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Background: Data normalization and identification of significant differential expression represent crucial steps in
RNA-Seq analysis. Many available tools rely on assumptions that are often not met by real data, including the
common assumption of symmetrical distribution of up- and down-regulated genes, the presence of only few
differentially expressed genes and/or few outliers. Moreover, the cut-off for selecting significantly differentially
expressed genes for further downstream analysis often depend on arbitrary choices.

Results: We here introduce a new tool for estimating differential expression in noisy real-life data. It employs a
novel normalization procedure (qgtotal), which takes account of the overall distribution of read counts for data
standardization enhancing reliable identification of differential gene expression, especially in case of asymmetrical
distributions of up- and downregulated genes. The tool then introduces a polynomial algorithm (aFold) to model
the uncertainty of read counts across treatments and genes. We extensively benchmark aFold on a variety of simulated
and validated real-life data sets (e.g. ABRF, SEQC and MAQC-II) and show a higher ability to correctly identify
differentially expressed genes under most tested conditions. aFold infers fold change values that are comparable across
experiments, thereby facilitating data clustering, visualization, and other downstream applications.

Conclusions: \We here present a new transcriptomics analysis tool that includes both a data normalization method
and a differential expression analysis approach. The new tool is shown to enhance reliable identification of significant
differential expression across distinct data distributions. It outcompetes alternative procedures in case of asymmetrical
distributions of up- versus down-regulated genes and also the presence of outliers, all common to real data sets.
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Background

RNA Sequencing or RNA-Seq has become a popular ap-
proach for the analysis of gene expression variation and
uses the enormous recent advances in next generation
sequencing technology. In contrast to array-based
methods, RNA-Seq permits the quantification of gene
expression without detailed prior genome information,
such as gene annotations. Thus, it is widely used for
both classical model organisms and also non-model taxa
[1]. A common aim of such RNA-Seq studies is to
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understand inducible biological functions, usually
through the analysis of differential gene expression (DE),
based on comparison of gene expression levels between
two different biological states, as defined by exprimental
treatments, developmental stages, or different tissues.
Current statistical approaches for DE analysis in
RNA-Seq rely on fitting the distribution of read counts
with probabilistic models. These methods often detect
significant DE via an inferred probability value, usually
adjusted for multiple testing through false discovery rate
(FDR) estimation. FDR procedures highly depend on
mean-variance relationships [2—4]. In this context, sys-
tematic problems arise when variance levels for individ-
ual genes are unrealistically small (e.g. under-estimation
by limited sample size) [3, 5, 6]. Small variance values
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may also often reflect artifacts due to stochastic effects
or methodological procedures, yet may result in
highly statistically significant DE [6, 7] but simultan-
eously high type I error and FDR at extremely small
fold-change [8-10]. To reduce the number of poten-
tial artifacts, additional cut-offs in fold change are
commonly used [8-10] and often explicitly warranted,
in order to be able to focus on only larger changes
for subsequent functional analysis. Commonly used
fold change thresholds are values of at least 1.5 or
2.0 [11-13]. Moreover, as false positives of DE are
also frequently found for genes with a high coefficient
of variation, usually at low expression levels, another
cut-off for a minimum expression value or read count
is also widely applied [8—10]. Both strategies are not
ideal, because they rely on an arbitrary choice of the
applied threshold for either minimum fold-change
and/or minimum expression value.

Alternative solutions are based on the idea of merging
these cut-offs into a single statistical model or by redu-
cing the effect of high coefficients of variation. For
example, TREAT for t-test analysis of microarray data
partially addresses this problem via testing the signifi-
cance of DE on a given fold-change threshold [11].
DESeq2 utilizes an empirical Bayesian method to shrink
log fold change values toward zero in consideration of
read count dispersion [2]. GFOLD generalizes fold
changes based on the posterior distribution of log fold
change for RNA-Seq data without replicates [6]. How-
ever, these methods only provide a partial solution to
the problem. The approach in TREAT still requires that
the user provides a cut-off value for fold change. The
DESeq2 approach identifies significant DE via a
Wald-test comparison of the standard error of log fold
change estimates with a normal distribution, which
might still result in false positives with extremely small
fold-changes [8-10]. The GFOLD method can only be
used for data without replication.

We have previously developed ABSSeq as an analysis
tool for RNA-Seq data, in order to solve some of the
above problems [10]. ABSSeq is based on absolute read
count difference across treatments. Neverhteless, ABS-
Seq, like other methods, still requires a combination of
cut-offs (fold change and p-value) to achieve high reli-
ability in DE inference.

