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Abstract

Background: Fertility is among the most important economic traits in dairy cattle. Genomic prediction for cow
fertility has received much attention in the last decade, while bull fertility has been largely overlooked. The goal of
this study was to assess genomic prediction of dairy bull fertility using markers with large effect and functional
annotation data. Sire conception rate (SCR) was used as a measure of service sire fertility. Dataset consisted of 11.5
k U.S. Holstein bulls with SCR records and about 300 k single nucleotide polymorphism (SNP) markers. The analyses
included the use of both single-kernel and multi-kernel predictive models fitting either all SNPs, markers with large
effect, or markers with presumed functional roles, such as non-synonymous, synonymous, or non-coding regulatory
variants.

Results: The entire set of SNPs yielded predictive correlations of 0.340. Five markers located on chromosomes BTA8,
BTA9, BTA13, BTA17, and BTA27 showed marked dominance effects. Interestingly, the inclusion of these five major
markers as fixed effects in the predictive models increased predictive correlations to 0.403, representing an increase
in accuracy of about 19% compared with the standard model. Single-kernel models fitting functional SNP classes
outperformed their counterparts using random sets of SNPs, suggesting that the predictive power of these functional
variants is driven in part by their biological roles. Multi-kernel models fitting all the functional SNP classes together with
the five major markers exhibited predictive correlations around 0.405.

Conclusions: The inclusion of markers with large effect markedly improved the prediction of dairy sire fertility.
Functional variants exhibited higher predictive ability than random variants, but did not outperform the standard
whole-genome approach. This research is the foundation for the development of novel strategies that could help the
dairy industry make accurate genome-guided selection decisions on service sire fertility.
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Background
Suboptimal reproductive performance in dairy cattle, spe-
cifically in Holstein purebred, is still a concerning problem
in today’s dairy industry. Reproduction inefficiency in
dairy cattle has a direct impact on the overall herd profit-
ability by leading the system to reduced incomes (longer
calving intervals, reduced milk yield, higher culling rates)
and additional expenditures (cost of artificial insemination

technician, frequent veterinary visits, hormone treatment,
diagnosis and treatment costs) [1, 2].
Causes of poor fertility in dairy cows have been well

studied [3] and efforts have been made to improve fertil-
ity traits by selective breeding. Three female fertility
traits are routinely evaluated in the US national genetic
evaluation with considerable success, along with health
and other low heritability traits [4]. On the other hand,
the genetic improvement of bull fertility has been largely
ignored. This appears to be contradictory considering
that semen from one service sire bull is used to insemin-
ate hundreds of cows and, thus, one sub-fertile bull
would have a larger impact on the overall herd fertility
than a single cow with fertility problems.
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Establishing a successful pregnancy in dairy cattle is a
complex process and there is strong evidence that ser-
vice sire fertility has an important role. Relevant links
between bull fertility and reproductive success have been
observed not only in the fertilization process through
differences in semen quality [5], but also in embryo pre-
implantation and development [6] as well as in offspring
performance in later life [7]. Moreover, there is recent
evidence that embryos from bulls with low fertility have
a reduced ability to establish pregnancy and this depends
on several factors such as sperm fertilizing ability, pre-
implantation embryonic development and development
of the embryo and placenta after conceptus elongation
and pregnancy recognition [8].
Genome wide association studies have been successful

in using dense genetic markers such as single nucleotide
polymorphism (SNP) markers to identify genomic re-
gions affecting relevant phenotypes. Often, very stringent
significant thresholds must be used in order to avoid
multiple-testing problems, leading in general to lose
both variants with small effect and rare variants [9]. In
addition, these genome-wide dense markers have facili-
tated the so-called genome-enabled prediction, which
aims to predict unobserved genetic values or yet-to-be
observed phenotypes by regressing phenotypic values on
SNP genotypes [10]. In animal breeding, genomic pre-
diction is used to accurately select better animals at an
early age as breeders for the next generation.
The accuracy of genomic prediction can be improved

by either increasing the number of markers or the size
of the reference population. The rationale behind in-
creasing marker density or even using whole-genome se-
quence data is that the linkage disequilibrium between
SNP makers and causative mutations is somehow maxi-
mized. However, incorporating high-density markers or
even imputing SNP to sequence level may not result in
higher prediction accuracies, as genomic prediction is af-
fected not only by the reference population and the im-
putation process [11, 12], but also by the genetic
architecture of the trait [13].
Generally, genomic prediction models assume that all

