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Overlap between eQTL and QTL associated
with production traits and fertility in dairy
cattle
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Abstract

Background: Identifying causative mutations or genes through which quantitative trait loci (QTL) act has proven very
difficult. Using information such as gene expression may help to identify genes and mutations underlying QTL. Our
objective was to identify regions associated both with production traits or fertility and with gene expression, in dairy
cattle. We used three different approaches to discover QTL that are also expression QTL (eQTL): 1) estimate the
correlation between local genomic estimated breeding values (GEBV) and gene expression, 2) investigate whether the
300 intervals explaining most genetic variance for a trait contain more eQTL than 300 randomly selected intervals, and
3) a colocalisation analysis. Phenotypes and genotypes up to sequence level of 35,775 dairy bulls and cows were used
for QTL mapping, and gene expression and genotypes of 131 cows were used to identify eQTL.

Results: With all three approaches, we identified some overlap between eQTL and QTL, though the majority of QTL in
our dataset did not seem to be eQTL. The most significant associations between QTL and eQTL were found for
intervals on chromosome 18, where local GEBV for all traits showed a strong association with the expression of the FUK
and DDX19B. Intervals whose local GEBV for a trait correlated highly significantly with the expression of a nearby gene
explained only a very small part of the genetic variance for that trait. It is likely that part of these correlations were due
to linkage disequilibrium (LD) in the interval. While the 300 intervals explaining most genetic variance explained most
of the GEBV variance, they contained only slightly more eQTL than 300 randomly selected intervals that explained a
minimal portion of the GEBV variance. Furthermore, some variants showed a high colocalisation probability, but this
was only the case for few variants.

Conclusions: Several reasons may have contributed to the low level of overlap between QTL and eQTL detected in
our study, including a lack of power in the eQTL study and long-range LD making it difficult to separate QTL and eQTL.
Furthermore, it may be that eQTL explain only a small fraction of QTL.
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Background
A large number of quantitative trait loci (QTL) has been
identified for various traits in dairy cattle [1–5]. How-
ever, identifying the causative mutation or gene through
which a QTL acts has proven very difficult. This diffi-
culty is largely because of the small effect size of most
QTL, extensive long-range linkage disequilibrium (LD)

in cattle [6] and our lack of understanding of the mode
of action of most QTL. Some QTL are due to changes
in the amino acid sequence of a protein but most do not
appear to be protein-coding mutations and it is assumed
they affect gene regulation in some way. For instance,
some QTL might be due to a mutation affecting gene
expression, that is they are expression QTL (eQTL).
Various studies in human have demonstrated enrich-
ment of eQTL near genome wide association studies
(GWAS) hits and colocalisation of eQTL and QTL. For
example, Brown et al. [7] found enrichment of small
GWAS p-values for variants with a high probability to
be the causal variant for an eQTL, and detected 47 cases
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showing evidence of colocalisation between eQTL and
GWAS variants for various traits in human. In a study
by Nicolae et al. [8], GWAS variants associated with
quantitative traits in humans were enriched for eQTL
variants, including a 2 fold enrichment of variants asso-
ciated with Crohn’s disease among eQTL. Zhu et al. [9]
found significant enrichment of eQTL for GWAS hits
for height, BMI and schizophrenia. Therefore, using
gene expression information may help to identify genes
and mutations underlying QTL. Littlejohn et al. [10]
have recently shown that a major QTL influencing pro-
duction traits in dairy cattle is also an eQTL related to
the expression of MGST1 and Kemper et al. [11] found
a QTL for milk yield that is likely an eQTL for SLC37A1.
However, in general, few QTL have been convincingly
shown to be eQTL for the same reasons that make QTL
identification difficult. eQTL and QTL are both com-
mon and so, given the long-range LD in cattle, it is likely
that an eQTL will be in LD with a QTL and therefore
appear associated with the phenotype.
The objective of our study was to identify regions as-

sociated both with production traits or fertility and with
gene expression, in dairy cattle. QTL can be mapped
more accurately by an analysis such as Bayes R than by a
conventional one variant at a time GWAS [12, 13]. Be-
cause Bayes R fits all variants simultaneously, it is more
able to narrow the location of a QTL than a GWAS is.
Therefore, in this paper we used the Bayes R results for
production traits and fertility, and compare that with
gene expression data. It is still difficult to show that an
eQTL and a nearby QTL are due to the same causal
variant. The colocalisation method is designed to do this
by estimating the colocalisation posterior probability
(CLPP) [14]. However, it may lose power due to the
large number of sequence variants in high LD. There-
fore, we used three different approaches to discover
QTL that are also eQTL: 1) estimate the correlation be-
tween local GEBV and gene expression, 2) investigate
whether the 300 intervals explaining most genetic vari-
ance for a trait contain more eQTL than 300 randomly
selected intervals, and 3) a colocalisation analysis.

Results
QTL mapping using GWAS and local GEBV variance
We performed a GWAS using imputed sequence data and
daughter trait deviations (DTD) and trait deviations (TD)
for milk yield (milk), fat yield (fat), protein yield (prot), fat
percentage (fat%), protein percentage (prot%) and fertility
(fert) of up to 35,775 bulls and cows. The results of the
GWAS are shown in Table 1 and Fig. 1. The number of
GWAS variants with p ≤ 10− 6 ranged from 1204 for fert to
7017 for fat%, with a false discovery rate (FDR) of 0.007
and 0.001, respectively. Because a large number of sequence
variants can be associated with the same QTL, we restricted

the number of selected variants with p ≤ 10− 6 so that there
was at least 1Mb between variants. This reduced the num-
ber of variants, ranging from 89 variants selected for fertil-
ity to 861 for fat%. All chromosomes contained variants
associated with production traits, with most variants lo-
cated on chromosome 14, followed by chromosomes 20,
5, 6 and 3. Chromosomes 2, 3, 5, 6, 10, 13, 15, 18, 19, 21,
24 and 25 contained variants associated with fertility, with
most variants located on chromosome 18, followed by
chromosomes 21 and 6. We used the variant effects esti-
mated by Bayes R hybrid to compute local GEBVs of 250
kb windows along the genome. The variance of these local
GEBVs was then used to detect QTL. As shown in Fig. 2,
the largest QTL detected by the local GEBV variances
were located at the same locations as those detected using
the GWAS.
Figure 3 compares the precision of QTL mapping using

either a GWAS or the local GEBV variance for a QTL on
chromosome 18 detected for fert. The most significant vari-
ants in the GWAS were in an intron (p = 1.7 × 10− 24) and a
missense variant (p = 5.3 × 10− 24) in ENSBTAG0000
0037537. The intervals that explained the largest part of

P

σ2locGEBV were four overlapping intervals located between
57,565,406 and 57,696,310 bp, that explained 51% of

P

σ2locGEBV . In the GWAS many SNPs in this region are asso-
ciated with the trait but it is unclear from the GWAS re-
sults whether this represents one or more QTL for fertility.
However, the local GEBV variance shows only one peak,
suggesting that there may be only one large QTL for fertil-
ity in this region.

eQTL detection
RNA sequencing was used to obtain gene expression data
of 105 Holstein and 26 Jersey cows. Milk samples were
available for both Holstein and Jersey cows, blood samples
only for Holstein cows. Subsequently, the association be-
tween 10,904,750 sequence variants and gene expression
was estimated using a linear model. With a threshold of
p ≤ 10− 5, there were 15,299 and 98,340 variants in the se-
quence data associated with the expression of 361 and 554

Table 1 Number of significant GWAS variants and FDR per trait

trait n FDR nQTL

milk 4333 0.001 213

fat 2136 0.003 140

prot 2287 0.003 165

fat% 7017 0.001 861

prot% 5298 0.001 307

fert 1204 0.007 89

FDR false discovery rate, n number of variants with a p-value below 10− 6, nQTL
number of variants with a p-value below 10− 6, with at least 1 Mb between
variants, milk milk yield, fat fat yield, prot protein yield, fat% fat percentage,
prot% protein percentage, fert fertility
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genes located within 1Mb of the gene, using milk and
white blood cells, respectively. The FDR corresponding
with a threshold p ≤ 10− 5 was 0.06 and 0.01 for milk and
white blood cells, respectively. All chromosomes con-
tained eQTL.