Here, we introduce a novel integrated approach
(aFold) of normalization and DE estimation to enhance
reliability of RNA-Seq data analysis, which overcomes
the problem of low variance levels. aFold includes two
elements: a normalization method and then a subse-
quent gene expression analysis approach. For the former,
we developed a new method to improve the
normalization of RNA-Seq data, which we term qtotal
and which uses the overall read count distribution and
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thus variance differences among samples for data
standardization. This approach is not constrained by the
assumption of presence of non-DE genes, which is com-
mon to the popular normalization methods. Therefore,
qtotal is applicable to a wider range of data sets, includ-
ing those with substantial DE across conditions. For the
latter, we introduce a new method for differential gene
expression analysis (i.e., accurate estimation of fold
change from RNA-Seq data, the “aFold algorithm” sensu
strictu), which models the uncertainty of read count data
between treatments and experiments using a polynomial
function. It thereby allows calculation of fold-change
values comparable across conditions and provides a stat-
istical framework for evaluating the significance of DE,
thus avoiding the problem of choosing specific cut-off
values. Using real and simulated datasets, we demon-
strate that the aFold tool is more efficient in DE ranking,
DE visualization, and FDR reduction than several of the
currently available RNA-Seq analysis approaches, including
DESeq2 [2] and Voom [5, 14], edgeR [15], baySeq [16],
ABSSeq [10] and ROTS [17], which were previously com-
pared by colleagues of us in similar analyses [2, 14, 18].
The new approaches qtotal and aFold are available as part
of the ABSSeq package [10].

Results and Discussion

First, we introduce the new normalization procedure,
qtotal, which we implemented in the aFold package and
which aims at standardizing read count variation by ac-
commodating the influence of DE on the total number
of read count. The performance of qtotal is compared
with other normalization methods such as TMM [19],
geometric [3], cqn [20], MedpgQ2, and UQpgQ2 [21].
Thereafter, we illustrate the aFold approach to model
fold change and assess its statistical significance with
the help of real data sets. Performance of aFold is
next compared with that of DESeq2, Voom, edgeR,
baySeq, ABSSeq and ROTS, always used under default
settings. Two of these methods also consider log fold
change for DE inference and report moderated
(DESeq2) or raw (Voom) fold changes as output.
Method performance is evaluated based on three
complementary criteria: 1) correct gene ranking, that
is the ability to rank truly DE genes ahead of non-DE
genes; 2) minimization of errors, in particular FDR
and type I error rate as well as sensitivity-FDR assess-
ment; and 3) visualization of reported fold changes.
We use different well-studied real data sets to assess
the performance of each method (Table 1). Further-
more, we also use simulated data in method evalu-
ation, for which data structure can be efficiently
controlled and which have been widely used to evalu-
ate similar DE analysis methods [7, 10, 16, 22-25].
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Table 1 Overiew of the used real data sets
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Set name Average library size #Present Genes Sample size #DEs' Used for

ABRF 54,822,037 42,613 18 29,013 DE & Type | error
SEQC 66,503,428 44,931 10 17,038 DE

MAQC-II 1,421,992 11,907 14 8387 DE
Modencodefly 13,709,954 13,244 147 - Type | error
HapMap-CEU 5,187,226 12,410 41 8 DE

Bottomly 4,904,164 13,932 21 1112 DE

PrimePCR - 20,801 - 16,603 True DE

(-) indicates that the statistics are not applied. (1) the number of DEs represents average DEs reported by aFold, DESeq2 and Voom

Qtotal as a new approach for normalization of read
count data

Read count analysis of RNA-Seq data requires
normalization before DE inference in order to reduce
possible biases from variation in sequencing depth,
library preparation, sequencing in different lanes, or
other random factors [19, 26]. A variety of different
normalization procedures have been developed, which
adjust individual read count values across replicates and
treatments to achieve a standardization of:

1) total number of read count (a procedure termed
total) as an indicator of sequencing depth; this
procedure is however easily influenced by outliers
of read count at high expression level and DE [19];

2) number of read count in the lower quartiles (a
procedure termed quartile), which was introduced
with the baySeq approach to avoid a possible bias
due to outliers [16]; this procedure highly depends
on sequencing depth that largely impacts quartile
function;

3) geometric mean of all read count (called
geometric), which is used by DESeq [3] and DESeq2
[2] to reduce the influence of outliers on
approximating the total number of sequence reads;
this approach is also sensitive to sequencing depth
and DE which might alter the total number of
expressed genes as well as the geometric mean of
read count from all genes (see also below data
analysis);

4) Trimmed mean of M values (called TMM), which
is implemented in edgeR and is based on the
assumption that the majority of genes with high
expression are not DE [19].

5) removing technical variability using conditional
quantile normalization (called cqn), which removes
systematic biases such as GC-content and gene
length [20].

6) per gene normalization after per sample median
(called MedpgQ2) or upper-quartile global scaling
(called UQpgQ2) [21].

In general, all above listed methods rely on the
assumption of presence of no or few DE genes, such as
majority of high expressed genes (TMM), genes from 1st
to 3rd quartile (quartile) or median (geometry). How-
ever, this assumption may not apply in some situations.
For example, presence of a large number of DE genes
(e.g., samples between certain tissues or developmental
stages) will disturb the detection of non-DE genes.
Asymmetrical DE in up and down regulation will impact
median estimation.