markers in the genome have an effect in the trait of
interest and that the marker effects have all the same
magnitude [14]. However, there is evidence that different
regions of the genome have different contributions to
the genetic variability of a trait. For example, variants
known to cause amino acid changes or variants within
regulatory regions are commonly found among the most
significant markers [15–17]. In the same manner, there
are locations within a gene where variants are more
likely to have a significant impact on the phenotype [18].
Functional annotation information can be used to

prioritize groups of markers by assigning them different
weights in the predictive models. Markers located near

genes, affecting gene function or known to be causal
mutations have been used to improve the accuracy of
genomic predictions. A study by Wiggans et al. [19] re-
ported a 1.4 percentage points gain across traits for Hol-
stein cattle in the US national genomic evaluation by
adding causative variants and removing less informative
markers. MacLeaod et al. [20] proposed a modification
to the BayesR method [21] called BayesRC, which incor-
porates prior biological knowledge about known gen-
omic regions that are more likely to affect the trait of
interest. BayesRC results showed that modeling these
biological priors improved the accuracy of genomic pre-
diction and also QTL discovery. In this sense, QTL
markers identified by whole-genome scans can also be
used to improve genomic prediction models [22, 23].
We recently reported promising results regarding the

prediction of service sire fertility using 7.4 k US Holsteins
bulls and 55 k SNP markers [24]. We concluded that the
use of high-density SNP data together with the inclusion
of functional information into the predictive models could
improve the prediction of dairy bull fertility. As such, the
first objective of this study was to assess the prediction of
service sire fertility using the entire U.S. Holstein evalu-
ation dataset and 300 k SNP markers across the genome.
Previous studies from our group have shown that some
genomic regions have marked effects on dairy sire fertility
[25]. Therefore, the second objective was to evaluate the
potential benefits of incorporating markers with large ef-
fect into genomic prediction models. Finally, the third ob-
jective of this study was to investigate the predictive
power of genetic variants with relevant functional roles,
such as non-synonymous, synonymous, or non-coding
regulatory variants.

Methods
Phenotypic and genotypic data
The bull fertility phenotype evaluated in this study is sire
conception rate (SCR), which represents the US national
dairy bull fertility evaluation based on cow field data
(pregnancy records). This is a phenotypic rather than a
genetic evaluation because the fertility estimates include
both genetic and non-genetic effects. The current model
for SCR evaluation considers not only factors related to
the sire under evaluation, but also factors, also known as
nuisance variables, related to the cow that receives the
unit of semen. These nuisance variables, such as cow age,
parity and milk yield, could distort the measurements of
bull fertility, and therefore, should be accounted for in the
model [26, 27]. The variable SCR is defined as the ex-
pected difference in conception rate of a given bull com-
pared with the mean of all the bulls evaluated.
A total of 11,539 Holstein sires with SCR records were

used in this study. These SCR records belong to 29 con-
secutive evaluations released from August 2008 to April
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2018. All records are freely available in the Council on
Dairy Cattle Breeding (CDCB) website (https://www.
uscdcb.com/) with the corresponding reliabilities calcu-
lated as a function of the number of breedings. Since
there are sires with more than one SCR record from dif-
ferent evaluations, the most reliable SCR value, i.e. the
record with most breedings was kept for the analyses.
The Cooperative Dairy DNA Repository provided 312 k
SNP data for all the 11,539 bulls with SCR records. SNP
markers that either mapped to the sex chromosomes,
presented a minor allele frequency below 5% or a call
rate below 95% were removed. After quality control, a
total of 295,159 SNP markers remained for subsequent
analyses.

Incorporating SNP with large effect and functional
annotation data into genomic predictive models
For the first objective, the predictive power of the entire
high-density SNP dataset was evaluated using a
whole-genome prediction model (‘Base’ model), assum-
ing that all markers have the same contribution to the
phenotype. For the second objective, where the goal was
to evaluate the benefits of including markers with large
effect, dominance genetic effects were evaluated across
the entire genome following the study by Nicolini et al.
[25]. Briefly, each SNP was tested using a two-step
mixed model-based approach. In the first step, the fol-
lowing mixed model, y =Xb + Zu + e, without including
SNP was fitted. The random effects were assumed multi-
variate normal with u � Nð0;Gσ2uÞ and e � Nð0; Iσ2eÞ .
The variance–covariance matrix of this animal mixed
model was estimated as V0 ¼ ZGZ′σ2u þ Iσ2e . In the sec-
ond step, the following model was fitted for every SNP, y
=Xβ + XSNPβSNP + ε, assuming that ε � Nð0;V0σ2εÞ . For
each XSNP, genotypes were coded as 0 for the AA and 1
for either AB or BB in order to test if a single copy of
the B allele (reference allele) has the same effect on the
phenotype as two copies. The significance of the SNP ef-
fect was tested using the following test statistic:

