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Abstract

Background: Marek’s disease virus (MDV) is an oncogenic herpesvirus that can cause T-cell lymphomas in chicken.
Long noncoding RNA (IncRNA) is strongly associated with various cancers and many other diseases. In chickens,
INcRNAs have not been comprehensively identified. Here, we profiled mRNA and IncRNA repertoires in three
groups of spleens from MDV-infected and non-infected chickens, including seven tumorous spleens (TS) from MDV-
infected chickens, five spleens from the survivors (SS) without lesions after MDV infection, and five spleens from
noninfected chickens (NS), to explore the underlying mechanism of host resistance in Marek’s disease (MD).

Results: By using a precise INncRNA identification pipeline, we identified 1315 putative INcRNAs and 1166 known
INcRNAs in spleen tissue. Genomic features of putative INCRNAs were characterized. Differentially expressed (DE)
mRNAs, putative IncRNAs, and known IncRNAs were profiled among three groups. We found that several specific
intergroup differentially expressed genes were involved in important biological processes and pathways, including
B cell activation and the Wnt signaling pathway; some of these genes were also found to be the hub genes in the
co-expression network analyzed by WGCNA. Network analysis depicted both intergenic correlation and correlation
between genes and MD traits. Five DE IncRNAs including MSTRG.360.1, MSTRG.6725.1, MSTRG.6754.1, MSTRG.15539.
1, and MSTRG.7747.5 strongly correlated with MD-resistant candidate genes, such as IGF-I, CTLA4, HDAC9, SWAP70,
CD72, JCHAIN, CXCL12, and CD8B, suggesting that IncRNAs may affect MD resistance and tumorigenesis in chicken
spleens through their target genes.

Conclusions: Our results provide both transcriptomic and epigenetic insights on MD resistance and its pathological
mechanism. The comprehensive INcRNA and mRNA transcriptomes in MDV-infected chicken spleens were profiled.
Co-expression analysis identified integrated INcRNA-mRNA and gene-gene interaction networks, implying that hub
genes or IncRNAs exert critical influence on MD resistance and tumorigenesis.
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Background

Long noncoding RNA (IncRNA) is a class of noncoding
RNAs with sequences longer than 200 nucleotides that
are unable to translate into functional proteins. The na-
ture of IncRNAs has been well characterized in mam-
mals. LncRNAs are shorter in length, have fewer exons,
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and exhibit lower expression levels and less evolutionary
conservation compared with protein coding genes [1-3].
Advances in sequencing technology afford extensive
insight into genomic structure. Many IncRNAs have
been discovered by RNA sequencing (RNA-Seq), which
provides a robust technology for the comprehensive ana-
lysis of transcription at single-nucleotide resolution with
superior depth [4-7]. It has been demonstrated that
IncRNAs are relevant to biological processes and cellular
development, especially in the disease state [8—12].
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Mutations as well as the aberrant expression of functional
IncRNAs may induce various diseases and biological dis-
orders. For example, overexpression of IncRNA HOTAIR
can result in breast cancer metastasis [13]. It has been re-
ported that certain annotated IncRNAs have the ability to
encode small peptides [14—16].

Marek’s disease (MD) is a complex immunosuppressive
disease. It can cause paralysis, neuroinflammation, and
chronic depletion, as well as lymphomas in chicken viscera
and muscle tissue [17, 18]. MD is caused by Marek’s disease
virus (MDV), a double-stranded DNA «o-herpesvirus. The
criteria for assessing the virulence of MDV have been
established and the toxicity is ranked from mildly virulent
(m), virulent (v), very virulent (vv) to very virulent plus (vv
+) [19]. Incursion of the strains v and vv will cause transient
paralysis in most breeds, whereas vv + strains will cause
chicken brain lesions and eventually lead to death [20].
More seriously, as the virus evolves, its virulence is grad-
ually strengthening [19]. The infectious life cycle of MDV
in susceptible chicken lines can be divided into four stages:
(1) establishment of primary infection; (2) semi-productive
lytic viral replication in lymphocytes; (3) immune evasion
and latency; and (4) tumor metastasis stage [21]. MDV has
proven to be a valuable model virus for studying several hu-
man diseases caused by other herpesviruses; moreover, the
MDV-chicken system also gives us a highly available and ef-
ficacious model to understand virus-induced lymphoma-
genesis. As tumor formation occurs only a few weeks after
infection with different MDV strains in chicken lines, it is
possible to easily perform herpesvirus-induced oncogenesis
studies in chickens [22].

In recent years, more and more IncRNAs have been
discovered and their functions revealed. However, re-
search on IncRNAs in domestic animals is very limited.
Of all noncoding transcripts in various animal species,
the transcriptomes in domestic animals are inadequately
characterized compared to human and model organisms
[23]. Therefore, the discovery and functional annotation
of IncRNAs in domestic animals is overdue. Several
studies have revealed that IncRNAs play important roles
in improved productivity in chickens [24—29]. Research
on the roles that IncRNAs play in diseases resistance,
particularly in MD, remain limited in chickens [30, 31].

In this study, the comprehensive transcriptomes of
spleen tissues from 17 chickens with different MD resist-
ance were analyzed. To identify candidate IncRNAs as-
sociated with MD resistance, integrated repertoires of
IncRNAs and mRNAs of the spleen and their expression
patterns were profiled. Differential expression and
co-expression network analysis were conducted to iden-
tify interactions between mRNAs and IncRNAs with re-
gard to their underlying roles in resisting tumorigenesis
at the late neoplastic transformation stage of MDV
infection.
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Results

Identification of IncRNAs

A total of 17 samples were used for this study, including
seven tumorous spleens (TS) and five spleens of survi-
vors (SS) from MDV-infected chickens, and five nonin-
fected spleens (NS) from mock infected chickens. In all,
275.5 gigabytes (GB) of RNA-Seq data sets were ana-
lyzed and 273.477 GB remained after eliminating the
low-quality reads. In order to explore putative IncRNAs
from the chicken splenic transcriptome, a IncRNA iden-
tification pipeline was designed (Fig. 1la). Clean reads
were aligned to the chicken reference genome (Gallus_-
gallus-5.0) and reads not properly mapped were dis-
carded, resulting in overall mapping rates of 84.57 to
92.55% (Table 1). Finally, 16,682 unannotated transcripts
(28.29% of the total transcripts from all samples)
remained. Among unannotated transcripts, we identified
1166 known IncRNAs through aligning with the
IncRNAs either in NONCODE v5.0, an integrated
non-coding RNA database, or in ALDB, a
domestic-animal long noncoding RNA database
(Additional file 1).

