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Abstract

Background: In mammals, fine-tuned regulation of gene expression leads to transcription initiation from diverse
transcription start sites (TSSs) and multiple core promoters. Although polysome association is a critical step in
translation, whether polysome selectively uses TSSs and core promoters and how this could impact translation
remains elusive.

Results: In this study, we used CAGE followed by deep sequencing to globally profile the transcript 5′ isoforms in
the translatome and transcriptome of human HEK293 cells at single-nucleotide resolution. By comparing the two
profiles, we identified the 5′ isoforms preferentially used in translatome and revealed a widespread selective usage
of TSSs (32.0%) and core promoters (48.7%) by polysome. We discovered the transcription initiation patterns and
the sequence characteristics that were highly correlated with polysome selection. We further identified 5804 genes
significantly enriched or depleted in translatome and showed that polysome selection was an important contributing
factor to the abundance of related gene products. Moreover, after comparison with public transcriptome CAGE data
from 180 human tissues and primary cells, we raised a question on whether it is a widely adopted mechanism to
regulate translation efficiency by changing the transcription initiation sites on the transcription level in cells of different
conditions.

Conclusions: Using HEK293 cells as a model, we delineated an indirect selection toward TSSs and core promoters by
the translation machinery. Our findings lend additional evidence for a much closer coordination between transcription
and translation, warranting future translatome studies in more cell types and conditions to develop a more intricate
regulatory model for gene expression.
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Background
The flow of genetic information is tightly controlled at
multiple levels to maintain proper phenotypes and achieve
cellular fitness. The regulation of transcription, the first
step in gene expression, has been extensively studied and
its complexity has been elaborated mostly owing to highly
efficient next-generation sequencing techniques [1–3].
Besides transcriptional regulation, it is now more evident
that translational regulation on mRNA also has substantial

control over gene expression by modulating mRNA trans-
lation, stability and localization [4, 5] Translational regula-
tory factors constitute a highly complex network to
control protein product and output, thus playing critical
roles in cellular metabolisms and tumorigenesis [6–9].
The noncoding part of mRNA, including the 5′ UTR

(with the 5′ cap), the 3′ UTR and the poly(A) tail, is re-
sponsible for most translational regulation on gene expres-
sion. The 5′ UTR is of special importance to translational
initiation where protein synthesis is principally regulated:
during the initiation step in eukaryotes, eukaryotic initi-
ation factors recruit the small ribosomal subunit (40S) to
form a pre-initiation complex that scans the 5′ UTR to
locate the start codon, after which the initiation factors are
released and the large ribosomal subunit (60S) is recruited
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to form the elongation-competent 80S ribosome [10]. Sev-
eral features in the 5′ UTR, such as the 5′ cap, secondary
structure and length, are known to affect translation [11,
12]. Other important regulatory features, such as upstream
AUGs (uAUGs), have also been studied in recent
genome-wide studies [4, 13, 14].
Cap Analysis of Gene Expression (CAGE) is a powerful

method widely used to profile the 5′ ends in organisms like
human, fly and yeast [1–3, 15–18]. Accumulated CAGE
data have clearly shown that a single gene can have highly
heterogeneous 5′ ends (i.e., 5′ isoforms) in total RNA (i.e.,
transcriptome). This heterogeneity is one manifestation of
the complex transcriptional regulation in eukaryotes: the
transcription machinery employs diverse transcription start
sites (TSSs) and multiple core promoters to precisely and
dynamically regulate gene transcription [19–21]. Besides,
selective usage of TSSs and core promoters in transcription
could have great impact on translation, thus altering the
abundance of protein products or even changing the
related biological functions [11, 19–21]. By contrast, sys-
tematic investigation on 5′ ends of polysome-associated
RNAs (i.e., translatome), which is more closely related to
translation process and protein products, has only been
performed in a very limited scale [4, 11, 22]. Given the
importance of the 5′ UTR, the lack of information on the
difference between translatome and transcriptome will
limit our ability to decipher the sophisticated regulatory
mechanisms in translation.
In this study, we employed CAGE followed by deep se-