z ¼ X′SNPV−1
0 ðy−Xβ̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X′SNPV−1
0 XSNP

q

which approximates the Wald test and is asymptotically
standard normal. These analyses were performed using
the R package MixABEL [28]. Genome-wide results were
corrected for possible inflation of the test statistics using
the function VIFGC implemented in the R package Gen-
ABEL [29]. The VIFGC function estimates corrected test
statistics using a genomic control method based on the
variance inflation factor. Results of this two-step mixed
model-based approach revealed five SNPs with marked
dominance effects (Fig. 1). These SNPs were then coded

as 0 or 1, in order to represent the effect of having none
or at least one copy of the B allele, and where fitted as
fixed effects in an alternative whole-genome prediction
models labeled as ‘Base + 5 SNP’ model, i.e., the base
model plus five 0/1 markers fitted as fixed effects.
For the third objective, different SNP classes were

evaluated based on the functional roles of the genetic
variants. Gene annotations from the University of Cali-
fornia Santa Cruz (UCSC) database (https://genome.
ucsc.edu/) were downloaded and used to map and re-
trieve functional roles of the entire SNP dataset based
on Bos taurus UMD3.1 genome assembly. Sequence
Ontology terms are used in the UCSC database to de-
scribe the effect of each genetic variant on the structure
of the gene transcripts. The SNPs were grouped into five
functional classes (Table 1), namely 5’region, 3’region,
non-synonymous, synonymous, and ncRNA. The classes
5’region and 3’region were defined as regions with pos-
sible regulatory effects. In the 5’region class, we included
SNPs located in the 5’UTR and within 5 kb upstream of
the start codon of a gene. In the same manner, for the
3’region class, we included SNPs in the 3’UTR or located
within 5 kb downstream a gene. The class labeled as
non-synonymous includes missense and nonsense genetic
variants. Here, missense is defined as a sequence variant
that changes one base and this change results in an al-
teration in the amino acidic sequence, while preserving
the length of the final polypeptide. A nonsense sequence
variant is defined as a change in one base that results in
a premature stop codon leading to a shortened polypep-
tide. The SNP class synonymous represent those variants
that change one base leading to a change in the codon,
but with no resulting change to the encoded amino acid.
Under non-coding RNAs (ncRNA) class are grouped gen-
etic variants in the sequence of non-coding RNA genes,
including tRNAs, ribosomal RNAs, and small RNAs. Fi-
nally, the set of SNPs that did not map to any of these
five SNP classes were labeled as intergenic.

Statistical models
In order to predict yet-to-be observed SCR values, differ-
ent linear kernels (genomic matrices) were evaluated
using Bayesian reproducing kernel Hilbert spaces regres-
sion models (RKHS) [30, 31]. Kernel-based regression
procedures are powerful predictive machines that allow
the incorporation of prior information about functional
roles of markers using either single or multiple kernels.

Single-kernel model
Single-kernel models were fitted for either all the SNPs
or each of the functional SNP subsets. Phenotypes were
analyzed using the following model:

y ¼ Xbþ Kαþ e
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Fig. 1 Whole-genome scan for dominance effects on Sire Conception Rate. a Manhattan plot showing the SNP significance across the bovine
genome for dominance effects on Sire Conception Rate. b Boxplots showing the observed differences in Sire Conception Rate for each genotype
of the five significant dominant markers

Table 1 Number of genetic markers mapped to different functional SNP classes

Class Definition Variant description Number of SNP

5′ Region Upstream gene variant Located within 5000 bases of the 5′ of an annotated gene 7280

5’UTR Located in the 5′ untranslated region of an annotated gene

3′ Region Downstream gene variant Located within 5000 bases of the 3′ of an annotated gene 4122

3’UTR Located in the 3′ untranslated region of an annotated gene

Non-synonymous Missense Changes one base resulting in a different amino acid sequence,
but the length of the polypeptide is preserved.