Here we introduce a new normalization procedure,
termed qtotal, to address this problem. It is based on the
idea that true DE alters the overall read count distribu-
tion (either more or less dispersed), which is reflected by
a change in the coefficient of variation (CV) of reads
count across genes, while variation in sequencing depth
does not affect the CV [27]. qtotal quantifies differences
in CV between samples and then uses this information
to adjust sequence library size, thus explicitly taking into
account that there is variation in overall DE between
samples (see Methods for details). We used data sets
from SEQC, ABRF, and MAQC-II to illustrate the po-
tential problems of different normalization procedures
(see Datasets for details). These data sets are based on
replicated RNA samples of the human whole body
(UHR) and brain (BHR) [28, 29] and show different
sequencing depths (ABRF>SEQC>MAQC-II, Table 1).
They include validated DE genes, assessed by quanti-
tative real-time PCR (qRT-PCR) [30]. We used these
validated results to define true and false positives:
From among the identified DE genes, true positives
are those with a log2 fold change of more than 0.5 in
the qRT-PCR validated results, while false positives
are those with a log2 fold change of less than 0.2 in
the qRT-PCR results. The three data sets show large
differences in the number of DE genes of more than
70% (Table 1). Moreover, the BHR data set has a
larger number of down-regulated genes than the UHR
data set (60% of DE belongs to down-regulation
according to the PrimePCR data set under log2 fold
change cut-off of 0.5) [10, 18, 31].
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The normalization procedures affect the discriminative
power of subsequent DE inference. This influence can
be assessed with the help of the true and false positive
rates (TPR and FPR, respectively) and the area under
the Receiver Operating Characteristic (ROC) curve
(AUC). The AUCs were inferred with the ROC package
in Bioconductor [32], whereby the ROCs were generated
based on ordinary fold change under each normalization
procedure. We used these three approaches to evaluate
the performance of the normalization procedures on the
three above listed data sets (Fig. 1a). The performance of
the compared methods varies across the three data sets.
The discriminative power of the quartile method de-
creases as the sequence depth decreases (Fig. la, from
left to right). Normalization with the total of the read
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count is generally good, indicating that it truly reflects
the sequence depth in these three data sets. The TMM
and geometric methods perform worse than the other
methods except cqn, which might be due to the fact that
the majority of genes in the data sets are DE, in apparent
contrast to the underlying assumption of the methods.
Cqn partially improves the discriminative power on
ABRF (beginning of curve), which possibly results from
removing biases due to GC-content and gene length.
The qtotal method produces significantly larger AUCs
on all three data sets (i.e., 0.832, 0.876 and 0.844 for the
ABRF, SEQC and MAQC-II data sets, respectively) than
the alternative methods (adjusted pvalue <0.05 via a
two sample one-sided z-test [33], see Additional file 1:
Table S1 for details). The only two exceptions refer to
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Fig. 1 Normalization of RNA-Seq data. (@) ROC analysis using the qRT-PCR validated data sets ABRF, SEQC and MAQC-II. ROC analysis for
PrimePCR data sets at a gRT-PCR absolute log-ratio (logFC) threshold of 0.5, which results in 9871 true positives. TPR, true positive rate; FPR, false
positive rate. A gene is considered to be not differentially regulated if its logFC in the PrimePCR data is less than 0.2, which results in 999 true
negatives. Five normalization procedures are analyzed: gtotal, TMM, total, quantile and geometric. ROCs are based on ordinary log fold changes.
Rroot mean square deviation (RMSD) correlation of external RNA control consortium (ERCC) for the (b) ABRF, and (c) SEQC data sets. RMSD is
calculated from observed log2 fold change of RNA-Seq data and the expected expected fold change, which results from added RNA markers into
samples that mixed into samples UHR and HBR at four ratios: 1/2, 2/3, 1 and 4

\g\O
&
I3

§ ¥

Yy & @ @
XD G Q
N

(&N




Yang et al. BMC Genomics (2019) 20:364

the quartile approach on the ABRF data set and the total
method on the MAQC-II data, which are not signficantly
worse than qtotal (Additional file 1: Table S1).

Similar results are also obtained using root mean
square deviation (RMSD) analysis of external RNA con-
trol consortium (ERCC) data, which compares log2 fold
changes with pre-defined fold changes (results from
added RNA markers mixed into samples UHR and HBR
at four ratios: 1/2, 2/3, 1 and 4) on ABRF (Fig. 1b) and
SEQC data set (Fig. 1c). RMSD is used to assess the rela-
tionship between expected (e.g., from RT-PCR or
spiked-in RNA data) and estimated (e.g., from normalized
RNA-Seq data) fold changes [18, 21]. As ERCC data is not
available for the MAQC-II data, it was not included in this
analysis. The RMSD analysis reveals that qtotal performs
best on the two data sets, followed by the total and quar-
tile methods, while cqn yields the worst associations (Fig.
1b, c). When we repeated the RMSD analysis using
RNA-Seq and validated PrimePCR data, then, surprisingly,
the normalization methods do not differ in their perform-
ance (Additional file 1: Figure S1).

Taken together, these results suggest that the qtotal
approach is able to normalize RNA-Seq data at least as
good as and often with much higher efficacy than
alternative procedures. Importantly, its high perform-
ance appears to be independent of sequencing depth, as
demonstrated by the results on the three real data sets
which vary in exactly this parameter (Fig. 1a, Table 1).
Therefore, qtotal should improve reliability of subse-
quent DE detection.