Besides known IncRNAs, 1653 transcripts were identi-
fied as putative IncRNAs by CPC, CNCI, and PLEK.
Next, we applied the codon substitution frequency (CSF)
algorithm using custom python scripts for the second
round of novel IncRNA filtration. Standard CSF scores
of both coding and non-coding sequences were obtained
from training data sets (Fig. 1b; see Methods for CSF in
detail). According to the receiver operating characteristic
(ROC) curve, the area under the curve (AUC) is 0.94, in-
dicating that the CSF score is a good classifier for esti-
mating the coding potential of unannotated sequences.
As the CSF score corresponding to the best classification
point in ROC curve was 9.8, transcripts with CSF scores
less than 9.8 were marked as IncRNAs (Fig. 1c). Robust-
ness test for the CSF classifier was performed on ran-
domly selected protein coding genes and IncRNAs in
chicken. The results revealed that 724 genes out of 785
Ensembl chicken coding sequences (CDSs) were cor-
rectly marked as protein coding genes and 1893
IncRNAs out of 1942 NONCODE chicken IncRNAs
were correctly marked as noncoding genes. The false
discovery rate was 7.8% and the sensitivity was 97.5%.
This confirms that the CSF score is a reliable classifier
in distinguishing chicken IncRNAs from mRNAs. As a
result, 1315 putative IncRNAs were ultimately obtained
(Additional file 2).

Genomic features of putative IncRNAs

We further analyzed the length, exon number, expres-
sion abundance, and evolutionary conservation of the
putative IncRNAs by comparing them with protein cod-
ing genes and known IncRNAs. The majority of putative
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Fig. 1 Overview of IncRNA identification in chicken spleen. a an overview of a comprehensive scheme for the identification of INcRNAs in
chicken spleen. b the distributions of CSF scores of both coding and noncoding training data sets in CSF classifier. ¢ receiver operating

characteristic (ROC) analysis for training data sets to set a CSF score cut-off. The area under the curve (AUC) is 0.94 and the red square in line
represents the optimal point with the best sensitivity and specificity

Table 1 Information on the results of RNA-Seq data quality control and mapping

Sample Raw reads  Clean Read Mapped Concordantly Concordant pair Overall alignment  Depth of Coverage
D reads length reads mapped pairs align rate (%) rate (%) coverage

s17-1 108,038,362 107,236,056 150 99,071,070 47355310 8832 92.39 7144 99M
s17-2 104,641,540 104,150474 150 95,831,146 45,554,825 87.48 92.01 69.72 96 M
s14-5 104,552,356 104,012,122 150 96,002,848 45,706,899 87.89 923 59.93 9% M
s21-5 115,513,772 114,724,610 150 105,871,206 50,359,014 87.79 92.28 71.65 106 M
s12-1 121,782,278 121,124,168 150 111,411,790 53,080,305 87.65 91.98 72.78 111TM
s10-4 95,689,198 94,726,246 150 84,233,771 39,193,992 82.75 88.92 51.00 84 M
s13-2 102,265,142 100,720,338 150 89,382,799 41,657,926 82.72 88.74 59.45 89M
s14-8 92,679,650 91,878,888 150 81,576,308 38,013,902 82.75 88.79 43.88 81TM
s16-2 100,808,994 100,163,884 150 92,596,205 44,222,526 88.3 92.44 60.53 93M
s6-3 106,793,466 105,995,894 150 94,836,775 44425877 83.83 8947 7191 95M
s7-2 117,484,294 116319496 150 98372279 45,819,569 78.78 84.57 66.10 98 M
$9-2 101,533,692 100,601,162 150 87,682,429 40,550,892 80.62 87.16 51.14 88 M
s24-11 108,771,468 108,057,900 150 100,009,407 47,516,011 87.95 92.55 54.06 100 M
$24-6 117,780,440 117,111,392 150 107,874,786 51,288,711 87.59 92.11 54.88 108 M
s24-7 125,499,128 124,725,286 150 114,662,567 54,498,218 87.39 91.93 72.64 115M
s24-8  112,133382 111,530,648 150 103,004,010 49,103,238 88.05 9235 70.26 103 M

s24-9 100,700,518 100,087,486 150 92,311,210 43,884,783 87.69 9223 5525 92 M
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IncRNAs were intergenic (56%), 20% were bidirectional,
11% were antisense, and 1% were intron IncRNAs
(Fig. 2a). The distributions of putative IncRNAs on the
chromosomes varied. Over half of putative IncRNAs
were located on the Z chromosome (~10%) and the
incompletely assembled scaffolds (~48.7%) (Add-
itional file 3: Figure S1). The lengths of the putative
IncRNAs were shorter than those of the protein cod-
ing genes, but longer than the known IncRNAs
(P-value < 1x10°°% Welch’s t-test). The exon num-
bers of the putative IncRNAs were less than the pro-
tein coding genes while greater than the known
IncRNAs (P-value < 1x 107 %, Welch’s t-test). Most of
the chicken IncRNAs in the current ALDB and NON-
CODE databases are partially assembled. These results
reflect that the putative IncRNA in our study have
greater integrity than previously assembled IncRNAs,
due to the better sequencing depth and coverage.
While both novel IncRNAs and known IncRNAs ex-
hibited lower expression abundance compared to the
protein coding genes (P-value < 1x10°° Welch’s
t-test), there was no significant expressional difference
between putative and known IncRNAs (P-value =
0.19). In terms of evolutionary conservation, the puta-
tive IncRNAs were significantly less conserved than
the protein coding genes (P-value < 1x 10™°, Welch’s
t-test) and the known IncRNAs (P-value=7x10"%
Welch’s t-test) (Fig. 2b-e).
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Expression patterns of IncRNAs and mRNAs among three
groups