Correlations between local GEBV and gene expression
Correlations between local GEBV and gene expression
was used to identify regions associated with both gene
expression and the traits. Figure 4 shows the correl-
ation between local GEBV for fat and the expression of
genes within 1Mb of the intervals for which the GEBV

was calculated. Similar figures for the other traits can
be found in Additional file 1. Significant correlations
(pcor(locGEBV,expr) ≤ 10− 5) were detected on all chromo-
somes, except for chromosomes 12, 24 and 27 using
milk cells, and chromosome 28 using white blood cells.
The most significant correlations were found on
chromosome 18, followed by chromosome 5. Table 2
gives an overview of the number of correlations se-
lected based on the pcor(locGEBV,expr). In total, there were
3143 significant correlations. The majority of selected
correlations, 2623, were detected using white blood
cells, while only 520 correlations were detected using

Fig. 1 GWAS. Milk = milk yield, fat = fat yield, prot = protein yield, fat% = fat percentage, prot% = protein percentage, fert = fertility. The red line
corresponds with a threshold of p≤ 10− 6
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milk cells. The FDR ranged from 0.06 for milk, fat and
prot% to 0.08 for fat% and fert using milk cells, and
was 0.01 for all traits using blood cells. The variance in
fat explained by the selected intervals was only a very
small proportion of the total genetic variance. Using
milk cells, the variance explained by selected intervals
ranged from 0.03% for fert, to 0.43% for prot%. Inter-
vals selected using white blood cells explained 3 to 19
times more variance then intervals selected using ex-
pression in milk cells. The largest percentage of

variance was explained for prot%, where 147 selected
intervals explained 2.57% of the total genetic variance.
The most significant correlations were found on

chromosome 18, where intervals located between
1,443,612 and 2,679,976 bp significantly correlated local
GEBV for all traits with the expression of the gene
fucokinase (FUK), and intervals located between
1,161,248 and 2,165,190 bp correlated local GEBV for
all traits with the expression of the gene DDX19B. The
strongest correlation equalled − 0.93 (p = 1.5 × 10− 45)

Fig. 2 Local GEBV variance. Milk = milk yield, fat = fat yield, prot = protein yield, fat% = fat percentage, prot% = protein percentage, fert = fertility,
var.% = variance explained by an interval as percentage of the sum of the variance explained by the non-overlapping intervals that explained the
most variance. The red line corresponds with var.% = 1
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and was detected between the local GEBV for fert for
interval located from 1,703,787 to 1,953,787 bp with the
expression of DDX19B. While there were highly signifi-
cant correlations and eQTL in this region, the GWAS
showed no association of any of the variants in the re-
gion with fertility and the local GEBV intervals ex-
plained at most 0.002% of

P
σ2locGEBV , as shown in

Additional file 2. While all traits showed strong corre-
lations between local GEBV and FUK and DDX19B ex-
pression, the GWAS only showed a peak for fat.
Figure 5 compares the local GEBV variances, GWAS,
correlation of local GEBV and FUK and DDX19B ex-
pression and eQTL study in this region, for fat. All

analyses show a peak in the region, though not all at
the same place.
The most significant GWAS hit for fat in the region

was an intron variant in the DDX19B gene, with a
p-value of 5.6 × 10− 7. The most significant correlation
(p = 5.4 × 10− 39) with the gene expression of FUK was
found with the local fat GEBV of the interval between
1,496,152 and 1,746,152 bp, with a correlation of 0.90.
This interval contains part of the FUK gene, that is lo-
cated from 1,681,355 to 1,694,462 bp, and explains
0.03% of

P
σ2
locGEBV . There were 148 variants, located be-

tween 1,634,115 and 1,690,385 bp, in complete LD with
each other in the individuals used for the eQTL study, that

Fig. 3 Comparison GWAS and local GEBV variance for a QTL
on chromosome 18 for fertility. Position was the position of the sequence variant in the GWAS, or the middle of the 250 kb interval for
which the local GEBV were calculated, var.% = variance explained by an interval as percentage of the sum
of the variance explained by the non-overlapping intervals that explained the most variance
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showed the strongest association with FUK expression in
the eQTL study, with p-value of 1.1 × 10− 39.
The interval between 1,550,757 and 1,800,757 bp

showed the strongest correlation between local fat GEBV
and DDX19B expression, with a correlation of 0.59 and
a p-value of 3.5 × 10− 11. This interval explained 0.03% of
P

σ2locGEBV , and has some overlap the DDX19B gene,

that is located from 1,799,804 to 1,821,405 bp. The
strongest association between sequence variants and
DDX19B expression was detected for 17 variants, located
from 1,802,850 to 1,804,766 bp with a p-value of 3.8 ×
10− 37. Similar to the most significant eQTL for FUK,
these variants were in complete LD in the individuals
used for the eQTL study. While the most significant var-
iants associated with FUK expression are not the most
significant variants associated with DDX19B expression
and vice versa, there were 375 variants located between
1 and 2.5Mb with a p-value ≤10− 5 for both FUK and
DDX19B expression.
The colocalization analysis did not find any evidence

of colocalization for the GWAS QTL detected for fat
and the eQTL for FUK and DDX19B expression. The
largest CLPP were 7.3 × 10− 5 for FUK and 6.6 × 10− 5

for DDX19B. The genotypes of 148 top variants associ-
ated with FUK expression in the eQTL study did, how-
ever, all show a very strong correlation of − 0.98 (p =
6.2 × 10− 95) with the local GEBV between 1,496,152
and 1,746,152 bp. The top 17 eQTL variants associated
with DDX19B expression had a correlation of − 0.35 (p
= 3.6 × 10− 5) with the GEBV between 1,550,757 and
1,800,757 bp. For both genes, the direction of correla-
tions and effects was consistent: the most significant
SNPs in the eQTL study decreased both the expression
of FUK and DDX19B, and the local GEBV, which was
consistent with the positive genetic correlations be-
tween local GEBV and gene expression in the intervals.
Although the correlations between local GEBV and

expression of genes are highly significant, we were
concerned that they could arise by chance if SNPs that

Fig. 4 Correlations between local GEBV for fat yield and gene expression. Top =milk cells, bottom=white blood cells, correlations were estimated
between 250 kb intervals and all genes within 1Mb of the intervals, y-axis =−log10(p-value of the correlation between local GEBV and gene expression)