quencing to globally profile the transcript 5′ isoforms in the
translatome of human HEK293 cells at single-nucleotide
resolution. This allowed us to precisely annotate the 5′ ends,
portray the 5′ end distributions, define the 5′ UTR and
identify core promoters used by polysome. By comparing
them with the counterparts from HEK293’s transcriptome,
we revealed selective usage of the TSS-derived 5′ ends by
polysome, thus delineating an indirect selection toward
TSSs and core promoters by the translation machinery. In
addition, quantitative measurement of transcript abundance
with CAGE allowed us to investigate the transcript enrich-
ment after polysome selection, enabling the identification of
highly enriched or depleted gene products in translatome.
All these differences between transcriptome and translatome
highlight the important roles of polysome in regulating gene
expression, the interplay between transcription and transla-
tion and the necessity of developing a more intricate model
to explain the underlining mechanisms.

Results and discussion
The landscape of 5′ transcript ends in translatome and
transcriptome
A flowchart of our work before data analysis is shown in
Fig. 1a. CAGE tags from deep sequencing were proc-
essed with fqtrim to remove low-quality ones, generating

approximately 18 million and 14 million tags respect-
ively for the translatome and transcriptome of HEK293
[23]. These tags were then mapped to the human
genome (assembly GRCh37) using bowtie with two mis-
matches allowed [24]. Tags mapped to rRNA were less
than 17.9% for translatome and 7.5% for transcriptome,
indicating high quality of the two CAGE libraries [3, 16].
In total, 6,973,108 tags (37.9%) for translatome and
6,791,846 tags (49.3%) for transcriptome were uniquely
mapped and used for downstream analysis. The vast ma-
jority of CAGE tags were located within 100 nt flanking
the 5′ ends of known transcripts in both translatome
(79.4%) and transcriptome (72.0%) (Additional file 1:
Figure S1), which was consistent with previous studies
[16, 22, 25]. All tags were mapped to 804,594 and
1,315,195 unique genomic positions, with top 100,000
positions (< 0.01% of the human genome) representing
83.0 and 70.9% of all tags in translatome and transcrip-
tome, respectively. These results showed a significant ag-
gregation of CAGE tags and an excellent agreement
between our data and existing annotations. They also
showed that, the number of unique 5′ ends in transla-
tome is much less than in transcriptome, which was a
highly expected result.
We merged overlapped CAGE tags (at least 4 tags) into

tag clusters (TC) and each TC represents a putative core
promoter (see Methods) [3, 16]. In total, we identified
29,908 and 37,530 TCs, consisting of 97.0 and 90.9%
CAGE tags in translatome and transcriptome, respectively.
Using the 5′ end of the most redundant tag in a TC to rep-
resent the position of the TC, we calculated the distribu-
tion of TCs across four annotated genomic features of all
protein-coding genes (Fig. 1b; unless otherwise specified,
we used “genes” hereafter to refer to protein-coding genes
only). In translatome, we observed a much higher propor-
tion (59.0%) of TCs located within 5′ UTRs than in tran-
scriptome (49.3%; p-value < 0.001 by proportion test),
suggesting that transcripts with canonical ORFs were more
likely to be translated. We identified a considerable fraction
of TCs from intron and the coding sequence (CDS) in
transcriptome (similar to the findings in human [16, 22,
25]; Fig. 1b), most of which were also present in transla-
tome. Although it is unclear what proportion of these TCs
would be further translated, recent studies have already
highlighted the biological significance of the resulting trun-
cated peptides [19, 20, 26, 27].

Selective usage of TSS by Polysome
In human, transcription usually initiates from multiple
positions (i.e., TSSs) within core promoters, resulting in
diverse distribution patterns of 5′ transcript ends in
transcriptome [3, 16, 25, 28]. As expected, using a
method proposed in previous studies [3, 16], we were
able to classify the TCs of transcriptome into 4 shape
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classes based on the 5′ end distributions (Add-
itional file 2: Figure S2). The 4 classes are (i) single dom-
inant peak (SP), (ii) broad with a single dominant peak
(DP), (iii) broad with bi- or multi- peaks (MP), and (iv)
generally broad peaks (BP), the proportions of which are
comparable to previous studies [16, 25]. We hereafter
only analyzed TCs located in the annotated 5′ UTRs (in-
cluding the upstream 100 nt) since these TCs and their
internal 5′ ends corresponded to core promoters and
TSSs, respectively [3, 16]. Very importantly, although we
were also able to classify the TCs of translatome into
these 4 classes, the 5′ end (i.e., TSS) distributions for a
large proportion of TCs changed from their counterparts
in transcriptome. This distribution disparity was assessed