R package DESeq2 provided us methods to test for dif-
ferentially expressed (DE) protein coding genes and
IncRNAs, including both known and putative IncRNAs.
First, we focused on DE protein coding genes and
IncRNAs in the TS versus SS contrast. Overall, 1604 DE
genes were found, of which 564 were protein coding
genes annotated by Ensembl. Among DE protein coding
genes, 478 were upregulated in TS, while 86 were down-
regulated. Forty-four putative IncRNAs were found dif-
ferentially expressed, of which 24 were upregulated and
20 were downregulated in TS (Fig. 3a). Regarding to
known IncRNAs, 17 out of 24 were upregulated and 7
were downregulated in TS (Fig. 3b). The estimated
power of the differential expression analysis in this con-
trast was 0.84. Second, we analyzed DE protein coding
genes and IncRNAs in the TS vs. NS contrast, which re-
vealed 2460 DE genes and 1180 of them were annotated
as protein coding genes. Among the annotated genes,
1044 of them were upregulated and 136 were downregu-
lated in TS. We found 56 DE putative IncRNAs, with 30
upregulated and 26 downregulated (Additional file 4:
Figure S2A); 29 known IncRNAs were upregulated in
TS, whereas 9 were downregulated (Additional file 4:
Figure S2B). The estimated power of the differential ex-
pression analysis in this contrast was 0.89. Lastly, there
were only five annotated protein coding genes, 22
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Fig. 3 Heatmaps of differentially expressed INncRNAs between the tumorous group and the survivors. a the expression levels of DE putative
INncRNAs in each individual from the tumorous spleens and the spleens of survivors. b DE known IncRNAs in each individual from the tumorous
spleens and the spleens of survivors

putative IncRNAs, and 21 known IncRNAs that differen-
tially expressed in the SS vs. NS contrast; most DE
IncRNAs in this contrast overlapped with those in the
other comparisons (Additional file 5). The estimated
power of the differential expression analysis in this con-
trast was 0.85.

By comparing DE protein coding genes and IncRNAs
in each contrast, we identified specific intergroup DE
protein coding genes that may account for the different
tumor incidence rates between TS and SS. There were
30 protein genes that were uniquely downregulated in
TS vs. SS contrast, ie., that were not identified as DE
protein coding genes in the TS vs. NS contrast. Chickens
in the TS and SS groups were all infected and SS chick-
ens showed no clinical lesions 55days postinfection
(DPI), indicating the robust immune systems of the sur-
vivors. The interleukin receptor gene interleukin 1 re-
ceptor accessory protein like 1 (ILLRAPL1) and
tumor-related gene tumor protein D52 like 1 (TPD52L1)
were included in these 30 genes. B cell CLL/lymphoma
11A (BCL11A), being essential for lymphoid cell devel-
opment, also was differentially expressed in the TS vs.
SS contrast exclusively. In contrast, there were 110 pro-
tein genes that were upregulated merely in the TS vs. SS
contrast, such as Wnt family member 10A (Wnt10A).

Furthermore, 83 protein coding genes were solely
downregulated in the TS vs. NS contrast, including im-
mune response related genes Wntl inducible signaling
pathway protein 1 (WISP1), V-set pre-B cell surrogate
light chain 3 (VPREB3), C-X-C motif chemokine ligand
12 (CXCL12), and some B cell activation genes CD79B
molecule (CD79B), switching B cell complex subunit

(SWAP70), and cholinergic receptor nicotinic alpha 7
subunit (CHRNA?7), which implied host adaptive im-
munity deficiency in the tumorous individuals. Previ-
ously reported MD resistance-related genes, tetraspanin
8 (TSPANS), toll like receptor 7 (TLR7), and histone
deacetylase 9 (HDACY), were also among 83 downregu-
lated genes. Besides the specific downregulated genes,
676 protein coding genes were upregulated in the TS vs.
NS contrast exclusively, including C-X-C motif chemo-
kine ligand 14 (CXCL14), interferon gamma (IFNG), in-
sulin like growth factor 2 mRNA binding protein 1
(IGF2PB1), hyaluronan synthase 3 (HAS3), and Wnt
family member 7B, 8C, 8A, 11, and 11B (Wnt7B,
Wnt8C, Wnt8A, Wntll, and Wntl1B). Some interleu-
kin precursor genes including interleukin 3, 9, and 13
(IL3, IL9, IL13) were also in this list.

Co-expression analysis of IncRNAs and mRNAs

We constructed a co-expression network of IncRNAs
and protein coding genes to infer the underlying regula-
tory function and potential target genes of DE IncRNAs
(see Methods). Correlated genes and IncRNAs were
grouped into 15 clusters by WGCNA and each cluster
contained at least 50 genes. For all IncRNAs and protein
coding genes in the co-expression network, the top 5%
of highly correlated gene pairs according to the topo-
logical overlap matrix (TOM) were chosen to visualize
the correlation of clusters (Fig. 4a). In this co-expression
network, the highly correlated genes were grouped and
the edges connecting two nodes indicated the functional
regulatory relationship between the genes. Based on the
correlation between the clusters and phenotypes, seven
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Fig. 4 Co-expression network of DE protein coding genes and IncRNAs to predict the functional roles of candidate IncRNAs. a co-expression
network visualization: nodes represent genes with the top 5% mutual correlation and each edge represents their close connection. b GO and
KEGG pathway enrichment analysis for seven clusters with high phenotypic correlation. ¢ sub-network of hub genes and candidate IncRNAs in
cluster 1. This describes the relationship between candidate IncRNAs and hub protein coding genes
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clusters including cluster 1, cluster 2, cluster 3, cluster 4,
cluster 6, cluster 8, and cluster 15, were notably closely
correlated with phenotype (Additional file 6).