1144

Nonsense Changes one base resulting in a premature stop codon, leading
to a shortened polypeptide.

Synonymous Synonymous Changes one base but resulting in the same amino acid. 2090

ncRNA ncRNA Located in a non-coding RNA gene 1556
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where y is the vector of phenotypic records (SCR
values); b is the vector of fixed effects including a gen-
eral intercept (μ) and the SCR evaluation class effect; X
is the design matrix relating fixed effects to SCR records;
K is an n × n kernel matrix indexed by the SNP genotype
matrix and takes the form K = SST/p, where S is a
matrix of centered and standardized SNP genotypes and
p represents the number of SNPs, which is equivalent to
the well-known additive genomic relationship matrix
formulated by VanRaden [14] and Yang et al. [32]; α is
the vector of RKHS regression coefficients estimated as
the solution that minimizes l(α| λ) = (y −Kα)′(y −Kα)
+ λα′Kα, where λ is the regularization parameter; and e
is the error term. The random effects α and e were dis-
tributed as α � Nð0;K−1σ2gÞ and e � Nð0;R−1σ2

eÞ, where
σ2g and σ2e are the genetic and residual variances, respect-

ively, and R is an identity matrix.

Multi-kernel model
In this predictive model, multiple kernels were fitted
simultaneously in order to evaluate the different func-
tional SNP classes. The use of multiple kernels in one
model allows to differentially weight one or more ker-
nels that largely contribute to the trait of interest, over-
coming at the same time possible loss in predictive
ability due to the use of a single kernel [33]. Two alter-
native multi-kernel models, labeled as ‘Intergenic +
Functional’ and ‘Intergenic + 5 SNP + Functional’,
were evaluated. These models included six different ker-
nels representing the five functional SNP classes and the
intergenic SNPs. These multi-kernel models were evalu-
ated using the following equation:

y ¼ Xbþ
Xi

j¼1

K jα j þ e

where i = 6 is the number of SNP classes and Kj, with j
= 1, 2, .., 6, is the linear kernel linking SCR records with
each of the SNP classes. The random genomic and re-
sidual effects were assumed to be independent and nor-
mally distributed as α j � Nð0;K−1

j σ
2
gjÞ , and

e � Nð0;R−1σ2eÞ, respectively.

Implementation of the analysis
All the RKHS models were run using Gibbs sampling. For
each model, a Markov chain Monte Carlo (MCMC) with
100,000 samples (iterations) was run and the first 30,000
samples were discarded as burn-in. The remaining 70,000
samples were thinned at a rate of 5 resulting in 14,000
samples for computing features of the posterior distribu-
tion. Convergence of the chain was checked by visual in-
spection of trace plots of some key parameters, such as
variance components. In addition, the converge of the

multi-kernel models, arguably the most complex models
used in this study, was also evaluated using Geweke. All
these analyses were performed using the R package Bayes-
ian Generalized Linear Regression (BGLR) [34].

Model predictive ability
The predictive ability of the different RKHS regression
models was assessed by 5-fold cross-validation. In this
scenario, the entire data set (11,539 bulls with genotypes
and phenotypes) was divided at random into five sets.
Four out of the five subsets were combined to create the
training population while the remaining subset was used
as testing set. Phenotypes in the testing set where set to
unknown and the training population was used to train
the model in order to predict phenotypes for the testing
set. Each of the five subsets was used as testing popula-
tion one time. The entire five-fold cross-validation
process was repeated ten times, therefore, each analysis
resulted in 50 estimations. The predictive performance
of each model was assessed using the Pearson product
moment correlation (CORR) between observed pheno-
types and predicted phenotypes in the testing popula-
tion. Additionally, the mean-squared error of prediction
(MSEP) was calculated as a measure of prediction bias
and variability, using the following formula,

MSEP ¼ n−1
X5

f¼1

X
y−ŷtestð Þ2

where n is the number of animals in each fold (f ), and y
and ŷ are the observed and predicted SCR values, re-
spectively. In order to evaluate the predictive ability of
the different functional SNP classes, equal number of
SNPs were randomly sampled from the entire genome
creating a random set of SNPs for each functional SNP
class. The random sampling was repeated 10 times, and
the predictive ability of each set of random SNPs was
assessed using the same five-fold cross-validation pro-
cedure described above. Therefore, for the random set of
SNPs, each analysis resulted in a total of 500 estimates.