using Kolmogorov-Smirnov test (KS test) for TCs with
at least 100 tags in both translatome and transcriptome.
To our surprise, as many as 1781 TCs (32.0%) under-
went 5′ end distribution change (p-value < 0.001 by KS
test; Fig. 2a), of which 775 (43.5%) had different shape
classes between translatome and transcriptome (Add-
itional file 3: Table S1). These results demonstrate that
preferential usage of TSSs by polysome is a widespread
phenomenon in HEK293 cell line.
The position of the highest density in the 5′ end distri-

bution, which corresponds to the most frequently used
TSS (defined as representative TSS) within a core pro-
moter, was used in previous work to define the 5′ UTR
[3]. In this study, representative TSSs and the 5′ UTR

Fig. 1 A flowchart of our work and the distribution of TCs. a A flowchart that briefly describes the steps to obtain the raw sequencing data. b
Distribution of TCs across different genomic features in HEK293 cell line. Four genomic features (5′ UTR, 3′ UTR, CDS and intron) of all protein-
coding genes were based on human GRCh37 annotations from Ensembl. The rest of the genome were considered “intergenic” (see Methods)
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Fig. 2 (See legend on next page.)
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were defined in the same way, and length difference of
the 5′ UTR was calculated between translatome and
transcriptome (Additional file 4: Table S2). Among the
8513 TCs with at least 10 tags mapped to the represen-
tative TSSs, 38.2% (3248) had different representative
TSSs between translatome and transcriptome (Fig. 2b);
by contrast, only 20.3% of the 8513 TCs (much lower
than 38.2%; p-value < 0.001 by proportion test) used
different nucleotides at the representative TSSs, showing
conservations that were consistent with previous find-
ings that the identity of the first nucleotide had a strong
influence on the translation of the corresponding tran-
script [20]. In addition, in transcriptome, the nucleotide
frequencies at the representative TSSs were similar to
those in previous studies [16, 25]; in translatome, the
frequencies were largely the same, except that the
frequency of “C” increased appreciably (1.2-fold change,
p-value < 0.05 by proportion test; Fig. 2c).
We downloaded deep sequencing-derived CAGE data

from the FANTOM5 project (phase 1.3 and 2.0), which in-
cluded the TCs and representative TSSs in transcriptome
for 180 human tissues and primary cells [29]. We com-
pared the representative TSSs between the HEK293 trans-
latome and the 180-sample CAGE data. We found that,
almost 90% of the aforementioned 3248 representative
TSSs could be found in at least 1 of the 180 transcriptome
CAGE data as representativeTSSs (Fig. 2d; Additional file 5:
Table S3). Since the representative TSSs in translatome
shows the most preferred 5′ transcript ends by polysome,
exactly matched representative TSSs between transcrip-
tome and translatome should contribute to better effi-
ciency for polysome association, thus probably enhancing
translational efficiency. Therefore, based on these observa-
tions, we raised a question worth further investigations:
could it be a widely adopted mechanism to regulate trans-
lation by employing different representative TSSs at the
transcription level in different cell types?

Selective usage of core promoters by Polysome
In eukaryotes from yeast to human, a single gene could
use multiple core promoters in transcription as a result
of complex gene expression regulation [3, 16, 25]. Here
in HEK293 cell line, 37.2% of the expressed genes used
at least 2 core promoters to initiate their transcription

(Fig. 3a); by contrast, the percentage of genes still using
≥2 core promoters went down significantly in transla-
tome (25.3%, p-value < 0.001 by proportion test). Al-
though the majority of core promoter-derived TCs were
also associated with polysome (Fig. 3b), their abundance
(measure by Reads Per Million – RPM) could be chan-
ged significantly on polysome (see the next paragraph).
An unneglectable fraction (17.5%) of core
promoter-derived TCs were not present in translatome,
and their average RPM were much lower than that of
the others in transcriptome (p-value < 0.001 by Wil-
coxon test; Fig. 3c). These results suggest that preferen-
tial usage of core promoters is a common phenomenon
for polysome in HEK293 cell line.
We found a surprisingly high proportion (48.6%) of