Table 2 Overview of selected intervals based on the p-value of
the correlation between local GEBV and gene expression, and
the variance explained by the interval

cell type trait nSel FDR nInt nGenes %var

milk milk 92 0.06 38 33 0.10

fat 94 0.06 42 37 0.13

prot 100 0.06 39 34 0.17

fat% 70 0.08 28 27 0.09

prot% 92 0.06 33 32 0.44

fert 72 0.08 29 27 0.03

blood milk 420 0.01 126 108 0.36

fat 466 0.01 162 121 2.54

prot 466 0.01 139 114 1.06

fat% 414 0.01 136 118 0.62

prot% 466 0.01 147 120 2.57

fert 391 0.01 135 116 0.11

nSel = number of correlations between local GEBV and gene expression with a
p-value ≤10− 5, FDR false discovery rate, nInt number of selected unique non-
overlapping intervals, nGenes number of unique genes selected, %var. variance
explained by the selected unique non-overlapping intervals as percentage of
the sum of the variance explained by the non-overlapping intervals that
explained the most variance, milk milk yield, fat fat yield, prot protein yield,
fat% fat percentage, prot% protein percentage, fert fertility
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have a large contribution to the local EBV were also
associated with expression of a nearby gene. This situ-
ation might arise due to widespread LD between
SNPs within a segment. To test this possibility, we
permuted the SNP effects within the local GEBV in-
tervals and recalculated the correlation between these
permuted local GEBV and gene expression. The

number of correlations with p ≤ 10− 5, was only a little
less than observed with the original GEBV (Table 3).
The largest difference was found for fat and prot,
where there were 466 intervals with significant corre-
lations using the estimated variant effects and 345 in-
tervals when the SNP effects within a local GEBV
were permuted.

Fig. 5 Association between FUK and DDX19B expression and fat yield. Top left = variance of local GEBV of 250 kb intervals where var.% = variance
explained by an interval as percentage of the sum of the variance explained by the non-overlapping intervals that explained the most variance, top right
= GWAS for fat yield, middle left =−log10(p) of correlations between local GEBV and FUK expression, middle right = association between sequence variants
and FUK expression, bottom left =−log10(p) of correlations between local GEBV and DDX19B expression, bottom right = association between sequence
variants and DDX19B expression. In all graphs, intervals or variants located within intervals with a pcor(locGEBV,expr)≤ 10− 5 are indicated in red
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Overlap between top300 intervals and eQTL
The intervals with the highest correlations between
local GEBV and gene expression included many inter-
vals with very small effects on the milk production
traits and fertility. This may have reduced our power
to find QTL that are also eQTL. Therefore, we selected
the 300 intervals that explained the most genetic vari-
ance for each trait (top300) and compared the number
of eQTL they contained with the number of eQTL
present in with 300 randomly selected intervals (ran-
dom300). These intervals were spread over all chromo-
somes. Table 4 shows

P
σ2locGEBV for the top300 and

random300 intervals. The top300 intervals explained the
majority of

P
σ2locGEBV , ranging from 74% for prot to 99%

for fat% and prot%. A much smaller proportion of
P

σ2locGEBV was explained by the random300 intervals. For all
traits, the random300 intervals explained between 1 and
3% of

P
σ2locGEBV .

Table 5 shows the number of top300 and random300
intervals containing eQTL, containing variants corre-
lated with the local GEBV of the interval and having a
significant correlation between the local GEBV of the
interval and gene expression. Averaged across traits, 26
and 54 of the top300 intervals contained at least one
eQTL using milk and white blood cells, respectively.
Randomly selected intervals contained, on average
across traits and replicates, 16 significant eQTL from
milk and 36 from white blood cells. Thus, intervals with
QTL were only slightly more likely to contain an eQTL
than random intervals. Of the top300 intervals
containing an eQTL, 7 and 28 also contained at least
one variant whose genotype was both associated with

gene expression and correlated with the local GEBV, av-
eraged across traits using milk and white blood cells,
respectively. Out of the random300 intervals, this was
the case for 6 and 20 intervals, using milk and white
blood cells, respectively.
Only very few of the intervals showed a significant

correlation between local GEBV and gene expression.
Out of the top300 intervals, the number of intervals
whose local GEBV correlated (p ≤ 10− 3) with the expres-
sion of a gene within 1Mb of the interval ranged from 6
for protein to 16 for fertility using milk cells, and from
18 for fat to 30 for fertility using white blood cells. The
majority of the top300 intervals, that showed a signifi-
cant correlation between local GEBV and gene expres-
sion, did not contain a variant associated with both gene
expression and the local GEBV. The number of top300
intervals fulfilling all criteria, with a significant correl-
ation between local GEBV and gene expression, and con-
taining a variant associated with both gene expression
and the local GEBV equalled, averaged across traits, 2
for milk cells and 9 for white blood cells. Slightly fewer
of the random300 intervals correlated with gene expres-
sion than the top300 intervals. Averaged across traits, 8
and 15 randomly selected intervals showed a significant
correlation with gene expression, using milk and white
blood cells, respectively, One and 5 of these contained at

Table 3 Number of detected correlations using correct or
permuted local GEBV

milk fat prot fat% prot% fert

correct 420 466 466 414 466 391

permuted 348 345 345 397 392 338

Correlations between gene expression and local GEBV with a p-value ≤10−5,
variant effects used to estimate the genotypes were either the estimated effects or
permuted within an interval, milk milk yield, fat fat yield, prot protein yield, fat% fat
percentage, prot% protein percentage, fert fertility

Table 4 Variance explained by top300 intervals and random300
intervals

intervals milk fat prot fat% prot% fert

top300 85% 82% 74% 99% 99% 93%

random300 3% 3% 3% 3% 2% 1%

Top300 were the 300 non-overlapping 250 kb windows that explained the most
variance for each trait, random300 were randomly selected non-overlapping 250
kb windows, chr chromosome, milk milk yield, fat fat yield, prot protein yield, fat%
fat percentage, prot% protein percentage, fert fertility, variance shows as
percentage of the sum of the variance explained by the non-overlapping intervals
that explained the most variance

Table 5 Number of top300 and random300 intervals containing
eQTL, containing variants associated with local GEBV and
showing a significant correlation between local GEBV and gene
expression

top300 random300

cell type trait nE nC nEG nEC nEGC nE nC nEG nEC nEGC

milk milk 27 10 3 2 1 16 9 6 1 1

fat 26 11 10 3 3 16 9 6 1 1

prot 23 6 5 1 0 16 9 6 1 1

fat% 25 11 9 1 1 16 8 5 1 0

prot% 29 14 11 2 2 16 9 5 1 1

fert 24 16 3 2 2 16 8 6 1 1

WBC milk 58 20 27 13 11 36 15 20 6 5

fat 48 18 28 12 10 36 15 20 6 6

prot 45 24 23 10 9 36 14 20 6 5

fat% 56 25 25 12 7 36 14 18 5 4

prot% 61 25 39 10 10 36 14 19 6 5

fert 55 30 24 12 8 36 16 21 6 6

Intervals were selected as the 300 non-overlapping intervals that explained
most genetic variance (top300) or 300 randomly selected intervals
(random300), the black dots show how many of the intervals containing at
least one eQTL (nE) contain a variant that is associated with the eQTL and
whose genotype correlates with the local GEBV of the interval (nEG), the blue
dots show how many of the intervals with a significant correlation between
local GEBV and gene expression (nC) contain an eQTL (nEC) that is correlated
with the local GEBV of the interval, with consistent directions of effects (nEGC),
WBC white blood cells, milk milk yield, fat fat yield, prot protein yield, fatPerc
fat percentage, protPerc protein percentage, fert fertility
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least one variant whose genotype was associated with
gene expression and correlated with the local GEBV
with effects consistent with the direction of the
correlation.
Table 6 shows the top300 intervals whose local GEBV

correlated with the expression of a gene within 1Mb of the
interval (p ≤ 10− 5) and that contained at least one variant
associated with the expression of the gene (p ≤ 10− 5) that
also correlated with the local GEBV of the interval (p ≤ 10−
5), with consistent effects and correlations (top300_EGC).
Using milk cells, there were only three top300_EGC inter-
vals, of which two of them were located on chromosome
18 and associated with the expression of FUK and GEBV
for fat and prot%, and the third one located on chromo-
some 29 associated with ENSBTAG00000037645 expres-
sion and milk GEBV. Using white blood cells, there were