Functional enrichment in each cluster suggested that
IncRNAs and protein coding genes were functionally
correlated with each other in specific biological pro-
cesses. Annotated genes in cluster 1, where the largest
proportion of DE IncRNAs located, were significantly
enriched in signal transduction, intercellular communi-
cation, and immune response, suggesting that DE
IncRNAs in cluster 1 appear to be essential for those
biological processes, while protein coding genes in clus-
ter 3 were significantly enriched in cell cycle and DNA
replication. Protein coding genes in cluster 4 were sig-
nificantly enriched in cell migration and non-coding
RNA generation (FDR <0.01) (Fig. 4b).

Using WGCNA, we calculated the gene significance
(GS) and module membership (MM) for every protein
coding gene and IncRNA (Additional file 7). GS repre-
sented the correlation between genes and traits, and the
MM represented the correlation between genes and each
cluster. The protein coding genes or IncRNAs character-
ized by high GS and MM values (|GS| > 0.7, [MM| > 0.7)
within clusters were regarded as hub genes, which
reflected the main functions of the clusters and had
strong correlation with phenotypes and other genes.

Several DE genes in cluster 1 had high absolute values of
GS and MM, including interleukin 10 (IL10), TNF re-
ceptor superfamily member 6b (TNFRSF6B), joining
chain of multimeric IgA and IgM (JCHAIN), SWAP70,
and CD72 molecule (CD72). In particular, specific inter-
group DE genes such as HDACY, cytotoxic
T-lymphocyte associated protein 4 (CTLA4) and insulin
like growth factor (IGF-I) had high GS and MM values
as well. In cluster 3, in which annotated genes enriched
in cell cycle regulation, Mov10 RISC complex RNA heli-
case (MOV10) was the hub gene in spite of no differen-
tial expression in each comparisons. These hub protein
coding genes may play singularly functional roles in MD
resistance and tumorigenesis.

Among 15 clusters, five DE IncRNAs with high GS
and MM values were the most connected to many im-
mune response-related and cell cycle-related DE genes.
These five IncRNAs were all from cluster 1. Three of
them were putative IncRNAs (IncRNA  ID:
MSTRG.6754.1, MSTRG.7747.5, and MSTRG.15539.1)
and the others were known IncRNAs (MSTRG.6725.1
and MSTRG.360.1). The genomic locations of three pu-
tative IncRNAs are shown in Additional file 8: Figure S3.
Of the five candidate DE IncRNAs, MSTRG.6754.1,
MSTRG.7747.5, MSTRG.15539.1, and MSTRG.360.1
were downregulated in the TS group compared with the
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SS and NS groups, yet MSTRG.6725.1 was upregulated
in the TS group.

A subnetwork of hub genes in cluster 1 was depicted
in detail (Fig. 4c). Protein coding genes that were most
connected to five candidate IncRNAs were likely the po-
tential target genes of these IncRNAs. Known IncRNA
MSTRG.360.1 (NONCODE ID: NONGGAT000276.2)
was most correlated with TNFRSF6B, HDAC9, CTLA4,
CXCL12, SWAP70, and JCHAIN; known IncRNA
MSTRG.6725.1 (NOCODE ID: NONGGAT004747.2)
was most correlated with CTLA4 and JCHAIN. Putative
IncRNA MSTRG.6754.1 was most correlated with IGF-I,
CD72, and CXCL12; putative IncRNA MSTRG.15539.1
was most strongly correlated with HDAC9, SWAP70,
JCHAIN, and CD72; putative IncRNA MSTRG.7747.5
was most strongly correlated with HDAC9, CD8B mol-
ecule (CD8B), CD72, and IGF-I. In addition, known
IncRNA MSTRG.360.1 was also highly correlated with
MOV10 (correlation = — 0.92, P-value < 10~ °), suggesting
that MSTRG.360.1 may have effect on mRNA cleavage
and miRNA silencing. Notably, the DE protein coding
genes CD72, CTLA4, HDACY, JCHAIN, and SWAP70
in cluster 1 were also strongly correlated with each
other, providing us with an integrated IncRNA-mRNA
co-expression network.

Protein coding genes both as hub genes and as specific
intergroup DE genes, e.g, CTLA4, HDACY9, CXCL12,
JCHAIN, CD72 and SWAP70, must contribute tremen-
dously to the modulation of host immunity during MD
pathogenesis. The hub genes SWAP70 and CD72 that
shared high correlation with the five candidate IncRNAs,
along with specific intergroup DE genes BCLI11A,
VPREB3, CD79B, and CHRNA?7 were all engaged in B
cell proliferation and activation, highlighting that these
DE genes acted as necessary regulatory factors for B cell
functions in the late-stage humoral immunity of MDV
infection and the five candidate IncRNAs likely involved
in these functions by regulating SWAP70 and CD72. In
addition, several specific intergroup DE genes were
found in the Wnt gene family. WISP1 was the hub gene
in cluster 4; it was most connected to candidate
IncRNAs MSTRG.6754.1 (correlation = 0.81, P-value =
76x107° and MSTRG.360.1 (correlation =0.83,
P-value = 3.7 x 10~ °). Inverse correlation between WISP1
and other members of the Wnt gene family [WIF1 and
WISP1 pair (correlation = — 0.70, P-value = 1.8 x 10™?),
WISP1 and Wntll pair (correlation = - 0.75, P-value =
5.0 x 10™*), and WISP1 and Wnt10A pair (correlation =
-0.80, P-value=1.1x10"%] suggested that WISP1
negatively controlled the expression of these genes and
candidate IncRNAs MSTRG.6754.1 and MSTRG.360.1
regulated the Wnt signaling pathway by controlling
WISP1. DNA topoisomerase II alpha (TOP2A), a
non-differentially expressed gene with high GS (0.87)
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and MM (-0.97) values, was strongly correlated with
CTLA4 and IL10 as well as two candidate IncRNAs
MSTRG.7747.5 and MSTRG.6725.1. Though the expres-
sion level of TOP2A was not significantly different
among groups based on DESeq2 method, it still exhib-
ited substantial variance as calculated by MAD (Median
Absolute Deviation). Furthermore, MSTRG.7747.5,
which strongly correlated with both IGF-I (correlation =
0.94, P-value <10 °) and TOP2A (correlation = - 0.87,
P-value <10~ °), likely participated in the regulation of
cell cycle.