TCs with significantly changed RPM (|log2FC| ≥1 and
p-value < 0.05 by the R package of DEGseq, where FC
(i.e., fold change) is defined as RPMtranslatome/RPMtran-

scriptome for each TC) between translatome and transcrip-
tome [30]. Among these TCs (Additional file 6: Table
S4), only 2488 (25.8%) showed enrichment in transla-
tome, corroborating the preferential usage of certain
core promoters in translation (see Additional file 7).
Moreover, for translatome-enrich TCs, we discovered a
significant correlation between transcription initiation
pattern and TC enrichment level (Fig. 3d): when the TC
fold change went higher, the percentage of TCs in SP
class generally went much higher (Pearson correlation
R = 0.94, p-value < 0.001) while the percentage of BP
class generally became much lower (R = -0.95, p-value <
0.001). Since the shape class of the same TC may change
between different types of cells [25, 28, 29], it could be a
potential strategy to regulate translation by controlling
the transcription initiation pattern.
We compared the immediate downstream sequences

(100 nt) of representative TSSs between top-enriched
200 TCs, top-depleted 200 TCs and randomly picked
200 TCs with FC between 0.95 and 1.05. We first used
WebLogo to examine the sequence features and found
that the top-enriched TCs had the least GC content
while the top-depleted ones had the most (Fig. 3e) [31].
By counting the total number of AUG (the start codon)
in the 100 nt sequence for each group, we found that the
top-enriched TCs had significantly more AUG (151)

(See figure on previous page.)
Fig. 2 Comparison of TSSs between translatome and transcriptome. a A typical example of TSS distribution disparity. The two TCs are located in at the
core promoter region of the gene “EIF3D”. The red color stands for the 5′ end distribution in translatome and the green stands for the distribution in
transcriptome (the yellow is the common part of the two distributions). b The distance between representative TSSs of translatome and transcriptome.
The distance is calculated with the genomic coordinates of representative TSSs on the human genome. c Comparison of the nucleotide frequency at
representative TSSs in translatome and transcriptome. d Usage landscape of HEK293-derived representative TSSs in 180 human samples. All 3248
representative TSSs are from HEK293 translatome and only those from chromosome 1 are displayed here for better visualization. In the heatmap, “1”
(marked with red) means the representative TSS on the right side is also used as representative TSS in the sample on the top. The histogram on top of
sample names shows the number of representative TSSs used by each sample. The name of each representative TSS contains the information of
chromosome, strand and genomic position. For the full list of all 3248 representative TSSs, please refer to Additional file 5: Table S3
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Fig. 3 (See legend on next page.)
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than the top-depleted (78) and the randomly picked (97)
groups (p-value < 0.001 by proportion test), showing that
the polysome preferentially binds to transcripts with
shorter 5′ UTR. Sequence motif analysis with MEME
identified a significant motif AA(G/A)(A/C)A(G/A)GG
in the downstream 100 nt sequences for the top-
enriched 200 TCs (p-value< 0.001), which was not
present in the other two groups [32]. Further analysis
using Tomtom showed that this motif was not similar to
any protein-binding motif (p-value > 0.05), indicating it
could be a novel motif [33]. Importantly, compared with
the other two groups, there was a significant enrichment
(> 6 fold) of TATA box in the upstream 100 nt of the
top-enriched 200 TCs, suggesting this cis-regulatory
element played important roles beyond transcription
regulation.

Selective usage of genes by Polysome
Suppose a gene A could generate transcripts from n differ-
ent core promoters (n is determined by GRCh37 annota-
tions from Ensembl), we used {p1, p2, … , pn} and {t1, t2,
… , tn} to denote the abundance of core promoter-derived
TCs in translatome and transcriptome, respectively. We
first defined gene A’s abundance in translatome (Ep) and
transcriptome (Et) as follows:

Ep ¼ Σn
i ¼ 1 pi; Et ¼ Σn

i ¼ 1 ti

We then defined a fold-change score (Sfc) as follows to
measure polysome preference toward genes:

Sfc ¼ Ep

Et
¼ Σn

i ¼ 1 pi
Σn
i ¼ 1 ti

We calculated Sfc for each gene and the corresponding
p-value with the DEGseq package (Additional file 8: Table
S5). In total, we identified 5804 (49.5%) genes with signifi-
cantly changed abundance (i.e., |log2 Sfc | ≥1 and p-value <
0.05). We then looked into the top 50 translatome-enriched
genes (all Sfc > 2) ranked by the p-values (Table 1) and
found that the translatome-enriched ones were highly
enriched in the gene families of histones and ribosomal
proteins (both p-values < 0.001 by fisher’s exact test). By
contrast, the top 50 translatome-depleted genes (all Sfc <

0.5) enriched in the RNA binding motif containing genes
(p-value < 0.001), included no histone or ribosomal genes.
Considering that histones and ribosomal proteins are highly
abundant in cells and polysome association is a prerequisite
for translation [10, 34], we infer that polysome selection is
an important contributing factor to the abundance. To sup-
port this point, we picked three groups of genes (translato-
me-enriched, translatome-depleted and unchanged) with
similar average RPM in transcriptome (see Methods). We
found that the protein abundance of translatome-enriched
genes was significantly higher than the other two groups
(p-value < 0.001 by Wilcoxon test), while enrichment-un-
changed group had much higher abundance than that of
translatome-depleted genes (p-value < 0.001), thus substan-
tiating our inference (see Methods).
As differential usage of core promoters from the same

gene could have profound impact on the protein prod-
ucts and the related biological functions [19, 21], we
formulated another score (Sdu) as follows to measure the
degree of differential usage:

Sdu ¼ 1
2

Σ
n

i ¼ 1
j pi
Ep

−
ti
Et

j

This equation applies only when gene A’s abundance is
> 0 in both translatome and transcriptome (i.e., Ep > 0
and Et > 0). Based on this equation, we could easily con-
clude that: (1) Sdu ∈[0, 1]; (2) Sdu = 0 when gene A only
uses 1 core promoter (i.e., n = 1), or uses ≥2 core pro-
moters (i.e., n ≥ 2) but the core promoter-derived TCs
account for the same proportions between translatome
and transcriptome (i.e., pi

Ep
¼ ti

Et
given that 2 ≤ i ≤ n); (3)

Sdu = 1 when gene A only uses TCs (in translatome) that
are not detected in transcriptome by the Illumina se-
quencing. For simplicity, we only calculated Sdu for
genes using at least 2 core promoters (i.e., n ≥ 2) in
HEK293 cell line. Importantly, we found that, the correl-
ation between Sdu and Sfc is very low (Pearson correl-
ation R = -0.04), demonstrating that Sdu give additional
information independent of Sfc. We identified 62 genes
with Sdu > 0.5 and further analysis of them showed that
they were enriched in the myocardin gene family
(p-value < 0.001 by Fisher’s exact test). By contrast, the

(See figure on previous page.)
Fig. 3 Comparison of core promoter usage in translatome and transcriptome. a The percentage of genes using specific number of core
promoters. b Scatterplot of the TC tag numbers in translatome and transcriptome. As the two axes are in logarithmic scale, the number of tags in
all TCs has been increased by 1 to avoid 0. c Beanplot of the TC abundance measured by RPM. Among the TCs in transcriptome, those present in
translatome are grouped into “Set A” while those not present are grouped into “Set B”. In this plot, the short green lines mark the observations of
RPM, while the purple area shows the frequency of the observed RPM. The two long solid black lines stand for the average of each set and the
long dotted black line stands for the overall average of two sets. d Correlation between TC fold change and TC shape class. The percentage (y-
axis) of SP and BP classes is calculated with translatome-enriched TCs with minimal fold change on x-axis. The dashed grep line and yellow line
stand for the percentage of SP and BP classes for translatome-depleted TCs with fold change < 0.5. e The consensus sequence of the immediate
downstream 100 nt of the representative TSSs of the top-enriched 200 TCs, top-depleted 200 TCs and randomly picked 200 TCs. The three groups
of 100-nt sequences were all analyzed with WebLogo. The x-axis shows the relative positions with respect to the representative TSS (at position 1)
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top 62 genes with smallest Sdu were only enriched in
the gene families of histones and ribosomal proteins
(p-value < 0.001), suggesting that differential usage of
core promoters was very rare for histone and riboso-
mal genes in HEK293 cell line. Here we listed > 4700
genes (including the aforementioned 62 × 2 genes)
with their Sdu scores in Additional file 9: Table S6 to
spur interest of biologists for the underlining mech-
anism leading to this differential usage.