25 top300_EGC intervals, of which 22 were associated with
production traits and 3 with fertility. The top300_EGC in-
tervals associated with production traits were located on
chromosomes 3, 5, 11, 14, 18, 23 and 26, and the
top300_EGC intervals associated with fertility were located
on chromosomes 6, 10 and 21. The most significant eQTL
in the top300_EGC intervals was an intron in COG4 on
chromosome 18 that was associated with the expression of
FUK (p = 1.1 × 10− 39 and p = 13.8 × 10− 11 using white
blood and milk cells, respectively) and correlated with the
local GEBV for prot% (p = 7.0 × 10− 38 and p = 8.1 × 10− 15

using white blood and milk cells, respectively). The second
most significant eQTL (p = 4.1 × 10− 20) was a variant
downstream of mitochondrial ribosomal protein L51
(MRPL51) on chromosome 5 that was associated with the
expression of non-SMC condensin I complex subunit D2

Table 6 Intervals containing eQTL and QTL

cell type trait chr start (bp) end (bp) eQTL gene topVar annotation p_eQTL p_cor

milk milk 29 42,610,883 42,860,883 ENSBTAG00000037645 42,829,338 5′ UTR MARK2 5.6 × 10−06 6.3 × 10− 06

milk fat 18 1,601,923 1,851,923 FUK 1,840,070 intron AARS 5.1 × 10− 06 2.5 × 10−07

milk prot% 18 1,550,757 1,800,757 FUK 1,666,278 intron COG4 3.8 × 10−11 8.1 × 10−15

WBC milk 3 25,131,248 25,381,248 SPAG17 25,150,562 intron SPAG17 1.2 × 10−06 5.5 × 10−12

WBC milk 5 104,173,293 104,423,293 NCAPD2 104,278,115 dns MRPL51 4.1 × 10−20 4.0 × 10−07

WBC milk 18 18,190,766 18,440,766 BRD7 18,301,292 intron ZNF423 8.9 × 10−06 2.4 × 10−10

WBC milk 23 31,068,838 31,318,838 BTN1A1 31,095,692 intergenic 6.3 × 10−08 1.5 × 10−06

WBC milk 26 21,889,732 22,139,732 TWNK 21,901,063 ups LBX1 9.7 × 10−07 3.3 × 10−07

WBC fat 14 2,753,849 3,003,849 FAM83H 2,755,467 synon LY6K 2.1 × 10−06 9.7 × 10−06

WBC fat 18 1,601,923 1,851,923 FUK 1,612,928 ups IL34 & dns SF3B3 2.6 × 10−07 8.6 × 10−09

WBC fat 18 18,190,766 18,440,766 BRD7 18,301,292 intron ZNF423 8.9 × 10−06 3.1 × 10−12

WBC fat 23 9,700,270 9,950,270 C6orf222 9,728,266 ups CLPS 1.3 × 10−07 2.9 × 10−06

WBC fat 26 21,139,834 21,389,834 TWNK 21,142,651 intron SCD 5.4 × 10−06 5.3 × 10− 06

WBC fat 26 21,889,732 22,139,732 TWNK 21,893,176 dns LBX1 1.5 × 10−07 2.6 × 10−06

WBC prot 11 104,113,835 104,363,835 ABO 104,225,654 intergenic 3.8 × 10−07 5.9 × 10−06

WBC prot 18 18,190,766 18,440,766 BRD7 18,301,292 intron ZNF423 8.9 × 10−06 9.3 × 10−11

WBC fat% 5 75,536,412 75,786,412 ENSBTAG00000012192 75,596,191 intergenic 9.6 × 10−07 4.5 × 10−06

WBC fat% 5 104,120,905 104,370,905 NCAPD2 104,139,091 intron ZNF384 3.6 × 10−07 2.2 × 10−06

WBC fat% 26 22,005,004 22,255,004 TWNK 22,005,517 intron BTRC 5.4 × 10−07 1.9 × 10− 07

WBC prot% 5 24,074,711 24,324,711 CEP83 24,074,711 intron PLXNC1 3.2 × 10−06 1.8 × 10−12

WBC prot% 11 104,168,845 104,418,845 ABO 104,225,654 intergenic 3.8 × 10−07 4.2 × 10−06

WBC prot% 14 2,132,257 2,382,257 MAPK15 2,236,999 splice MAPK15 4.7 × 10−06 2.2 × 10− 06

WBC prot% 18 1,550,757 1,800,757 FUK 1,673,395 intron COG4 1.1 × 10−39 7.0 × 10−38

WBC prot% 18 2,187,925 2,437,925 FUK 2,200,039 intron FA2H 3.4 × 10−06 3.6 × 10−07

WBC prot% 26 24,899,228 25,149,228 ENSBTAG00000038540 25,027,259 intron CFAP43 1.3 × 10−06 2.3 × 10−08

WBC fert 6 38,538,611 38,788,611 FAM184B 38,585,743 intron LAP3 9.5 × 10−07 9.8 × 10−06

WBC fert 10 37,985,065 38,235,065 CDAN1 38,017,802 intergenic 3.0 × 10−07 2.0 × 10−08

WBC fert 21 48,591,579 48,841,579 SSTR1 48,641,167 intergenic 6.9 × 10−06 1.8 × 10−06

Chr chromosome, topVar position in basepair (pb) of variant with strongest association with eQTL and localGEBV, annotation functional annotation of topVar, dns
downstream, ups upstream, p_eQTL p-value eQTL analysis, p_cor p-value correlation local GEBV and gene expression, WBC white blood cells
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(NCAPD2) with a p-value of 4.1 × 10− 20 and correlated
with the local GEBV for milk yield.
Genes whose expression correlated with the local GEBV

of top300_EGC for multiple production traits were
NCAPD2 on chromosome 5 associated with milk and
fat%, alpha 1–3-N-acetylgalactosaminyltransferase and
alpha 1–3-galactosyltransferase (ABO) on chromosome 11
associated with prot and prot%, FUK on chromosome 18
associated with fat and prot% (BRD7) on chromosome 18
associated with milk, fat and prot, and twinkle mtDNA
helicase (TWNK) on chromosome 26 associated with
milk, fat and fat%.