Benchmarking of aFold with the SEQC and HapMap-CEU
data sets

Ordinary fold change indicates the extent of DE for a
specific gene, although it is usually not comparable
across genes or data sets because of differences in
variance. To address this problem, the common idea is
to shrink fold changes according to dispersion of read
count so that the shrinkage is strong if dispersion for a
certain gene is high. DESeq2 employs an empirical Bayes
approach to shrink the log fold change according to the
mean and dispersion of a gene. The Bayes approach re-
lies on two rounds of fitting a generalized linear model
(GLM) to the data: 1) GLM is fitted on read count to
obtain maximum-likelihood estimates (MLEs) for the
log fold changes and a zero-centered normal distribution
of MLEs from all genes; 2) a second GLM is fitted again
on the read count data using the zero-centered normal
distribution as a prior. Interestingly, the second GLM,
which relies on the zero-centered normal distribution of
MLEs from all genes, might be influenced by the num-
ber of genes with significant DE. If the number of DE
genes is high, then the inferred normal distribution
shows a flat structure and thus little moderation of
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fold-change (see below). This could potentially introduce
a bias in the obtained fold change values.

aFold estimates fold change through modelling uncer-
tainty of read count data. In particular, the observed read
count of RNA-Seq data are characterized by several
levels of uncertainty (resulting in observed variance) as a
consequence of biological variation, but also due to sys-
tematic or non-systematic biases during libarary prepar-
ation and sequencing [9, 31]. aFold avoids the implicit
assumption of a specific distribution of the read count
data (e.g., Poisson or negative binomial, NB [4]). Instead,
we explicitly model the uncertainty in the read count
data via a polynomial function of the sample mean and
standard deviation. aFold takes into account two sources
of variance for fold change calculations: 1) the observed
variance in gene expression (read count variation across
replicates); and 2) the hidden or unknown variance,
which is accommodated via fitting the mean-variance re-
lationship (borrowing information from genes). aFold
further penalizes high uncertainty of variance estimates,
thus ensuring comparability of fold changes across genes
and treatments (see Methods section). In contrast to
DESeq2, aFold modelling is not influenced by differences
between treatments and thus variation in the number of
DE genes. Instead, fold change from aFold is a function
of the expression level and dispersion of a specific gene.

In addition to estimating fold change itself, aFold also
provides an efficient strategy for statistical analysis of DE
without the need of defining multiple cut-off values (e.g.,
fold change in combination with p-value and/or mini-
mum expression level). To achieve this, aFold does not
directly model read count distributions. Instead, it em-
ploys a zero-centered normal distribution on estimated
log fold changes and compares them with the global
standard deviation (see Methods section). This approach
avoids the influence of extremely small variances on sig-
nificance inference.

The difference in fold-change calculation between
DESeq2 and aFold is illustrated in Fig. 2 based on the
SEQC data set and calculation of logCPM with the func-
tion from the edgeR package [15]. In Fig. 2a and b, four
samples in total were randomly selected from this data
set (four from UHR) to define two test comparisons.
The first of these was set up to contain no true DE by
randomly comparing two UHR with two other UHR
samples (thus, all data sets coming from identical condi-
tions, labeled “Without DE”; Fig. 2a). This test compari-
son shows a skewed fold change distribution across
different expression levels before application of any fold
shrinkage procedure (left panels of Fig. 2a and b). In this
case, both DESeq2 and aFold shrink fold change towards
zero according to expression level (dispersion) but the
shrinkage is stronger in DESeq2 (Fig. 2 a and b, middle
panels).
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Fig. 2 Fold change shrinkage of the aFold and DESeq2 methods. Results are based on the SEQC data set. Fold change is studied for two test
comparisons, generated by randomly combining samples from the SEQC data set (four UHR samples). For the first test comparison in (a), samples
from identical conditions are combined (all UHR), resulting in the absence of true DE (labeled “Without DE”; the left and middle panels). The
second test comparison in (b) additionally includes pseudo reads count from UHR scaled according to fold change between UHR and BHR,
yielding a data set with 40% true DE (labeled “With DE"; right panels). The results are only shown for non-DE genes, in order to enhance
comparability between results for data sets with and without DE. This comparison thus allows us to assess the effect of DE genes on
normalization efficiency for the non-DE genes. Results for DESeq2 and aFold are based on geometric and gtotal normalization, respectively. They
suggest that the presence of a large proportion of DE genes reduces the efficiency of data shrinkage by the approach implemented in DESeq?2
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For the second test comparison, we introduced signifi-
cant DE into the first test comparison. For this, we simu-
lated pseudo reads count from the above used UHR
samples, which were scaled according to randomly se-
lected fold changes between UHR and BHR in the SEQC
data set, yielding a large number of significant DE, as ex-
pected in number and extent for real data sets (because of
the differences in tissues). These pseudo reads counts
were added to the above used data set, resulting in a data
set with about 40% of DE (See source code at https://
github.com/wtaoyang/RNASeqComparison for details).
For this test comparison, the DESeq2-based shrinkage
procedure leads to almost no change in the fold-change
distribution and thus no apparent data shrinkage, while
that by aFold still results in similar shrinkage as seen for
the first test comparison (Fig. 2a and b, right panels).
These results, which were obtained from comparable data
sets that only varied in the presence or absence of a realis-
tic number of DE genes, suggests that fold change moder-
ation by DESeq2 strongly depends on the number of truly
DE genes in the data set, which influences shape of the in-
ferred zero-centered normal distribution. In contrast,
moderation of aFold appears to be less affected by DE
gene numbers but mainly depends on expression level and
dispersion (gene specific and overall dispersion).