Conclusions
In this work, we use CAGE followed by deep sequen-
cing to systematically compare the transcript 5′ ends
between the translatome and transcriptome of human
HEK293 cells. The revealed preferential usage of
many 5′ ends by polysome shows that, after tran-
scriptional selection of TSS and core promoters, the
translation machinery again makes such selection.
This comparison leads to the identification of highly
selected TSSs, core promoters and gene products in
translatome. It also gives rise to the transcription ini-
tiation patterns and the sequence characteristics
highly correlated with polysome selection. These find-
ings delineate an indirect selection toward TSSs and
core promoters by the translation machinery,

emphasizing closer than expected interplay between
transcription and translation.

Methods
Growth conditions and RNA isolation
HEK293 cells were cultured in Dulbecco’s Minimal Es-
sential Medium (GIBCO, Life Technologies, Carlsbad,
CA, USA) supplemented with 10% FBS (GIBCO
#10099–141), 100 units/ml penicillin, 100μg/ml strepto-
mycin (GIBCO #15140–122) and 2mM L-glutamine
(Sigma) at 37 °C and 5% CO2.

Polysome fraction is isolated by 10–50% sucrose
gradient using the method from Bor et al. (2006) with
minor modifications [35]. In brief, around 80% con-
fluent cells were incubated with 50 μg/ml cyclohexi-
mide for 30 min at 37 °C. Cells were scrapped into a
1.5 ml Eppendoff tube with a cell lifter. And cells
were lysed by 250ul 2XRSB/RNasin and 250 μl of
polysome extraction buffer. The polysome fraction
was collected with the BioComp piston gradient frac-
tionator after ultra-speed centrifugation with SW41Ti
rotor buckets at 36,000 rpm for 2 h.
The cells without cycloheximide treating were lysed

with TRIzol reagent (Invitrogen, Cat. No. 15596–018)
and total RNA was extracted following TRIzol protocol.

Table 1 The top 50 genes that are most enriched or depleted in translatome. Genes are ranked by p-values (all p-values < 0.001).
The histone genes are marked in green, the ribosomal protein genes are in red and the RNA binding motif containing genes in
blue. “#” stands for “number”
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The polysome-associated RNA was also extracted using
TRIzol with the same method.

CAGE library preparation
Two 27 bp-tagged deep sequencing libraries were prepared
using the methods described in Valen et al. (2009) and
Takahashi et al. (2012) [17, 36]. In brief, using SuperScript
II (Invitrogen), first-strand cDNA was synthesized with
30 μg total RNA and 8 μg of anchored-N15 primer(5′-
AAGGTCTATCAGCAGN15). The capped RNA was se-
lected using the cap-trapper method described in Valen et
al. (2009) [17]. The 2nd strand DNA was synthesized by li-
gating a N6 adaptor (CCACCGACAGGTTCAGAGT
TCTACAGCTTCAGCAGNNNNNN Phos / N6-down:
Phos CTGCTGAAGCTGTAGAACTCTGAACCTGTCG
GTGG NH2) to the 3’end of the ssDNA with DNA ligation
kit (Takara, Tokyo, Japan). The dsDNA was digested with
EcoP15I (NEB, Ipswich, MA, USA) following the method
from Takahashi et al. (2012) [36]. A 3′ adaptor (3′ adaptor-
up, NNTCGTATGCCGTCTTCTGCTTG / 3′ adaptor-
down: CAAGCAGAAGACGGCATACGA) was ligated to
the recovered EcoP15I fragments. The PCR primer1 (5′-
CAAGCAGAAGACGGCATACGA -3′) and PCR primer2
(5′-AATGATACGGCGACCACCGACAGGTTCAG
AGTTCTACAGTCCGA -3′) were used to create deep se-
quencing libraries which contained the first 27 bp from the
5′ ends of capped RNA. The two libraries were prepared
and sent out for sequencing together. Sequencing was per-
formed using Solexa GAII following the manufacturer’s
protocol. Sequencing data from different batches (to
achieve enough sequencing depth) were merged together
before downstream data analysis.