Colocalisation of QTL and eQTL
Using the programme eCAVIAR, we examined the inter-
vals with significant QTL to see if there was a SNP with a
high posterior probability that was both the QTL and an
eQTL by estimating the probability that a variant is causal
in both the GWAS and eQTL analysis, the colocalization
posterior probability (CLPP). Variants were considered to
colocalise if they had a CLPP ≥0.01. The majority of QTL
selected from the GWAS did not colocalise with eQTL
(Table 7). For instance, out of 64 milk QTL, only 4 had a
single SNP with a posterior probability (CLPP) > 0.01 that
it is both the QTL and the eQTL. More variants coloca-
lised when white blood cells were used then when milk
cells were used. Averaged across traits, 3.7 and 6.8% of the
GWAS QTL colocalised with an eQTL for milk and white
blood cells, respectively. When we started with intervals
that contained an eQTL, only between 1 and 3% of the
eQTL colocalised with QTL for the traits in our analysis,
using either milk or white blood cells.

Table 8 shows the top 10 variants with the highest CLPP,
located on chromosomes 3, 5, 8, 18, 19 and 25. The highest
CLPP was 1.00 and detected for a variant downstream of
junction plakoglobin (JUP) around 43Mb on chromosome
19 that was associated with the expression of FK506 bind-
ing protein 10 (FKBP10). This variant had a p-value of
2.4 × 10− 10 and 1.2 × 10− 3 in the GWAS for prot% and
fat%, respectively, and a p-value of 1.2 × 10− 8 in the eQTL
study. Figure 6 shows the GWAS, local GEBV variance,
eQTL study and correlation between local GEBV and gene
expression of the area around this variant. Local GEBV in-
tervals containing the variant with the highest CLPP
explained at most 0.8% of

P
σ2locGEBV for prot% and fat%,

respectively.

Validation of known QTL and eQTL
As shown in Fig. 7, there was a clear peak in both the
GWAS and the local GEBV variance for fat% around
MGST1. The strongest correlations with MGST1 expres-
sion were a correlation of 0.26 (p = 4.1 × 10− 3) found for
an interval between 93,798,862 and 94,048,862 bp using
milk cells, and of − 0.20 (p = 0.04) for an interval between
93,579,668 and 93,829,668 bp using white blood cells. The
most significant variants associated with MGST1 expres-
sion for milk and white blood cells were intergenic variants
located at 93,133,977 (p = 1.3 × 10− 4) and 93,911,186 (p =
1.6 × 10− 4), respectively.
Additional file 3 shows the GWAS, local GEBV variance,

correlation between local GEBV and gene expression and
eQTL analysis for milk yield in the area around SLC37A1
on chromosome 1. The most significant GWAS variant
was an intergenic variant with a p-value of 2.5 × 10− 8. This
variant was located in the interval between 144,244,143
and 144,494,143 bp that explained the largest percentage
of

P
σ2
locGEBV of intervals in the region (1%). There are

SNPs weakly associated with expression of SLC37A1 in
milk cells but not in white blood cells. Similar to SLC37A1,
the QTL around the PAEP gene on chromosome 11 was
detected using both the GWAS and the local GEBV vari-
ance (Additional file 4). Again, there is a SNP weakly asso-
ciated with expression of PAEP in milk and weak
correlations between local EBVs and PAEP expression in
milk cells (results are only shown for milk cells and not for
white blood cells, because in the eQTL analysis using white
blood cells, PAEP was excluded because it was not
expressed in sufficient animals.

Discussion
We combined results from GWAS, local GEBV variances,
an eQTL study and a colocalisation analysis to detect re-
gions that were associated both with quantitative traits in
dairy cattle and gene expression. We used three strategies
to identify regions and variants that were associated both

Table 7 Colocalisation between QTL and eQTL

cell type trait n_QTL coloc_QTL n_eQTL coloc_eQTL

milk milk 64 4 361 4

fat 39 3 361 6

prot 45 2 361 4

fat% 9773 34 361 4

prot% 3455 13 361 3

fert 30 1 361 4

WBC milk 64 7 554 8

fat 39 3 554 7

prot 45 2 554 8

fat% 9773 26 554 9

prot% 3455 19 554 15

fert 30 5 554 6

WBC white blood cell, n_QTL = the number of variants with a GWAS p-value
≤10−5, counting maximum 1 QTL per 1 Mb, coloc_QTL = the number of QTL
with at least one variant with a colocalization posterior probability (CLPP) ≥
0.01, n_eQTL = the number of genes with at least eQTL variant within 1 Mb of
the gene with a p-value ≤10− 5, coloc_eQTL = the number of eQTL with at least
one variant with a colocalization posterior probability (CLPP) ≥ 0.01
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with gene expression and quantitative traits in dairy cattle:
selecting intervals that showed a strong correlation be-
tween local GEBV and gene expression, looking for eQTL
in regions that were among the 300 intervals that ex-
plained most of the genetic variants for a certain trait, and

calculating the probability that a variant was causal for
both an eQTL and a QTL. While we identified several
regions associated both with QTL and eQTL, we did not
find eQTL that explained the majority of QTL for milk
production and fertility.

Fig. 6 Protein percentage GWAS and eQTL study results for chromosome 19 around FKBP10. Top left = GWAS for protein percentage, top right = local
GEBV variance where var.% = variance explained by an interval as percentage of the sum of the variance explained by the non-overlapping intervals that
explained the most variance, bottom left = correlation between local GEBV and FKBP10 expression, bottom right = eQTL study for FKBP10 expression, red
dot indicates variant or intervals containing variant with largest colocalisation posterior probability (CLPP)

Table 8 Top 10 colocalizing variants

cell type trait chr gene position annotation CLPP

WBC prot% 19 FKBP10 42,601,890 dnst JUP 1.00

WBC fat% 19 FKBP10 42,601,890 dnst JUP 1.00

WBC prot 18 PRMT1 57,135,434 intergenic 0.95

WBC prot% 5 DIP2B 30,479,476 intron SPATS2 0.95

milk milk 5 PWP1 70,897,603 intergenic 0.74

WBC fat 18 BRD7 18,411,077 intergenic 0.74

WBC prot 3 ANKRD35 21,083,019 intergenic 0.69

milk milk 25 HBQ1 494,716 splice region variant PRR35 0.68

WBC prot% 25 TFR2 36,092,765 dnst ENSBTAG00000020157 0.68

milk fat% 8 PTPDC1 87,424,582 intron ROR2 0.59

WBC white blood cells, CLPP colocalization posterior probability, dnst downstream
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QTL detection using GWAS and local GEBV variances
To detect variants and regions associated with produc-
tion traits and fertility, we used both a GWAS and vari-
ances of local GEBV computed using variants effects
estimated with Bayes R. With both approaches, multiple
QTL were detected, mainly confirming well-known
QTL. Using local GEBV variance resulted in a more pre-
cise signal, while with the GWAS, peaks covered a larger
area of the genome. This is in line with other studies
that have demonstrated an improved precision of QTL

detection with Bayes R compared to GWAS and GBLUP
[12, 13]. As a consequence of the long range LD present
in dairy cattle [6], variants relatively far away from the
causative mutation can still be in LD with the causative
mutation, resulting in broad GWAS peaks. By estimating
all variant effects simultaneously, Bayes R effect esti-
mates can be more precise. If several variants are in al-
most complete LD, Bayes R will calculate low posterior
probabilities for all of them. Therefore, we used the local
GEBV variance, that combines the effects of variants in a