We next illustrate the aFold approach with the help of
the HapMap-CEU data set, which consists of 41 highly
dispersed samples from 17 females and 24 males. The
HapMap data was split into two group according to
gender of patients (male and female). Therefore, the ex-
pected or truly DE genes should be sex-related and only
includes a total of seven genes on sex chromosomes as
highlighted by us previously (identified by all DE
methods, see Additional file 1: Table S3 for details) [10].
The results of our analysis are shown in Fig. 3 and the
sex-related genes are indicated in red. logCPM was again
calculated with the function implemented in the edgeR
package [15]. Following [24], a sensitivity analysis is pre-
dicted to find an over-representation of inferred DE
genes from the sex chromosomes.

The ordinary fold changes between female and male
samples exhibit high variability (Fig. 3a) due to high dis-
persion of the HapMap-CEU data. For the sex-related,
truly DE genes, the ordinary fold change values are very
large, thus five of the calculated values fall outside of the
y-axis range. Such high ordinary fold changes are often
produced by genes with low expression level in at least
one of the conditions, which often display a high degree
of variance. In these cases, the high ordinary fold change
does not necessarily reflect the true DE, but represents


https://github.com/wtaoyang/RNASeqComparison
https://github.com/wtaoyang/RNASeqComparison

Yang et al. BMC Genomics (2019) 20:364

Page 7 of 17

>

log2 of raw FC

@)

log2 of raw FC

DESeq?2 result

Fig. 3 lllustration of the aFold approach with the HapMap-CEU data set. Seven genes on sex chromosomes are marked by red color. (a) and (c)
Raw fold change (without shrinkage) under gtotal and geometric normalization, respectively. Five genes on sex chromosomes are out of y-axis
range. (b) and (d) Fold change values calculated through the aFold (gtotal) and DESeq2 (geometric) approaches, respectively. All seven genes
from sex chromosomes show largest fold changes in the aFold result. Four genes on sex chromosomes are out of y-axis range in the

1.0 20

L]
So "™

aFold
0

-1.0

-2.0

an artefact resulting from chance effects at very low
expression levels. aFold explicitly considers read count
variation and expression levels for the calculation of fold
change values and thus reports comparable estimates
across expression levels. After shrinkage of variance
using the aFold approach, fold change values were much
smaller and the truly DE genes appear more distinct
from the remaining genes (Fig. 3b). In contrast, DESeq2
produces partially shrinked fold changes, with the result
that the truly DE genes are not distinct from the
non-DE genes (Fig. 3d). These observations may suggest
that aFold is able to rank the truly DE before the
non-DE genes and produce fold change estimates that
directly imply DE.

Statistical assessment of genes with significant DE con-
firmed the above results (Table 2). Under an adjusted
p-value cut-off of 0.05, all three considered methods
(aFold, DESeq2, Voom) identify seven genes on sex
chromosomes with significant DE. If ranked by p-value,
then all seven sex chromosome genes are within the top
10 DE genes. However, if genes are ranked by fold

Table 2 Number of DE genes from sex chromosomes detected
by three method in the HapMap-CEU data set at a FDR-
adjusted p-value of 0.05

Method Sex'/ Sex in Top 10 (Rank)
Total® p-value Fold-change

aFold 7/8 7 7
DESeq?2 712 7 5
Voom 7/7 7 5
edgeR 7/20 7 5
ABSSeq 7/7 7 7
baySeq 7/15 7 5
ROTS-t 7/8 7 5
ROTS-q 7/8 7 5

Number of genes identified by each methods in sex chromosomes (1) and
total (2)
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change, then only aFold is able to find these seven gene
within the top 10. These results may suggest that fold
changes calculated with aFold are more robust than the
conventional fold change calculations (Voom and
DESeq?2) in ranking truly DE genes. In contrast, consid-
eration of fold-change is not sufficient for identification
of truly DE genes by the alternative methods (Voom and
DESeq2), but must additionally take into account the as-
sociated p-vales. Consideration of statistical significance
of DE highlights that aFold has similar power than
Voom, yet higher specificity in comparison to DESeq?2.

Discrimination of DE versus non-DE genes on gqRT-PCR
validated real data

We next evaluated the discriminative power of several
different methods with the help of three additional data
sets. In above Table 2, we showed that aFold is more
efficient in ranking true DE before non-DEs. However,
the few DE genes of the HapMap-CEU data set might
lack resolution to reliably assess method performance.
Therefore, we here additionally considered data from the
ABRF, SEQC and MAQC-II studies.

