting: treatment with MNase as in [16] or treatment with RNase I as in [17]. As a
preprocessing step, rRNA and mtRNA reads were computationally filtered out. The enrichment of signal in intergenic and 3′-UTR regions shows
that treatment with MNase seems to produce a substantial increase of the non-protein coding reads compared to RNase I.
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rRNA contamination in one of the tissue samples as de-
scribed in [18].

ALFA provides a genomic scale overview
While primarily designed as a quality control tool, ALFA
can also provide a universal way to compare samples at
genomic scale prior to a dedicated analysis. For instance,
the user may detect global differences between condi-
tions as seen in Fig. 3. To further illustrate this point, we
used ALFA to confirm an enrichment of specific types of
genetic loci in a ChIP-Seq experiment of the nuclear
pore protein NPP-13 from Caenorhabditis elegans per-
formed in a previous study [19]. ChIP-Seq, for Chroma-
tin ImmunoPrecipitation followed by high throughput
sequencing, is used to identify the binding sites of
DNA-associated proteins. In Fig. 6, a biotype plot by
ALFA confirmed an enrichment of nuclear pore proteins
at genetic loci transcribed by RNA polymerase III, such
as snoRNAs and tRNAs according to the results ob-
tained in [19]. ALFA additionally highlights that miRNA
and ncRNA genes are also preferentially associated with
this nuclear pore component. These loci might also cor-
respond to polIII-transcribed genes [20], even though
this would require deeper scrutiny.

ALFA allows to use custom annotations
Whereas in practice most ALFA applications should re-
quire ready-made publicly available annotation files,
users may choose to define additional dedicated features
of interest for specific applications. To illustrate this, we
used ALFA to obtain read distributions of singular tran-
scripts in an RNA-Seq experiment on Saccharomyces
cerevisiae. In Fig. 7, we show that ALFA can be used
with a customized genomic annotation file to observe
the relative distribution of dedicated biotypes as for in-
stance unstable (CUTs [21], NUTs [22], XUTS [23]) and
stable (SUTs [24]) transcripts.

ALFA is fast
One of the compelling advantages of ALFA, as a single in-
tegrated tool, is that it was optimized to be fast even when
run on a regular desktop computer. Furthermore, it can
also take advantage of multi-core machines. ALFA needs
approximately 7min to build the Homo sapiens genome
index and 6min to compute distributions of four samples
of approximately 40M reads using four CPUs on a regular
standalone computer. Note that computing the genome
index needs to be performed only once and can be reused
to compute additional sample distributions.

Fig. 5 ALFA biotype plots (raw and normalized) for RNA-Seq data on Homo sapiens samples (public data available on NCBI: SRP058036). This
dataset is part of a research work where ribosomal RNA depletion is compared between adult and fetal tissues [18]. This study reported that a
large portion of transcripts with mitochondrial ribosomal origin was observed, in particular in colon, heart and kidney samples. For clarity, only
lung (SRR2014234 and SRR2014235) and heart (SRR2014232 and SRR2014233) replicates from the study are reported here. ALFA enables, with a
single command, to quickly confirm that mitochondrial rRNA contamination is more important in the heart samples than in the lung samples (t-
test significant at a 1% level with a p-value of 3 × 10–3). Moreover, an intergenic contamination, not revealed in the original work, can also be
noticed on Lung Adult-Rep2 with no additional work.
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Discussion
In a single and simple call, ALFA proved to be useful as
a post-mapping quality control tool. It was also useful to
obtain a preliminary global overview of data distribution
into features and functional categories prior to dedicated
analysis. In this section, we emphasize the two main lim-
itations of ALFA.

ALFA can only detect genome scale events
ALFA is a broadly applicable and easy to use genome
scale quality control tool. However, it cannot be used to
perform a differential analysis at the gene level and it is
not able to detect effects that would impact only a small
fraction of the dataset. ALFA is meant to be a relevant
post mapping quality control step but cannot replace a
dedicated analysis.

ALFA requires a GTF annotation file
ALFA cannot be used with organisms that have not been
annotated yet. Therefore, the use of ALFA is somewhat
restricted to organisms that are commonly studied by

the scientific community and for which biotype annota-
tions exist (e.g. GTF files from Ensembl). Alternatively,
the user can provide a custom-built annotation file.