qPCR validation

The expression levels of five candidate IncRNAs and DE
gene IGF-I were confirmed by quantitative reverse tran-
scription PCR (RT-qPCR) (Fig. 5). B-actin was used as
the endogenous control. Total cDNA of 12 individuals
in the TS and SS groups was used for quantitative ana-
lysis. The results of RT-qPCR were consistent with the
results of RNA-Seq. Primer sequences and agarose gel
electrophoresis pictures of five candidate IncRNAs are
listed in Additional file 9.

Discussion

In this study, we performed rRNA-free strand-specific
transcriptome sequencing on all 17 samples and devel-
oped a precise pipeline to identify known and putative
IncRNAs in chicken spleens. The use of paired-end,
high-throughput sequencing ensured the integrity of the
transcriptomes, making it possible to construct a more
complete landscape of both known and novel IncRNAs.
The IncRNAs obtained previously were poorly assem-
bled. We hereby used an alignment method and set
strict filtration parameters to identify known IncRNAs
and re-assembled them comprehensively. A combination
of two well-tested algorithms greatly reduced false posi-
tive rates in discriminating putative IncRNAs from un-
annotated transcripts. We characterized the genomic
features of these IncRNAs and found that the results
were in good agreement with previous studies, demon-
strating the reliability of the putative IncRNAs we identi-
fied [26, 28, 31]. To better understand the underlying
functional relationship between IncRNAs and mRNAs in
tumorigenesis and MD resistance, we profiled compre-
hensive gene expression patterns in chicken spleen and
constructed a co-expression network of IncRNAs and
mRNAs.

Specific intergroup DE genes in MD resistance and
tumorigenesis

Many studies have analyzed changes in gene expression
levels during different stages of MDV pathology in dif-
ferent chicken viscera. Most of them were interested in
the cytolysis or latency stages. Given that MD is a
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-

complex disease—the pathogenicity of which cannot be
explained by only a few genes—numerous genes were
found bearing close relationships with MD resistance. By
comparing previous studies, we found some DE protein
coding genes overlapped with former results (Table 2).
The expression levels of several MD resistant genes such
as granzyme A (GZMA), IENG, IL10, TPD52L1, IGF-I,
and CXCL12 were significantly different between the tu-
morous spleens and the spleens of survivors, which was
in line with our former microarray data described by
Lian et al. [32]. More extensively, we found that some of
them were specific intergroup differentially expressed.
According to the co-expression network and considering
its critical effects on the development of lymphocytes
and monocytes, CXCL12, a hub gene in cluster 1—sim-
ultaneously strongly related to many other MD resistant
protein coding genes, e.g.,, CD72 and CD8B, as well as
candidate IncRNAs MSTRG.360.1 and MSTRG.6754.1—
may play an important role in immune response and
tumor growth and metastasis induced by MDV infection
[33]. Yu et al. (2011) reported that CTLA4, HAS3,
WISP1, and TSPANS8 was differentially expressed be-
tween MD-resistant and -susceptible chickens at 10 DPI
[34]. These genes exclusively differentially expressed in
TS vs. NS contrast at late neoplastic transformation
phase, which indicated that these genes were transcrip-
tionally varied between the TS and SS group at late neo-
plastic stage. There were very few DE annotated genes
in the SS vs. NS contrast and we did not find DE
IncRNAs in this contrast with high GS and MM values
or strong correlation with MD resistance-related genes.
We subsequently screened all specific intergroup DE
genes that have not been reported previously. In these

specific intergroup DE genes, BCL11A, VPREB3,
CD79B, CHRNA7, and SWAP70 that all involved in B
cell proliferation and activation, would likely impact B
cell function in MDV pathogenesis and malignant tumor
formation. Additionally, SWAP70 and CD72 were the
hub genes in cluster 1. Some members of the Wnt gene
family were specific intergroup DE genes, e.g., Wnt7B,
Wnt8C, Wntl0A, Wntll, and Wntl11B, as well as WIF1
(Wnt inhibitory factor 1) and cluster 4 hub gene WISP1.
It has been reported that WISP1 is downstream of the
Wnt signaling pathway and its overexpression will in-
hibit apoptosis and promote cell proliferation and migra-
tion in glioblastoma cells, as verified by a knockdown
experiment in vivo [35]. However, other studies have re-
vealed that WISP1 may be conducive as a proliferative
agent [36, 37]. In our research, the reduction in expres-
sion levels of WISP1 was observed in the TS group com-
pared with the NS group, which suggested that WISP1
may act as a tumor suppressor gene in MD-induced
tumorigenesis, unlike its oncogenic role in many kinds
of human cancers and cell lines.