Results and discussion
Service sire has an important role in establishing a suc-
cessful pregnancy in dairy cattle. Semen from a single
sire can be used to inseminate hundreds of cows, and
therefore, the fertility of the service sire should not be
overlooked. The accurate prediction of yet-to-be ob-
served fertility phenotypes is very challenging, and the
incorporation of different sources of information can
help to improve model predictive performance. This
study was specially conducted to investigate the feasibil-
ity of predicting dairy bull fertility using either markers
with large effect and functional annotation data. We first
evaluated model predictive ability using 300 k SNP
markers and the entire U.S. Holsteins SCR dataset.
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Second, we investigated the impact of including non-
additive markers with large effect on model predictive
performance. Third, we assessed the predictive ability of
different sets of functional SNP variants.

Predicting ability of alternative whole-genome predictive
models
Figure 2 shows the predictive ability of the ‘Base’ model
using the entire SNP dataset in a single linear kernel,
which is mathematically equivalent to the genomic-BLUP
[14]. The predictive performance of this whole-genome
model was contrasted with the predictive power of the
‘Base + 5 SNP’ model that includes five significant
non-additive markers fitted as fixed effects. The ‘Base’
model exhibited an average correlation between observed
and predicted SCR values of 0.340, and a mean-squared
error of prediction equal to 3.973. The predictive ability of
this model is in concordance with our previous study [24],
where we used 54,807 SNPs and 7447 Holsteins bulls and
reached an average CORR value equal to 0.341 and an
average MSEP value equal to 4.160. Note that the MSEP
value in this current study was lower, revealing that by in-
creasing the size of the population (and therefore having a
larger training population) and/or increasing the number
of SNPs, prediction bias was reduced by 5%. Notably,
model predictive ability was largely improved by including

5 markers with large effect. Indeed, ‘Base + 5 SNP’ model
delivered CORR = 0.403 and MSEP = 3.761, representing
an increase in predictive correlation of about 19% and a
decrease in prediction bias by more than 5% compared
with the standard model. The whole-genome scan for
dominance effects showed that these five markers have a
major impact on sire conception rate with extreme signifi-
cance values (−log10P-values between 15 and 40; Fig. 1a).
Each of these markers explain between 3 and 8% of the
observed differences in conception rates between AB/BB
and AA bulls (Fig. 1b). It is worth noting that these five
markers presented negligible additive effects (data not
shown). As reported by Nicolini et al. [25], these signifi-
cant non-additive markers are near genes directly involved
in male fertility, with functions closely related to testis de-
velopment, spermatogenesis and sperm maturation. In
consistency with our results, Lopes et al. [35] showed that
including markers with relatively large effect improved
model prediction ability for number of teats in 4 different
pig populations. Similarly, Zhang et al. showed that the ac-
curacy of genomic predictions can be improved by incorp-
orating prior information into genomic models either
from public QTL databases [36] or from the current data-
set [37].
If we divide the average predictive correlation (0.403)

by the square root of the heritability (h2 ≈ 0.30) we

Fig. 2 Predicting ability of alternative whole-genome predictive models. Predictive correlation (left) and mean squared error of prediction (right)
was evaluated for each model. Blue boxes represent the ‘Base’ model that includes the whole SNP dataset (295,159 SNP). Light blue boxes
represent the ‘Base + 5 SNP’ model that includes five non-additive SNPs fitted as fixed effects
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obtain a predictive accuracy equal to 0.735. This value is
higher than the selection accuracies obtained for some
health traits currently evaluated in U.S., such as ketosis
and metritis, as well as higher than the accuracies re-
ported for some calving ability traits, such as sire calving
ease or sire stillbirth rate [38, 39]. Overall, our results
provide further evidence of the importance of
non-additive effects on dairy bull fertility, and the inclu-
sion of these significant markers into the genomic pre-
dictive models markedly increases predictive ability and
prediction accuracy.