Quality control and sequencing reads alignment
Raw sequencing data were first processed using fqtrim
(version 0.94) to remove the 3′ sequencing adaptor, 5′
barcodes (CTTCAGCAG and GATCAGCAG for trans-
latome and transcriptome RNA library respectively) and
low-quality reads (with parameters -q 20 -m 1) [23, 27].
Reads with length ≥ 30 or ≤ 24 were also removed from
downstream analysis since the expected length of CAGE
tags was 27 nt based on the protocols above [35, 36].
Bowtie was then used to map the clean reads to the hu-
man genome (assembly GRCh37) with two mismatches
allowed (using parameters -v 2 --best --strata -m 1).
Only uniquely mapped reads were used for further ana-
lysis. The R package – CAGEr was used to correct “G”
nucleotide addition bias at the 5′ ends of CAGE tags in-
troduced in the library preparation [28].

Tag clustering and TC distribution
Tag clusters were identified with the following two steps.
First, tags that overlapped on the same strand were
grouped into a tag set. Second, any tag set with at least

four tags were defined as a tag cluster. Suppose tags ran-
domly distributed on the human genome were back-
ground noise, the probability n tags were observed in a
tag set of (n-1) × 27 nt length follows a Poisson distribu-

tion with λ ¼ ðn−1Þ�27
N � T (N is the human genome

length and T is the number of uniquely mapped reads).
Based on this λ, it is obvious that the probability of n ≥ 4
is less than 0.001, which corresponds to the p-value.
Therefore, the above two steps guaranteed that the iden-
tified tag clusters had significant p-values and were not
background noise.
Different genomic features could overlap and the posi-

tions of TCs could be situated within two or more fea-
tures at the same time. When this happened, we used
the method described in Ref. [3] to assign TCs with the
following priority: 5′ UTR > 3′ UTR > CDS > intron (the
100 nt upstream of 5′ UTR were also included in 5′
UTR) [3]. TCs not mapped to any of the four features in
protein-coding genes were considered “intergenic”.

Classification criteria for TC shape class
We classified TCs (with ≥100 tags) into four shape clas-
ses with a method similar to those from previous studies
[3, 16]. Briefly, we used the following criteria: (i) a TC
was classified into SP class if the distance between the
25th and 75th percentile of its tag positions was < 4 nt,
or the distance between the 15th and 85th percentile
was < 6 nt; (ii) if a TC did not meet (i) but the ratio be-
tween its highest peak and second highest peak was > 2
and the highest peak accounted for > 20% of all tags in
it, the TC was classified into DP class; (iii) If distance be-
tween any two consecutive peaks (both peaks accounted
for > 15% of all tags) was > 5 nt and the TC was in nei-
ther SP nor DP class, it was classified into MP class; (iv)
if a TC did not meet (i), (ii) or (iii), the TC was classified
into BP class.

Additional definitions, tools and data sources
In this study, the expressed transcripts were defined as
those with at least one TC identified within the 5′ UTR
or the 100 nt upstream region. The expressed genes were
defined as those with at least one annotated transcript
expressed in transcriptome. To make comparison be-
tween samples, RPM was used to normalize the read
number of each cluster, which was defined as follows:

RPM ¼ the number of reads in a read cluster
the total number of mapped reads

� 1000000

Statistical analysis (including the hypothesis testing)
was performed with the R language (http://www.r-pro-
ject.org/). In the case of multiple hypothesis testing, we
used BH method to correct p-values (unless otherwise
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specified) [37]. Sequence and motif analysis was per-
formed based on R, WebLogo (http://weblogo.berkeley.
edu) and MEME (http://meme-suite.org/tools/meme,
with the option “search given stand only” for motif
search only in the RNA transcripts) and Tomtom
[http://meme-suite.org/tools/tomtom, with Vertebrates
(In vivo and in silico) as the database of known motifs]
[31–33]. Multiple R packages and tools were used in
DNA sequence retrieval and figure preparation [38–43].
All CAGE data from the FANTOM5 project were

downloaded from the FANTOM website (http://fantom.
gsc.riken.jp/5/datafiles/latest/), including the TCs and
the representative TSSs for 180 human tissues and
primary cells (see Additional file 9: Table S6 for more
details of the 180 samples) [29]. The category of gene
families and their members were retrieved from HGNC
website (https://www.genenames.org/) [44].