Conclusions
In functional genomics, a vast majority of NGS exper-
iments have the two first data analysis steps in com-
mon: a quality control of the raw sequencing reads
and a mapping to the corresponding organism refer-
ence genome. We introduced ALFA, a third step that
can be easily inserted into a pipeline after mapping in
order to reveal genome scale possible artefacts. ALFA
produces a global overview of the distribution of the
mapped reads across genomic categories and biotypes
at nucleotide resolution. ALFA was designed to
process data from a wide variety of NGS experiments.
In order to illustrate its broad usability, we applied
ALFA on 6 sequencing datasets that used 5 different
methods on 5 different organisms. Those examples
highlighted the effectiveness of ALFA to provide a
powerful post mapping quality control step on various

Fig. 6 ALFA biotype plots (raw and normalized) for Chromatin Immuno-Precipitation sequencing (ChIP-Seq) of NPP-13 from Caenorhabditis
elegans samples (public data available on NCBI: SRA062428). This dataset originates from a study [19] where snoRNA and tRNA genetic loci were
found to be enriched in the IP (SRR628901) compared to the Inputs (SRR628899 and SRR628900). Here, ALFA can retrieve this result in a simple
call as highlighted by this plot. Moreover, by providing a global overview without additional work, ALFA seems to denote enrichments in the IP
for other biotypes such as miRNA, ncRNA genetic loci.
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type of NGS experiments, together with, in some
cases a useful post mapping global overview. ALFA is
open source and freely available as a Python script
and as a Galaxy tool.

Availability and requirements

� Project name: ALFA
� Project home page: https://github.com/

biocompibens/ALFA
� Operating systems: Linux, Windows, MAC
� Programming language: Python (version 3)

� Other requirements: Python libraries: os, sys, re,
numpy, collections, copy, argparse, pysam,
pybedtools, matplotlib, progressbar and
multiprocessing

� Licence: MIT
� Any restrictions to use by non-academics: N/A
� Availability

○ GitHub: the Python code and additional
information on how to use ALFA can be retrieved
from the developers’ code repository at https://
github.com/biocompibens/ALFA.
○ PyPI: ALFA can be installed by typing the
command “pip install ALFA” which downloads

Fig. 7 ALFA biotype plots (raw and normalized) for RNA sequencing (RNA-Seq) data from a Saccharomyces cerevisiae sample (public data
available on NCBI: SRA030505 - SRR927165). In this example, a customized GTF annotation file was created to highlight the flexibility of ALFA.
Dedicated biotypes characterizing various Saccharomyces cerevisiae stable transcripts (SUTs [24]) and unstable transcripts (CUTs [21], NUTs [22],
XUTS [23]) were converted from a BED file.
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and sets up the script ALFA.py along with all
required dependencies.
○ Conda: ALFA can be installed using the
command “conda install -c biocomp alfa” which
also provides alfa as a standalone executable
directly available from the command prompt
○ Galaxy: ALFA can also be installed on Galaxy
easily by just searching for “ALFA” in the main
Galaxy Tool Shed (https://toolshed.g2.bx.psu.edu/).

Reproducibility
All figures can be recomputed with the data specified in
the “Availability of data and material” section below and
the following ALFA command lines (optionally using the
desired number of CPUs with the “-p” argument):

� Figure 1: alfa -a Mus_musculus.GRCm38 .91. chr.gtf
-g M_musculus --bam Rep1.bam Rep1 Rep2.bam
Rep2 Rep3.bam Rep3 -s forward

� Figure 2: alfa -a Arabidopsis_thaliana.TAIR10 .38. gtf
-g A_thaliana --bam SRR342381.bam Lab1 -Rep1
SRR342391.bam Lab1 -Rep2 ERR046552.bam Lab2
-Rep1 ERR046553.bam Lab2 -Rep2

� Figure 3: alfa -a Mus_musculus.GRCm38 .91. chr.gtf
-g M_musculus --bam HA -Rep1.bam HA -Rep1
HA-Rep2.bam HA-Rep2 Unt -Rep1.bam Unt -Rep1
Unt -Rep2.bam Unt -Rep2 -s forward --categories_-
depth 4

� Figure 4: alfa -a Homo_sapiens.GRCh38 .91. chr.gtf
-g H_sapiens --bam MNase.bam MNase
RNaseI.bam RNaseI

� Figure 5: alfa -a Homo_sapiens.GRCh38 .91. chr.gtf
-g H_sapiens --bam SRR2014232.bam Heart_Adult
-Rep1 SRR2014233.bam Heart_Adult -Rep2
SRR2014234.bam Lung_Adult -Rep1
SRR2014235.bam Lung_Adult -Rep2

� Figure 6: alfa -a Caenorhabditis_elegans.WBcel235
.91. gtf -g C_elegans --bam Input1.bam Input1
Input2.bam Input2 IP.am IP -t 5 5

� Figure 7: alfa -a Saccharomyces_all_UTs.gtf -g
S_cerevisiae_custom_ -UTs_annot --bam
SRR927165.bam Custom -s reverse
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○ SRR2014232 https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=
SRR2014232
○ SRR2014233 https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=
SRR2014233

� NCBI: SRA062428
○ SRR628901 https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=
SRR628901
○ SRR628899 https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=
SRR628899
○ SRR628900 https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=
SRR628900

� NCBI: SRA030505
○ SRR927165 https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=
SRR927165

� Some unpublished data from HLH and AL (specified in some of the
figure captions) are available on demand.
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