Fig. 7 GWAS and eQTL study results for chromosome 5 around MGST1. Top left = GWAS for fat percentage, top right = variance of GEBV of 250 kb
intervals where var.% = variance explained by an interval as percentage of the sum of the variance explained by the non-overlapping intervals that
explained the most variance, middle left = p-value of correlation between local GEBV in 250 kb intervals and MGST1 expression using milk cells, middle
right = p-value of correlation between local GEBV in 250 kb intervals and MGST1 expression using white blood cells, bottom left = eQTL study for MGST1
expression using milk cells, bottom right = eQTL study for MGST1 expression using white blood cells

Berg et al. BMC Genomics          (2019) 20:291 Page 12 of 18



region. Estimating variants effects for full sequence data
using a Bayesian model is, however, computationally chal-
lenging [15, 16]. Therefore, we used the local GEBV inter-
vals based on HD effects estimated with Bayes R to detect
QTL regions, and used the GWAS for the colocalisation
analysis and to zoom into sequence level.
None of the methods we used give an accurate esti-

mate of the number of independent QTL. Because LD
is conserved over long distances in dairy cattle [6], it is
difficult to disentangle individual QTL, and therefore,
the number of QTL reported here should not be inter-
preted as independent QTL.

Correlations between local GEBV and gene expression
While some intervals showed a very strong correlation
between local GEBV and gene expression, these inter-
vals explained a minimal part of the total genetic vari-
ance, and would not be classified as QTL using a
minimal threshold required to avoid a large number of
false positives. Quantitative traits are influenced by
many causative variants, and it is possible that individ-
ual causative variants explain only a very small part of
the total genetic variance, in the same range as the
variance explained by the intervals we detected. In the
regions we detected, it was difficult to identify a se-
quence variant that showed a strong association with
both gene expression and quantitative traits, and per-
mutation analysis showed that most, but not all, of the
significant correlations between local GEBV and gene
expression could be due to chance, generated by the
high local LD. That is, any linear combination of SNP
genotypes (such as a local GEBV) will be correlated
with many SNPs in the region and if one of these is
associated with expression of a gene, it will generate a
correlation between the local GEBV and gene
expression.
The most significant correlations between local

GEBV and gene expression were found between pro-
duction traits and the expression of FUK and DDX19B.
FUK has been reported by Ibeagha-Awemu et al. [4] as
a candidate gene for milk traits because of its associ-
ation with butyric acid levels (C4:0). DDX19B is in-
volved in molecular transport in human [17] and has
been associated with organismal, organ and tissue de-
velopment in pigs [18]. While our results show evi-
dence for eQTL for both FUK and DDX19B expression
in the region, it is not clear whether there is one eQTL
affecting both genes or two different eQTL. There were
variants significantly associated with the expression of
both genes, but the most significant variants detected
for either gene were at different locations, suggesting
that there may be two eQTL present in the region, that
are in LD with each other.

Overlap between top300 and random300 intervals and eQTL
Our second method of finding QTL that are also eQTL
focused on chromosome intervals that contained larger
QTL for milk traits or fertility. We selected the 300 in-
tervals that explained the largest part of the total GEBV
variance, and compared the number of eQTL present in
those intervals to the number of eQTL in randomly se-
lected intervals. While the top300 intervals explained a
much larger proportion of the total GEBV variance than
randomly selected intervals, there were only slightly
more eQTL present in the top300 intervals than in ran-
domly selected intervals. This reflects how common
eQTL are. Our results suggest that if there is an eQTL
near a QTL, it could be simply due to the abundance of
eQTL. Therefore, we looked for evidence that the QTL
and the eQTL were indeed identical by applying a series
of filters to the intervals that were in the top300 and
which contained an eQTL. Specifically, we looked for in-
tervals that contained a SNP associated with both the
gene expression and the local GEBV and in which the
local GEBV was correlated with gene expression. Only
few of the top 300 intervals fulfilled all criteria, suggest-
ing that while there were eQTL present in most inter-
vals, only few of them could be associated with the local
GEBV of the intervals.
For most of the genes associated with the top300_EGC

intervals, we could not find information in the literature
linking their effects to the trait the interval was selected
for. Exceptions to this were ABO on chromosome 11,
and BRD7 [19] and the previously described FUK on
chromosome 18. On chromosome 11, a well-known
QTL for production traits in dairy cattle is located near
the beta-lactoglobulin precursor (PAEP) gene around
103.3Mb [20]. While we did not find any eQTL associ-
ated with PAEP, an interval between 104.1 and 104.4Mb
contained an eQTL associated with the expression of
ABO. The local GEBV for protein and prot% of the
interval also correlated with ABO expression. ABO influ-
ences blood type in human [21]. Due to the proximity of
ABO to PAEP, it is difficult to say whether there are two
separate QTL segregating in the region or whether the
peak near ABO is actually still due to the PAEP QTL. As
shown in Additional file 4, while the major peak in both
the GWAS and local GEBV variance is around PAEP, a
second, smaller peak is visible near ABO, suggesting that
there may be two QTL present in this area.
The top300_EGC intervals contained several intervals

on chromosome 26 located between 21.9 and 25.1Mb
associated with milk, fat, fat% and prot%. The local
GEBV in these intervals were either associated with the
expression of twinkle mtDNA helicase (TWNK), Steroid
17-alpha-hydroxylase/17,20 lyase precursor (CYP17A1)
or ENSBTAG00000038540. While there is no apparent
link between any of these genes and milk production
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traits, QTL in this region have been associated with vari-
ous traits in dairy cattle, including production traits [20,
22]. Other studies have suggested SCD as a candidate
gene underlying this QTL [20, 23]. While there was an
intronic SNP in SCD associated with TWNK expression,
we did not find an eQTL associated with SCD expres-
sion, nor a significant correlation between any interval
in the region and SCD expression. Another gene con-
taining variants associated with TWNK expression was
BTRC, that has a been associated with a large range of
effects in mice and human (e.g. [24, 25]), including
mammary gland development [24]. Similar to SCD, no
eQTL or correlation associated with BTRC expression
were detected.

Colocalisation of eQTL and QTL
Thirdly, we used the CLPP to compute how many eQTL
and QTL colocalised. We only found very few variants
that colocalised, and none of them were located in major
QTL. CLPP lacks power due to the high LD which
meant that posterior probabilities were usually split
among many SNPs in high LD with each other. There-
fore, CLPP may not be a suitable method in livestock
datasets where LD is conserved over long distances. The
largest CLPP was found for an intergenic variant associ-
ated with PRMT1 expression. PRMT1 is essential for
protein arginine methylation in mice [26].

Known QTL and eQTL
There is a major QTL associated with fat yield near the
MGST1 gene, and Littlejohn et al. [10] detected an eQTL
for MGST1 expression using mammary tissues of 375 lac-
tating cows. While there was a clear peak visible around
the MGST1 gene in both the GWAS and local GEBV for
production traits, correlations between local GEBV and
MGST1 expression were weak, and only small peaks were
visible in the eQTL study. Thus, we could be said to con-
firm result of Littlejohn et al. [10], but if we used such low
significance thresholds genome wide, we would find too
many false positives. An explanation for the weak evidence
in our dataset could be the difference in size of the dataset
and type of tissues used for the analysis. Littlejohn et al.
[10] used mammary tissue samples from 375 lactating cows
while our dataset contained white blood cell samples of 105
individuals and milk cell samples of 131 individuals. Simi-
larly, in the case of SLC37A1 and PAEP, we found only
weak evidence that these QTL are actually eQTL.