The considered ABRF data set consists of RNA-Seq
data from the same mRNA sample generated by three
different laboratories [9]. This data set includes two con-
ditions (mRNA samples from human whole body and
brain), which were sequenced with three replicates at
three labs. Therefore, the ARBF data set contains true
DE (two conditions) as well as noise (e.g., from library
preparation and sequencing), which could be used to as-
sess the accuracy of DE detection approaches, especially
their ability to discriminate between signal and noise.
Here, we pooled samples for the same condition from
three labs into one group (i.e. a comparison of 9:9, nine
samples for body and nine for brain). Similarly, the
SEQC and MAQC-II data sets contain samples from
body and brain but with different sequence depths and
number of replicates (See Table 1 and methods for fur-
ther details). These data sets were used to assess method
performance based on TPR and FPR, using ROC curves,
resulting AUCs and sensitivity. The AUC has been
shown repeatedly to be an informative measure of the
overall discriminative power of a method [34-36].

The results of the analyses are shown in Fig. 4. aFold
outperforms the other two methods, irrespective of se-
quencing depth of data sets (ABRF>SEQC>MAQC-II).
aFold reaches the highest AUC values of 0.861, 0.842
and 0.809 on the ABRF, SEQC and MAQC-II, respect-
ively (See Additional file 1: Table S2 for significance).
Essentially identical results are obtained, when sequen-
cing depth is artificially varied for one of the data sets,
the SEQC data set (Additional file 1: Figure S3), strongly
suggesting that the high performance of aFold is
independent of sequencing depth. Interestingly, ROC
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analysis suggests that ranking by fold change is more
powerful than p-values to detect true DE [8-10].
However, fold changes may fail to indicate DE in highly
dispersed data, often genes with low expression (i.e., low
FPR, at the beginning of the curve on the ABRF data
set). Our model moderates fold changes with informa-
tion from expression level and dispersion and might be
more powerful to detect and rank DE genes than ordin-
ary fold changes and p-values. Notably, aFold performs
slightly worse than the ordinary fold change approach
on the SEQC and MAQC-II data set in terms of AUCs
(0.842 and 0.809 compared with 0.876 and 0.844, re-
spectively) but better on the ABRF data set (0.861 versus
0.836) (Figs. 1 and 4). This might be caused by true DE
genes with high dispersion (resulting in strong moder-
ation of fold change), which could be improved by an in-
creased sequencing depth. Strong moderation of fold
change might decrease correlation with real fold change
(Additional file 1: Figure S4B, RMSD with ERCC), which
might require comfirmation from ordinary fold change.

Furthermore, normalization by qtotal further improves
the performance of all methods on all three data sets ex-
cept of the ROTS approach on ABRFAB and MAQC-II
and baySeq on ABRFAB (adjusted pvalue <0.05, see
Additional file 1: Table S2 for details). Similar results are
obtained when assessing sensitivity versus empirical
FDR. qtotal consistently yields higher sensitivity with
lower empirical FDR when combined with the various
RNA-Seq analysis methods (Fig. 4b). Our additional ana-
lysis of SEQC data sets, in which we artifically varied
overall read numbers, comfirms that gtotal is able to im-
prove performance of all tested methods, regardless of
sequencing depths (Additional file 1: Figure S3). More-
over, qtotal combined with aFold always enhances per-
formance in comparison to aFold used with alternative
normalization methods (quartile, geometric and TMM).
It also produces slightly better results than originally
published combinations of normalization procedures
and RNA-Seq analysis methods (i.e, DESeq2 with
geometric, Voom and edgeR with TMM and baySeq with
quartile) (Additional file 1: Figure S4A).

In addition, we further assessed the relationship be-
tween true (PrimePCR) and estimated fold changes
(RNA-Seq), as inferred with aFold and DESeq2, using
corresponding SEQC data. To avoid any biases, we con-
sistently used qtotal for normalization. Lowly expressed
genes (red points in Fig. 5) appear to account for the
main differences in fold changes between PrimePCR and
SEQC original data. aFold shrinks nearly all fold changes
from lowly expressed genes towards zero. In contrast,
DESeq2 shrinkage only has a small influence on these
genes. Similar results are obtained for comparisons be-
tween original and validated ABRF and MAQC-II data
sets (Additional file 1: Figure S2B and S2C). These
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results suggest that aFold produces fold changes that
more closely depict true biological variation — at least
qualitatively. However, aFold shrinkage also reduces the
scale of fold changes from RNA-Seq, which might lead
to a decreased correlation with true fold changes in spe-
cial cases (Additional file 1: Figure S2A, RMSD analysis
of ERCC). Nevertheless, fold changes from aFold still
preserve the magnitude of DE and even the global
correlation with true fold changes (Additional file 1:
Figure S2A, RMSD analysis used PrimePCR).

In summary, these results suggest that aFold more effi-
ciently distinguishes between truly DE genes over
non-DE genes in real data sets.

Discrimination of DE versus non-DE genes in simulated
data

The negative binomial (NB) distribution is most commonly
used to increase reliability of DE detection methods as
RNA-Seq data shows over-dispersed variance [2, 3, 10, 15].
Here, we evaluated the ability of aFold through ROC
analysis on data, which was simulated based on the
NB distribution, using mean and variances from
Pickrell's RNA-Seq dataset [37]. For all simulations,
we chose 10% of the 12,500 genes to be DE and sym-
metrically divided them into up- and down-regulated
genes (e.g., 625 up- and 625 down-regulated genes,
indicated below by super- and subscripts, respect-
ively). We summarize the results using boxplots for
two different simulation settings, including data sets
with various replicate sample sizes and, in each case,
ten independent repetitions (Fig. 6).