Interaction between candidate IncRNAs and hub genes

DE protein coding genes and IncRNAs in the TS group
exhibited higher variability in expression levels com-
pared with the SS and NS groups and no significant sex
or time effects were observed in DE genes (Add-
itional file 10: Figure S4). We conducted co-expression
network analysis to find the relatedness between
IncRNAs and mRNAs. Five candidate IncRNAs strongly
correlated with the greatest number of immune-related
and cell cycle-related genes and possessed high values of
GS and MM. Most of their potential target genes were
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Table 2 Fold change and adjusted P-value of partial specific intergroup DE genes and MD resistanc-associated genes reported

previously
Ensembl ID Gene TS vs. NS TS vs. SS

Name Fold change Padj Fold change Padj
ENSGALG00000000892 IL10 6.70 777x107'® 330 180x107°
ENSGALG00000008267 IL5RA -3.03 190x10°° - -
ENSGALG00000016288 ILTRAPL1 - - 344 129%107°
ENSGALG00000021113 IL3 343 187% 107 - -
ENSGALG00000006329 IL9 462 217x1072 - -
ENSGALG0O0000006801 IL13 563 134x 107 - -
ENSGALG00000009903 IFNG 232 343x107 - -
ENSGALG00000008666 CTLA4 304 315%x 107" - -
ENSGALG00000014843 TPD52L1 - - -370 369x 1072
ENSGALG00000030115 WISP1 -235 6.24%x 107" - -
ENSGALG00000010152 TSPANS 268 469%107 - -
ENSGALG00000016590 TLR7 -3.15 458x107 - -
ENSGALG00000004096 CHRNA7 242 981x107° - -
ENSGALG00000005750 SWAP70 202 7.08x107° - -
ENSGALG00000015902 CD8B -2.90 898x 107° 337 6.70x 107
ENSGALGO00000005 194 D72 -332 491%x1077 -327 219x107*
ENSGALG00000000251 CD798 269 497 x107° - -
ENSGALG00000010854 HDAC9 -226 944x107° - -
ENSGALG00000000630 HAS3 524 311%x107° - -
ENSGALG00000006106 TNFRSF6B 1088 111x107" 278 222%1072
ENSGALG00000006346 CXCL14 6.08 234%107° - -
ENSGALG00000041346 CXCL12 —2.14 789%107° - -
ENSGALG00000012755 IGF-I —4.60 235x 1077 —4.15 640% 107
ENSGALG00000041204 IGF2PB1 342 265%x 107 - -
ENSGALG00000036519 CDC6 223 125% 1072 - -
ENSGALG00000034048 BCL11A - - 246 10x1072
ENSGALG00000021136 VPREB3 —3.84 405x107° - -
ENSGALG00000011355 Wnt10A - - 548 237x 1072
ENSGALG00000036255 Wnt78 290 282x1072 - -
ENSGALG00000037494 Wnt8C 477 326% 1072 - -
ENSGALG00000000839 Wnt11 448 172x107° - -
ENSGALG00000004401 Wnt118 377 898x 10°* - -
ENSGALG00000039209 WIF1 378 6x107°

Abbreviation: TS the tumorous spleens, NS noninfected spleens, SS the spleens of survivors. Fold change greater than zero represents that genes expression level

increase in the tumorous spleens. Fold change smaller than zero represents that genes expression level decrease in the tumorous spleens.

in expression level between compared groups

reported differentially expressed between MD-resistant
and -susceptible chicken lines, e.g,, HDAC9 and IGF-L
Some candidate IncRNAs shared the same potential tar-
get genes in functional regulation, such as CD72,
SWAP70, CTLA4, and CXCL12, indicating the func-
tional intersection of these IncRNAs and the importance
of their common potential target genes. The expression
variation of CD72, SWAP70 and other specific

un

means no difference

intergroup DE genes that affect B cell proliferation and
activation in the host adaptive immunity system ap-
peared to be the cause of B-cell function abnormality in
the TS group. The strong correlation between five candi-
date IncRNAs and hub gene CD72 and SWAP70
highlighted the essential roles of IncRNAs in regulating
B-cell function. Candidate IncRNAs MSTRG.6754.1 and
MSTRG.360.1, strongly correlated with hub gene
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WISP1—the expression levels of which were inversely
correlated with other members of the Wnt gene family,
may inhibit malignant lymphoma formation through
regulating Wnt signaling pathway. In addition, IncRNA
MSTRG.7747.5 was highly correlated with cell
cycle-related genes TOP2A and IGF-I. Our results
showed that candidate IncRNAs were positively or in-
versely correlated to potential target genes, indicating
that IncRNAs can either inhibit or facilitate gene expres-
sion. For instance, candidate IncRNA MSTRG.6725.1,
upregulated in the TS group, was positively correlated
with hub gene CTLA4 (correlation = 0.91, P-value < 10~
®), while inversely correlated with hub gene JCHAIN
(correlation = — 0.89, P-value < 10~ ®). Meanwhile, known
IncRNA NONGGAT000276 produced two alternative
splicing isoforms in our study, MSTRG.360.1 and
MSTRG.360.2, and only MSTRG.360.1 differentially
expressed between the TS vs. SS contrast and strongly
correlated with MD resistance.

Given that researches investigating the function of
long noncoding RNAs involved in the pathogenic
mechanisms of MD in chicken are very limited, only
two IncRNAs reported in previous MD studies com-
pared with our data. The first was linc-Satbl which
were potentially expressed in bursa of an infected
MD-resistant chicken line at 10 DPI; it strongly cor-
related with nearby protein coding gene SATBI1 that
was involved in T cell development and activation
[31]. The second IncRNA was linc-Galmd3 reported
by Han et al. (2017); they found that linc-Galmd3
was highly expressed in MDV-infected chicken CD4+
T cells in peripheral blood. A knockdown experiment
revealed that loss of function of Galmd3 suppressed
MD viral replication [30]. We aligned the sequence of
these two IncRNAs with our transcripts and found
they were 100% concordant in two known IncRNAs,
MSTRG.5613 and MSTRG.9931, respectively, and the
lengths of the two IncRNAs were longer than those
of linc-Satbl and linc-Galmd3, suggesting that
MSTRG.5613 and MSTRG.9931 were likely the tran-
script isoforms of linc-Satbl and linc-Galmd3 in
chicken spleen. This may result from the difference
between the two studies, including reference genome
versions, sequencing depth, and the assembly algo-
rithm. These two IncRNAs were not differentially
expressed between comparisons. The likely reason
may be the differences in tissue-types and MD patho-
logical stages that we considered. The previous two
studies focused on latency or early stages of MD
pathogenesis while we were more interested in the
late neoplastic stage; also, the viral strain we used
was less virulent so that we could be certain the
chicken would remain viable till the late neoplastic
transformation.
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Conclusion