Limitations
It is possible that our datasets lack power to show that
QTL are, in fact, eQTL. While our datasets are not small
by agricultural standards (37,000 phenotypes and 131 cows
with gene expression), larger numbers would increase
power and mapping precision. Furthermore, it may be that

we did not sample the right tissues at the correct age and
physiological state. Though milk cell samples do mimic the
gene expression of the lactating mammary gland, the vari-
ation in cell types and health did result in greater variation
in gene expression and therefore less power to detect
eQTL. This was evident by detecting less eQTL in milk
cells than in white blood cells. Furthermore, we performed
genome wide analyses rather than focussing on specific re-
gions, so a stringent significance threshold was required to
avoid false positives, reducing the power to detect QTL,
eQTL and correlations between local GEBV and gene ex-
pression. The long-range LD in dairy cattle imposes further
limitations, both in the detection of correlations between
gene expression and local GEBV, and for the precision of
QTL and eQTL detection. The combination of the small
dataset, necessity of stringent thresholds to avoid false posi-
tives and the long-range LD may explain why we found lit-
tle overlap between QTL and eQTL. For future eQTL
studies, we would recommend a larger dataset, though it is
difficult to predict what the minimum sample size should
be. Based on the more promising results reported by Little-
john et al. [10], we would suggest a dataset containing at
least 300–400 individuals.
Besides the limitations of our study to identify QTL that

are eQTL, it may be that eQTL explain only a small frac-
tion of QTL. As well as differences in gene expression,
QTL might affect amino acid sequence, splicing of tran-
scripts, post-transcription and post-translational changes.
For instance, Kemper et al. [11] found a QTL that affects
casein concentration but not corresponding RNA concen-
tration in mammary tissue. In studies of humans, the en-
richment of eQTL among GWAS hits is not very high (e.g.
2 times). This implies that most QTL may not be eQTL or
at least not eQTL discovered in the reported studies.

Multi breed QTL detection
In our study, we used a multi breed population for all QTL
detection methods. However, not all QTL segregate across
breeds [12, 27]. While using a multi breed population can
lead to improved QTL detection precision [12, 28], results
can be dominated by the breed with the largest population
size [28]. For QTL that segregate across breed, a multi
breed population increases the sample size and therefore
the power. Furthermore, because LD is conserved over
shorter distances across breed than within breed [6], fewer
variants and only variants closer to the causative mutation
would be expected to show a significant association.
Breed specific QTL can, however, be overshadowed by

a nearby QTL segregating in a breed with a substantially
larger population size [28]. Consequently, by performing
multi breed analysis rather than within breed analysis,
we may have missed some breed specific QTL, especially
QTL specific for Jersey. Because the focus of this paper
was to study the overlap between QTL and eQTL, and
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the number of Jersey cows with expression data was very
small our analysis would not be powerful enough to
focus on breed specific QTL. Therefore, we preferred
doing only a multi breed analysis, to benefit from the
improved precision.
In future studies, with larger within breed populations,

it will be interesting to compare breed specificity of
eQTL and the overlap between breed specific QTL and
breed specific eQTL.

Methods
Genotypes
Genotypes were available for 35,775 Holstein, Jersey and
crossbred bulls and cows, the reference population is de-
scribed in more detail by van den Berg et al. [16]. All of
these were genotyped with the Illumina 10 K, Illumina
BovineSNP50 (50 K) chip or the Illumina 800 K BovineHD
(HD) bead chip. The animals genotyped at a lower density
were first imputed up to HD genotypes, a total of 632,003
variants. Subsequently, all individuals were further imputed
up to sequence level, using a reference population consist-
ing of Holstein, Jersey and Australian Red bulls and cows
from Run 5 of the 1000 bulls genome project [29]. All im-
putation was done using FImpute [30]. After removing vari-
ants with a minor allele frequency (MAF) below 0.002 and
LD pruning (r2 > 0.9), the sequence dataset (SEQ) contained
4,812,745 variants. Because further analysis was performed
using a multi breed population and we did not focus on
breed specific QTL, we performed both MAF filtering and
LD pruning across populations. The LD pruning was per-
formed to reduce the number of variants, reducing the
computational demand and by reducing the number of
tests, reducing the number of false positives in the GWAS.
The MAF filtering aimed to remove very rare variants that
would likely have had a low imputation accuracy.

Phenotypes
Daughter trait deviations (DTD) and trait deviations (TD)
were used as phenotypes for bulls and cows, respectively.
All 35,775 individuals had DTD or TD for milk yield (milk),
fat yield (fat) and protein yield (prot). Fat percentage (fat%)
and protein percentage (prot%) were available for 32,923
Holstein and Jersey bulls and cows, and fertility (fert), mea-
sured as calving interval in days, for 32,819 Holstein, Jersey
and crossbreed bulls and cows.

GWAS
The SEQ dataset and phenotypes for milk, fat, prot, fat%,
prot% and fert were used in a GWAS to estimate the effects
of sequence variants on each trait. First, GWAS were
carried out using the mixed linear model analysis as imple-
mented in GCTA [31], fitting the HD genomic relationship
matrix to account for population structure and the

genotype of a variant and breed as fixed effects. GWAS
were done separately for bulls and cows, because of the
higher accuracy of bulls DTD compared to cows TD, and a
weighted analysis is currently not possible in GCTA.
Within sex, differences in DTD and TD accuracies are
much smaller, allowing us to do an unweighted analysis.
The estimated p-values and directions of the effects in the
within sex GWAS were combined in a meta-analysis,
using the weighted z-score model as implemented in
METAL [32].

Estimation of local GEBV
To calculate local GEBV, we used Bayes R hybrid [33] to es-
timate effects for all the HD SNP for all traits. Estimating
SNP effects was done using the 35,775 individuals with HD
genotypes and DTD/TD. The SNP effects were then used
to estimate local GEBV for the individuals in the gene ex-
pression dataset. Similar to Kemper et al. [12], we summed
up SNP effects over sliding windows of 250 kb, to obtain
local GEBV, with 50 kb between the start positions of adja-
cent windows. The variance of the local GEBV was used for
QTL mapping, and compared to the sum of the variance
explained by the non-overlapping intervals that explained
the most variance (

P
σ2locGEBV ). For this, all intervals were

first ranked based on their variance, and subsequently, in-
tervals overlapping with an interval that explained more
variance were removed, until only non-overlapping inter-

vals remained.
P

σ2locGEBV was then calculated as
P

σ2locGEBV ¼ PU
u¼1 varðlocGEBV Þu , where U was the

number of non-overlapping intervals that explained the
most variance.
To study the effect of LD in the local GEBV window on

the estimated correlations, we permuted the variant effects
within each window and used the permuted effects to esti-
mate permuted local GEBV. This permutation test tests the
null hypothesis that the correlation between local GEBV
and the expression of a gene could occur by chance, due to
high LD between variants in the local GEBV window. A
variant that has a large contribution to the local GEBV may
be in LD with a mutation that affects gene expression. The
permutation test was repeated 100 times.