When applied on the data that is overdispersed
according to the NB distribution (denoted by NB®%® .,
Fig. 6a), aFold generally yields higher AUCs than alter-
native methods at large sample size and shows a sig-
nificant advantage over DESeq2 (n=5) and Voom (n
=10) (Tukey’s test, p<0.01). While DESeq2 directly
employs a NB model to identify DE, its performance
improves as the sample size increases (Fig. 6a). At all
three considered sample sizes, aFold produces similar
AUC values than alternative methods, suggesting that
aFold fits the NB data at least as well as the models
used in the other approaches.

Since aFold uses sample variance to calculate fold
change and identify DEs, we next tested the influence of
outliers that highly impact the sample variance. The out-
liers were introduced into the NB distributed data by
multiplying a randomly generated factor between 5 and
10 with the read count of all genes in all groups obtained
through random sampling with a probability of 0.05.
The resulting data set (denoted R®?® ,5) still has 625
up- and 625 down-regulated genes, in addition to ran-
dom outliers. Additional outlier dectection produres
were applied for edgeR (GLM_robust) and DESeq2
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(Cook’s distance) to analyze R®? ,s. For these simulated
data sets, aFold demonstrates a significant advantage
(Tukey’s, p < 0.01) over alternative methods at large sam-
ple sizes (n =5 or 10) and even reaches an AUC of 0.9 at
n=10 (Fig. 6b). The only exception refers to the re-
lated ABSSeq, which yields similar AUC values than
aFold. This result suggests that aFold together with
the outlier detection procedure, which we already in-
troduced in ABSSeq, is comparatively mildly affected
by outliers. Interestingly, performance of the alterna-
tive methods also shows variation. For example,
Cook’s distance from DESeq2 requires a high number
of replicates to improve its performance in presence
of outliers. DE detection of Voom, as implemented in
limma, is based on log-transformation, which is more
robust against outliers and thus results in higher
AUC values than DESeq2. ROTS based on rank sta-
tistics is also robust against outliers, which yields
similar performance than Voom.

In addition, we also assess the sensitivity and precision
(FDR) of all methods with the help of above simulated
data sets. As discribed in [2], the sensitivity was calcu-
lated as the fraction of genes under adjusted p-value <
0.1 among true DEs. The FDR was the fraction of false
DEs among genes under adjusted p-value <0.1. The re-
sults are shown in Fig. 6¢ and d for NB®%® - and R®®
625, respectively. aFold could always yield higher sensitiv-
ity compared to alternative methods. However, aFold
also produces slightly higher FDR than other methods
on NB®* (.. Small sample size (1=2) decreases the
power of DE detection for all methods, which leads to
either low sensitivity and FDR (e.g. Voom, baySeq and
ABSSeq) or high sensitivity but also high FDR (e.g., aFold
and DESeq2). Interestingly, in the presence of outliers in
the R%% ,s data sets, aFold maintains its comparatively
high sensitvity and now additionally causes reduced FDR
(Fig. 6d), thereby breaking up the usually observed
trade-off between sensitivity and FDR.

Similar results are obtained for the simulated data sets
with large number of DEs (i.e., 2000 up- and 2000 down-
regulated genes, NB*% o, Additional file 1: Figures.
S5A, S6, S7C). Moreover, aFold clearly outperforms al-
ternative methods (except the related ABSSeq method)
on data sets simulated with asymmetrical distributions
of up- versus down-regulated genes (NB° ;550 and NB°
4000 Additional file 1: Figures. S5 and S7), which is likely
a consequence of the efficacy of the qtotal normalization
procedure to adjust such biased distributions (Additional
file 1: Figure S6). Qtotal is also able to improve the per-
formance of all DE methods on such unbalanced data
sets (Additional file 1: Figure S6B-S6F). The only excep-
tion refers to Voom, which shows large variation upon
qtotal standardization and might be due to gene specific
normalization of Voom [18] .
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Overall, aFold is at least as good as alternative
methods in discriminating between DE and non-DE
genes in the presence of outliers, irrespective of the here
considered data sample sizes. In combination with qtotal
normalization, aFold clearly outperforms alternative
methods in case of asymmetrical distributions of up-
and down-regulated genes.

Control of false discovery rate and type | error rate
Another important aim of reliable DE detection is to
control the false discovery rate (FDR) and minimize the
type I error rate (i.e, the null hypothesis is falsely
rejected) while identifying a large number of DE genes
[18, 38]. To assess these two aspects, we compared the
ability of the alternative approaches to control FDR and
type I error rates, using again the ABRF data set and,
additionally, the modencodefly data set. Results are sum-
marized in Fig. 7, which are specifically based on fold
change related methods: aFold, Voom and DESeq2. Most
other methods were already tested on ABSSeq [10].