Polysome selection and protein abundance
We picked three groups of genes with the following cri-
teria: (1) picked top 100 genes from the translatome-
enriched genes (ranked by p-values; all Sfc > 2); (2) picked
top 100 genes from the unchanged genes (i.e., 0.9 < Sfc <
1.1; genes were ranked by their RPM in transcriptome);
(3) picked the genes ranked from 101th to 200th from the
translatome-depleted genes (ranked by p-values; all Sfc <
0.5). This way, we obtained three groups consisting of 100
genes each with similar average RPM in transcriptome
(290.3, 298.8, 300.4 for translatome-enriched, unchanged,
translatome-depleted genes, respectively). We retrieved
protein abundance data (i.e., average protein copy num-
ber) in mouse fibroblasts (NIH3T3 cell line) from Ref.
[34] Additional file 5: Table S3. We identified the homolo-
gous proteins between mouse and human based on
HGNC nomenclature and used mouse proteins’ abun-
dance to represent the homologs’ abundance in human
[44].

Accession number
Raw sequencing data used in this work are available in the
ArrayExpress database (http://www.ebi.ac.uk/arrayexpress)
under accession number E-MTAB-7382.

Additional files

Additional file 1: Figure S1. Tag distribution around annotated TSSs of
human transcripts. The black line stands for translatome and the red line
stands for transcriptome. The TSS annotation was retrieved from human
GRCh37 annotations downloaded from Ensembl. (PNG 188 kb)

Additional file 2: Figure S2. Typical examples for the 4 TC shape
classes. SP class (A) are characterized by a sharp peak that stands for the
majority of tags in a TC. BP class (D) do not have any peak much
stronger than the others in a TC. The 5’ end distributions in DP (B) and
MP (C) classes are somewhere between SP and BP classes (refer to

Methods for more details). The TC information (chromosome, strand and
genomic position) are placed on top of each example. (PNG 336 kb)

Additional file 3: Table S1. TCs with changed 5’ end distributions
between translatome and transcriptome. “Chr” stands for “chromosome”.
“TC start” and “TC end” gives the genomic range of TCs on the human
genome. “Gene Symbol” shows the genes where TCs are located.
“Source” shows where TCs come from. P-values are calculated with KS
test and adjusted with BH method. Any two TCs in sequential rows from
Translatome and transcriptome correspond to the same core promoter
and thus have the same p-value. (XLSX 268 kb)

Additional file 4: Table S2. Length difference of the 5’ UTR between
translatome and transcriptome. “Length Difference” shows the difference
in length of the 5’ UTR. “Length Status” shows whether the length of the
5’UTR in translatome is the same as, or shorter than, or longer than that
in transcriptome. The definitions of the other column names are the
same as in Additional file 3: Table S1. (XLSX 1009 kb)

Additional file 5: Table S3. Usage frequency of HEK293-derived repre-
sentative TSSs in 180 human samples. All 3248 representative TSSs are
from HEK293 translatome. In the table, “1” means the representative TSS
(row name) is also used as representative TSS in the sample (column
name). The name of each representative TSS contains the information of
chromosome, strand and genomic position. (XLSX 1773 kb)

Additional file 6: Table S4. TCs with significantly changed RPM
between translatome and transcriptome. “z-score”, “p-value” and “q-value”
are calculated with the R package of DEGseq. TCs are ranked by the q-
values. (XLSX 2126 kb)

Additional file 7: Calculation of TC fold change (FC) with polysome-free
RNA instead of total RNA. (DOCX 13 kb)

Additional file 8: Table S5. Comparison of genes’ abundance between
translatome and transcriptome. “Ep”, “Et” and “Sfc” are all defined in the
main text. “p-value” and “q-value” are calculated with the R package of
DEGseq. Genes are ranked by the q-value. Genes with too few reads to
calculated the p-values are removed from this table. (XLSX 925 kb)

Additional file 9: Table S6. Differential usage of core promoters from
the same gene by polysome. Under each gene name, there are two (or
more) rows corresponding to two (or more) core promoters of the gene.
Each gene has one Sdu score, which is defined in the main text. (XLSX
660 kb)

Abbreviations
CAGE: Cap Analysis of Gene Expression; CDS: Coding sequence; FC: Fold
change; KS test: Kolmogorov-Smirnov test; RPM: Reads per million; TC: Tag
cluster; TSS: Transcription start site; UTR: Untranslated region
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