Gene expression data and eQTL detection
Gene expression was obtained from RNA sequencing of
milk and white blood cell samples. Milk samples were
collected from 105 Holstein and 26 Jersey cows, and
blood samples from 105 Holstein cows. A more detailed
description of the pipeline to obtain the gene expression
data can be found in [34]. HD and imputed sequence
data were available for all these individuals. The se-
quence data for the eQTL study (ESEQ) was filtered
based on MAF for the cows used in the analysis and no
LD pruning was performed, resulting in 10,904,750 and

Berg et al. BMC Genomics          (2019) 20:291 Page 15 of 18



10,469,612 variants used for the milk and blood study,
respectively. We used log transformed read counts as a
measure of gene expression levels. Only genes expressed
in at least 25 cows were analysed, which reduced the
number of genes to 12,772 in milk cells and 11,577 in
white blood cells. For each variant in the ESEQ dataset,
the association with the expression of each gene within
1Mb of the variant was estimated using a linear model
in EMMAX [35], fitting the HD genomic relationship
matrix to account for population structure and the geno-
type of the variant, breed, parity, days in milk and RNA
sequencing batch as fixed effects. We only considered
cis-eQTL in this study to reduce the number of tests. A
larger number of tests would have required a more strin-
gent detection threshold, reducing detection power. Fur-
thermore, we expected cis-eQTL to be larger than trans
eQTL, and therefore easier to detected.

Correlating local GEBV with gene expression
To detect regions that were associated with both gene
expression and the traits, we estimated Pearson’s corre-
lations between the local GEBV and gene expression.
We estimated correlations between local GEBV intervals
and each gene within 1Mb of an interval. Subsequently,
we selected all intervals with a correlation that had a
p-value ≤10− 5.

Correlating genotypes with local GEBV
To determine which sequence SNPs were associated
with the local GEBV of an interval, we computed the
correlation between the genotypes of SEQ variants in an
interval with the local GEBV of that interval.

Comparing of top300 and random300 intervals
To test whether QTL regions were enriched for eQTL,
we selected 300 non-overlapping intervals per trait that
explained the most of the GEBV variance (top300) and
compared those to 300 randomly selected intervals (ran-
dom300). The selection of random300 intervals was re-
peated 100 times. We then determined how many of the
top300 and random300 intervals contained a variant as-
sociated with the expression of a gene within 1Mb of
the interval with a p-value ≤10− 5 (nE), and a variant cor-
related with the local GEBV of the interval with a
p-value ≤10− 5 (nG), if there was a variant both associ-
ated with the expression of a gene within 1Mb of the
interval with a p-value ≤10− 5 and correlated with the
local GEBV of the variant with a p-value ≤10− 5 (nEG),
and if the local GEBV were correlated with the expres-
sion of a gene within 1Mb of the interval with a p-value
≤10− 3 (nC). For intervals fulfilling all criteria, we com-
pared whether the direction of effects was consistent,
hence if a variant had a positive effect on gene expres-
sion and was negatively correlated to the local GEBV of

the interval, the correlation between the local GEBV in
the interval should be negative (nEGC).

Colocalisation of QTL and eQTL
To estimate the probability that the same variant is causal
in both the GWAS and the eQTL analysis, we used eCaviar
[14]. eCaviar computes the colocalisation posterior prob-
ability (CLPP) based on the marginal statistics for a GWAS
(S(p)) and eQTL study (S(e)). S(p) and S(e) were computed
based on the effects estimated in the GWAS and eQTL
analysis, respectively, and the LD between variants. Follow-
ing Hormozdiari et al. [14], variants with a CLPP ≥0.01
were considered to be shared between the GWAS and
eQTL study.
To estimate how many QTL and eQTL were colocalising,

we first selected QTL and eQTL based on the p-values esti-
mated in the GWAS and expression analysis. A QTL was
defined as a region that contained at least one GWAS vari-
ant with a p-value ≤10− 6, with at least 1Mb between adja-
cent QTL. We first selected all genes that were located
within 1Mb of the QTL. Subsequently, we computed the
CLPP for all sequence variants located within 1Mb of these
genes. An eQTL was defined as a variant with a p-value
≤10− 5 in the eQTL analysis, with maximum 1 eQTL per
gene. For each eQTL we computed the CLPP for all vari-
ants within 1Mb of the gene.

Validation of known QTL and eQTL
MGST1 is a well-known QTL that has been detected as
an eQTL in dairy cattle [10], and SLC37A1 and PAEP
have been reported to be differentially expressed in lac-
tating mammary tissue than in other tissues [20]. We
used the results of all above described methods in an at-
tempt to validate our methods and the presence of these
QTL and eQTL in our dataset.

False discovery rate
For the GWAS, eQTL study and the correlation between
local GEBV and gene expression, the false discovery rate
(FDR) was calculated as FDR = nSign/(t × nTests), where
nSign is the number of sequence variants or correlations
with a p-value ≤ t and nTests the total number of tests,
and t the significance threshold used.

Conclusions
Both QTL and eQTL are common and this fact, com-
bined with the long-range LD in cattle, means that a
QTL will often be in LD with an eQTL. This situation is
difficult to distinguish from an eQTL and a QTL being
identical. We used several strategies to distinguish these
two possibilities but suspect that they lack enough
power to find all cases where the QTL is really an eQTL.
Nevertheless, we did identify some cases where the QTL
may be identical to an eQTL.
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However, it may be that eQTL explain only a small frac-
tion of QTL, and the majority of QTL are influenced by
other factors, such as amino acid sequence, splicing of tran-
scripts, post-transcription and post-translational changes.

Additional files

Additional file 1: Correlations between local GEBV and gene expression.
Manhattan plots showing the correlation between local GEBV for milk
yield, protein yield, fat percentage, protein percentage and fertility and
gene expression. (DOCX 66 kb)

Additional file 2: Association between FUK and DDX19B expression and
fertility. Top left = variance of local GEBV of 250 kb intervals where var.% =
variance explained by an interval as percentage of the sum of the variance
explained by the non-overlapping intervals that explained the most variance,
top right = GWAS for fertility, middle left = −log10(p) of correlations between
local GEBV and FUK expression, middle right = association between sequence
variants and FUK expression, bottom left =−log10(p) of correlations between
local GEBV and DDX19B expression, bottom right = association between
sequence variants and DDX19B expression. In all graphs, intervals or variants
located within intervals with a pcor(locGEBV,expr)≤ 10− 5 are indicated in red
(PNG 10 kb)

Additional file 3: Milk yield GWAS and eQTL study results for chromosome
1 around SLC37A1. Top left = GWAS for milk yield, top right = variance of
GEBV of 250 kb intervals where var.% = variance explained by an interval as
percentage of the sum of the variance explained by the non-overlapping
intervals that explained the most variance, middle left = p-value of correlation
between local GEBV in 250 kb intervals and SLC37A1 expression using milk
cells, middle right = p-value of correlation between local GEBV in 250 kb inter-
vals and SLC37A1 expression using white blood cells, bottom left = eQTL
study for SLC37A1 expression using milk cells, bottom right = eQTL study for
SLC37A1 expression using white blood cells (PNG 10 kb)

Additional file 4: Protein yield GWAS and eQTL study results for
chromosome 11 around PAEP. Description of data: Top left = GWAS for protein
yield, top right = variance of GEBV of 250 kb intervals where var.% = variance
explained by an interval as percentage of the sum of the variance explained
by the non-overlapping intervals that explained the most variance, bottom
left = p-value of correlation between local GEBV in 250 kb intervals and PAEP
expression using milk cells, bottom right = eQTL study for PAEP expression
using milk cells. (PNG 7 kb)
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