In this study, we presented splenic mRNA and IncRNA
repertoires in chicken and found certain oncogenesis
and MD resistance-related genes differentially expressed
between groups. Through co-expression network ana-
lysis, we identified several hub genes that may play piv-
otal roles in MD resistance and tumorigenesis and also
found five DE IncRNAs that were strongly related to
these hub protein coding genes. Furthermore, one of the
five IncRNAs plays a role in cell cycle regulation based
on its close relationship with IGF-I and TOP2A. Several
specific intergroup DE genes, as well as network hub
genes, participated in B lymphocyte activation and the
Wnt signaling pathway, e.g.,, BCL11A, SWAP70, WISP1,
and Wntll. The five candidate IncRNAs closely corre-
lated with these protein coding genes, exerting signifi-
cant effects on MD-induced tumorigenesis through
regulating their target genes. We hope that the DE
mRNAs and IncRNAs identified in this study provide
valuable transcriptomic and epigenetic insights into MD
resistance and its pathological mechanism.

Methods

Biological samples

Information on experimental samples was provided in
our previous study [32]. Briefly, 150 one-day-old
specific-pathogen-free (SPF) White Leghorn (BWEL)
chicks were separated into two groups. One hundred of
them were infected intraperitoneally with 2000
plaque-forming units (PFU) of the MDV-GA strain and
the remaining birds were injected with the same volume
of diluent (0.2 mL) as the noninfected group on the first
day after hatching. The two groups were housed inde-
pendently and they were observed 2-3 times daily. Birds
were euthanized by T-61 intravenously (0.4 ml/kg)
and tumorous spleens were collected. Animal experi-
ments were approved by the Animal Care and Use
Committee of China Agricultural University (Approval
ID: XXCB-20090209) and the experiment was per-
formed according to regulations and guidelines estab-
lished by this committee. In our study, five
noninfected spleens (NS), five normal spleens of the
survivors (SS), and seven MDV-infected tumorous
spleens (TS) were sampled, for which RNA-Seq was
conducted. The collection time points and the gender
of samples are shown in Table 3. Ribosomal RNA was
removed by Epicentre Ribo-zero™ rRNA Removal Kit
(Epicentre/Illumina, San Diego, CA, USA).

RNA-Seq and transcriptome assembly

RNA-Seq were performed in all 17 samples using the
HMlumina Hiseq 4000 platform and 150 bp paired-end
reads were generated. Ribosomal RNA was removed
from total RNA prior to sequencing. RNA-Seq reads
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Table 3 Detailed information on 17 total samples
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Group Subgroup Sample ID Sex Collection time point (dpi)
noninfected - s17-1 Female 43
noninfected - s17-2 Female 43
noninfected - s14-5 Male 40
noninfected - s21-5 Male 49
noninfected - s12-1 Female 37
infected tumorous s10-4 Female 35
infected tumorous s13-2 Female 38
infected tumorous s14-8 Female 40
infected tumorous s16-2 Female 42
infected tumorous s6-3 Female 31
infected tumorous s7-2 Male 32
infected tumorous s9-2 Female 34
infected survivor s24-11 Female 55
infected survivor $24-6 Female 55
infected survivor s24-7 Female 55
infected survivor $24-8 Female 55
infected survivor $24-9 Male 55

were qualified by NGS QC Toolkit [38]. Clean reads
were aligned to the chicken reference genome using
HISAT2 (version 2.1.0) and parameters were set as de-
fault [39]. Chicken reference genome and its annotation
were downloaded from Ensembl (version Gallus_gal-
lus-5.0; GCA_000002315.3). We used RSeQC to exam-
ine the rRNA residues [40]. We re-assembled the
chicken transcriptome using StringTie (version 1.3.3b)
[41]. The mapping and re-assembly were performed as
previously described [42].

Identification of IncRNAs

We used several strict filters to winnow potential
IncRNAs from all transcripts. First, transcripts shorter
than 200 nt and without strand information were re-
moved; second, transcripts with class code “=”, “e”, “p,”
and “c” were discarded; and third, transcripts with low
expression levels (FPKM < 1) were filtered out. Subse-
quently, we downloaded the sequence of known
IncRNAs from two multispecies IncRNA databases,
ALDB (Domestic-Animal LncRNA Database) [43] and
NONCODE [44], which contain 8923 and 12,850
chicken IncRNAs, respectively. Then we used BLAST
(version 2.2.26) [45] to align the unannotated tran-
scripts to IncRNAs from two databases with stringent
parameters (e value <1x107° perc_identity >90%,
and alignment length must be longer than 90% of the
length of IncRNAs from two databases). The tran-
scripts perfectly aligned with sequences in either
ALDB or NONCODE were regarded as known
IncRNAs.