Predicting ability of different functional SNP classes
The prediction ability of each of the five functional SNP
classes described in Table 1 was investigated using
single-kernel models. Figure 3 shows the predictive cor-
relation and the mean-squared error of prediction for
each functional class, along with the corresponding re-
sults for the same number of SNPs but randomly

sampled across the entire genome, i.e., random set of
SNPs. Interestingly, the five functional SNP classes
followed the same trend of higher CORR and lower
MSEP than their counterparts using random SNPs. The
class non-synonymous presented the largest difference in
predictive correlation compared with random markers,
0.285 versus 0.271, representing an increase of about 5%
in predictive ability. The SNP classes synonymous and
3’region also showed sizeable differences in predictive
correlation compared to randomly sampled SNPs, with
increases between 4 and 2% in predictive ability. Koufar-
iotis et al. [17] investigated the proportion of genetic
variance explained by SNP classes for several traits in
dairy cattle, and concluded that missense variants (in-
cluded here in the non-synonymous class) and synonym-
ous variants explained the highest proportion of
variance compared with the rest of the SNP classes.
Morota et al. [40] and Abdolahhi-Arpanahi et al. [41]
also evaluated the predictive ability of different SNP

Fig. 3 Predictive ability of different functional SNP subsets. Predictive correlation (top) and mean squared error of prediction (bottom) for each
set of functional SNPs (blue), compared with the same number of SNPs but randomly sampled across the entire genome (light blue)
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classes in broiler chicken, and concluded that SNP in
genic regions presented similar performance than those
located in intergenic regions with a higher predictive
correlation for the synonymous class. Despite the com-
mon belief that synonymous mutations have no major
effects on the phenotype, in most genomes, synonymous
codons have different frequencies, phenomenon known
as “codon usage bias”, and there is growing evidence in-
dicating that synonymous mutations are a source of nat-
ural variation, affecting both splicing and mRNA
stability [42].

Predicted ability of alternative multi-kernel models
Figure 4 shows the predictive performance of alternative
multi-kernel models fitting the five functional SNP clas-
ses (functional) together with the intergenic SNPs. Note
that the multi-kernel ‘Intergenic + Functional’ model
(CORR = 0.342 and MSEP = 3.967) showed similar pre-
dictive ability than the single-kernel ‘Base’ model

(CORR = 0.340 and MSEP = 3.973). Similarly, the
multi-kernel ‘Intergenic + 5 SNP + Functional’ model
(CORR = 0.405 and MSEP = 3.753) did not outperform
the single-kernel ‘Base + 5 SNP’ model (CORR = 0.403
and MSEP = 3.761). Overall, each functional SNP class
delivered higher predictive ability than its counterpart
using random SNPs, however, multi-kernel models fit-
ting all functional variants together did not outperform
the standard whole-genome approach. It should be em-
phasized that in dairy cattle, linkage disequilibrium in-
terferes with the use of biological information in
prediction because irrelevant markers (SNPs without any
biological role) capture part of the information encoded
by relevant markers, causing that the intergenic and the
functional SNP classes exhibit similar predictive abilities.

Conclusions
The genomic prediction of service sire fertility is pos-
sible, and this could have a great impact on the dairy

Fig. 4 Predicting ability of alternative single-kernel and multi-kernel whole-genome predictive models. Predictive correlation (top) and mean
squared error of prediction (bottom) for alternative single-kernel and multi-kernel whole-genome predictive models
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industry worldwide. Compared to our previous study
[24], the inclusion of more animals in the training popu-
lation and the use of more SNP markers did not improve
predictive correlation but did reduce prediction bias. Re-
sults from the whole-genome scan confirmed the rele-
vance of non-additive genetic effects in fitness-related
traits, such as male fertility. Interestingly, the inclusion
of five markers with large dominance effect into genomic
predictive models markedly increased prediction perform-
ance. Moreover, the different functional SNP classes
showed better predictive power than the randomly sam-
pled SNP sets. These results indicate that the predictive
power of these functional classes of SNPs is driven in part
by their biological roles and not simply by accounting for
population structure. However, multi-kernel models fitting
functional annotation data showed similar predictive per-
formance than the standard whole-genome approach.
Overall, our findings emphasize the value of incorporating
markers with large effect into prediction models. This is
the foundation for the development of novel genomic
strategies that can help the dairy industry make accurate
genome-guided decisions, such as early culling of pre-
dicted subfertile bulls. Moreover, the inclusion of func-
tional annotation data into genomic predictive models
deserves further research. The use of whole-genome se-
quencing data plus a better annotation of the bovine gen-
ome might provide new opportunities in this field.
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SCR: sire conception rate; SNP: single nucleotide polymorphism
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