Coding potential analysis

We calculated the coding potential of each transcript using
three tools: CPC [46], CNCI [47], and PLEK [48]. CPC is
considered a classic software for coding potential predic-
tion. CNCI is less dependent on genomic information and
is still robust in dealing with IncRNAs with much longer
length. PLEK can handle long read-length sequences and is
compatible with SNPs and short InDels. These three
IncRNA predictor all based on the same classification
model—support vector machine (SVM) and have proven to
be highly effective in discriminating IncRNAs [49]. The
intersection of the results from these three tools was used
in the downstream analyses. We then calculated the CSF
index of each unannotated transcript [50]. CSF is based on
the frequency changes in the pairs of codons which are
substituted inconsistently between coding and noncoding
sequences in informants and target species. We chose hu-
man, mouse, rat, opossum, and zebra finch as informant
species [51]. Multiple alignment was implemented using
threaded-blockset aligner (TBA) [52]. When the pairs of
codons met following conditions: (1) no gap in alignment;
(2) no stop codons; (3) the aligned codons were not the
same, then a CSF score would be assigned to the pair of co-
dons. The score is a log likelihood ratio indicating how
much more frequently substitution occurs in coding re-
gions than in noncoding regions. This ratio is derived from
the coding substitution matrix (CSM):

CSM, , = P(informant codon b | target codon a,a=b)

Given that the CSM of two training data sets were cal-
culated, the standard coding sequences (CSM®) and the
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noncoding sequences (CSM"), the CSF score will be
assigned to a codon substitution (a, b) by:

CSM¢ ,
CSE = log i
a,b

For coding sequences, we downloaded the CDSs of
each annotated gene of the informant species and target
species from Ensembl and then we randomly extracted
10,000 CDSs from them as the coding sequences train-
ing data set. For noncoding sequences, we randomly ex-
tracted 10,000 sequences from intergenic regions that
were larger than 2 kB and contained no repetitive ele-
ments. For each codon substitution, the CSF score is cal-
culated between the target species and each informant.
CSF assigns a score to the alignment of target and each
informant species by evaluating the score in every 90 bp
sliding window, overlapping by 1bp. The highest score
out of these windows was the final score of the align-
ment. The median of CSF scores of each pair of codon
from all informants was calculated to obtain a composite
score. The CSF algorithm was implemented using cus-
tom python scripts. To determine the threshold of CSF
scores from the training data set and to test whether the
CSF score has a good classification efficiency, we per-
formed ROC curve analysis on the CSF scores of both
coding and non-coding sequences [53] and to set the
CSF score threshold to classify coding and noncoding
sequences. ROC curve analysis is an effective method to
judge the quality of a classifier. According to the AUC
calculated by the ROC curve, the larger the AUC, the
better the classifier. The points with the best sensitivity
and specificity on the ROC curve were selected and set
as the best classification point. To further verify the ro-
bustness of CSF scores in our research, the CSF algo-
rithm was conducted in 2727 sequences that were
randomly selected, including 785 protein coding gene
sequences from Ensembl and 1942 randomly selected
chicken IncRNAs from NONCODE.

Conservation analysis and differential expression analysis
Putative IncRNAs were categorized according to their
genomic location as previously described [54]. We used
phast software to compute the conservation score of
protein coding genes, known IncRNAs, and putative
IncRNAs [55]. Human, rat, mouse, opossum, and zebra
finch were used as the queries. Fourfold degenerate sites
were used to estimate the non-conserved model. The first
codon positions were used to estimate the conserved
model. After that, HMM transition parameters were tuned
for phastCons to calculate the conservation score.

From all of the putative IncRNAs, known IncRNAs,
and annotated protein coding genes, we used DESeq2
(version 1.16.1) to identify differentially expressed genes
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in different comparisons [56]. Read counts were fitted by
generalized linear model and variables of sex and DPI
were added in the design formula so that the variances
caused by them would be corrected in differential ex-
pression analysis (design =~ sex + dpi+ status; where
status represented tumorous, survivors, and nonin-
fected). Protein coding genes and IncRNAs with differ-
ential expression levels must meet two criteria: adjusted
P value <0.05 (Benjamini-Hochberg adjustment) and
|log2FoldChange| > 2. Heatmap was drawn by R package
pheatmap [57]. The power analysis was conducted using
R package: RnaSeqSampleSize [58]. Powers were esti-
mated in the TS vs. SS contrast, the TS vs. NS contrast,
and the SS vs. NS contrast. Average reads count, ratio of
geometric means of normalization factor, and median
dispersion of DE genes were calculated by DESeq2 (esti-
mateSizeFactors and estimateDispersions functions):
589, 1.1, 0.161 in the TS vs. SS contrast, 558, 1.08, 0.169
in the TS vs. NS contrast, and 673, 1.01, 0.116 in the SS
vs. NS contrast, respectively.

Co-expression network construction and functional
enrichment analysis

An expression level matrix of all putative IncRNAs and
known IncRNAs was constructed. In addition, given that
genes without notable expression variation among sam-
ples would be highly correlated and influence the accur-
acy of the correlation network, the top 5152 most
variant protein coding genes among the 17 samples were
included and the median absolute deviation (MAD) was
used as a variability measurement. We constructed a
weighted co-expression network and calculated the Pear-
son correlation of each gene pair using R package
WGCNA [59]. Hub genes were those that possessed
high absolute values of GS and MM (both greater than
0.7) in their own clusters. The co-expression network
was visualized using Cytoscape [60]. Highly correlated
gene pairs (top 5% TOM) were listed as the input file for
Cytoscape then the output network format was custom-
ized. Ensembl gene IDs were submitted to DAVID, a
web-based functional enrichment analysis tool, to esti-
mate enrichment in gene ontology (GO) terms and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
terms [61]. The P-value of protein coding genes enrich-
ment was adjusted by Benjamini-Hochberg FDR (false
discovery rate) and its threshold was set as 0.05.

Quantitative PCR

Total cDNA was synthesized and gDNA was removed
using EasyScript One-Step gDNA Removal and cDNA
Synthesis SuperMix (TransGen Biotech, Beijing, China).
Power SYBR Green PCR Super Mix (Applied Biosys-
tems, Foster City, CA, USA) was used as a nucleic acid
stain and qPCR was performed on an ABI 7500
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Real-Time PCR system. Chicken B-Actin was used as an
endogenous control. Relative quantifications of genes
were calculated by — 2**“T method. The primers were
designed using NCBI Primer-Blast [62].
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