We first evaluated the three methods using the ABRF
data set, based on the same structure as above (e.g.,
results shown in Fig. 4). Method performance was
assessed with the help of empirical FDR (eFDR), which
is the ratio between the number of true false positives
and the sum of true and false positives (total number of
detected DE genes) (Fig. 7a-d). We also investigated the
influence of expression levels (Fig. 7d) and additional
cut-offs (Fig. 7b-d) on eFDR. The three methods identify
similar numbers of DE genes under the adjusted p-value
of 0.05, whereby Voom reports the largest number
(29120), followed by DESeq2 (28997) and aFold (28,922,
Fig. 7a). Moreover, when cut-offs for fold change, ex-
pression level and adjusted p-value are combined, then
these three methods report nearly the same number of
DE genes, namely 12,976, 14,251 and 14,250 for aFold,
DESeq2 and Voom, respectively (84% overall overlap).
These results suggest that the above observed differences
between aFold and the other two methods result from
genes with low expression level and/or fold change,
which is consistent with findings from previous studies
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[8, 10]. As aFold identifies the smallest number of DE
genes of the three methods, it also produces a lower
overall eFDR (0.079) than both DESeq2 (0.097) and
Voom (0.098). This may indicate that aFold is able to
control FDR without reducing sensitivity (total number
of DE genes) as shown in Fig. 6¢ and d for simulated
data sets.

Interestingly, the genes commonly identified by the
three methods retain an eFDR of 0.070, which is close to
the used adjusted p-value cut-off. The additional differ-
ence in identified DE genes may thus be due to
model-dependent biases, either as a consequence of the
normalization or the statistical approach implemented.
In fact, the eFDRs for the method-specific genes are
much higher than those for the commonly identified

genes. In particular, the genes only revealed by aFold
(denoted as the gene subset II) have an eFDR of 0.216,
while those jointly identified by DESeq2 and Voom (de-
noted as the gene subset I) produce an eFDR of 0.529.
Note that other subsets were not considered because
they included only a small number of genes, which does
not permit reliable eFDR calculation. The higher eFDR
for gene subset I relative to gene subset II may suggest a
larger bias caused by DESeq2 and Voom. Similar results
are also observed in the SEQC and MAQC-II data sets
(Additional file 1: Figure S8C and D).

Interestingly, when data was normalized by TMM
(Voom) or the geometric mean approach (DESeq2), both
subsets are reduced (Additional file 1: Figure S8A and
B). In this case, only few genes are detected uniquely by
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aFold, suggesting that aFold retains higher specificity
than alternative methods. The subset I is a result of the
normalization procedure in aFold (qtotal), which retains
low eFDR of 0.216 and supports the efficiency of qtotal
normalization. However, it also suggests that genes in
subset I actually have comparatively low fold changes.
These three DE and normalization methods yield similar
results when applied on a data set that contains a small
percentage of DE genes (Bottomly data set, Additional
file 1: Figure S8 E, F and G).

Our next analysis aimed at reducing eFDR for these
two gene subsets by applying more stringent adjusted
p-value cut-offs (Fig. 7b) or additional fold change
cut-offs (Fig. 7c). Both alternatives can improve the
overall eFDR (for the entire set of DE genes, inlet
figure in Fig. 7b and c). However, eFDR for gene set I
is not reduced through adjusted p-value cut-offs but
rather increases with higher cut-off values. Fold
change together with adjusted p-value can efficiently
decrease eFDR for subset I to a level of 0.05. On the
other hand, both cut-offs consistently reduce eFDR of
subset II to 0.05 (adjusted p-value of 1.0e-9 or 0.05
with log fold-change = 0.4). These results suggest that
high eFDR of subset I and II is due to low fold
changes (low dispersion).

Since false positives often result from under-estimation
of variances (with low fold change but high expression or
high fold change but low expression) [8—10], we com-
pared eFDRs across different categories of expression level
(four quartiles, Fig. 7d). Indeed, many genes from subset I
and II come from the 1st (low expression) and 4th (high
expression) quartile (given in light blue and green in Fig.
7d, Y axis on the right side of the panel). Generally, eFDRs
at 1st and 4th quartile are higher than 2nd and 3rd for
total (grey line). aFold (red line) shows generally lower
eFDRs in all quartiles but the 1st one than those obtained
for all genes (both DE and non-DE genes, grey line in Fig.
7d, Y axis on left side), whereas DESeq2 (blue line) and
Voom (pink line) show a similar pattern than that found
for all genes. This observation may suggest that aFold is
able to improve eFDR at most of expression levels.

We then assessed use of an additional fold change
cut-off of 0.5 (under log2-tranformation). In this case,
eFDR reduces to around 0.05 in all quartiles for aFold
but only the upper ones (3rd and 4th) for DESeq2 and
Voom, which produce no change in the 1st quartile
(0.164 to 0.164) and only a slight improvement in the
2nd quartile (0.075 to 0.067). In fact, reducing eFDR for
DESeq2 and Voom in 1st quartile to a similar value of
0.05 requires an extremely high log fold change cut-off
of 4.0. Such a cut-off additionally decreases the total
number of DE genes to 3564 and 3224 for DESeq2 and
Voom, respectively. At the same time, applying a log
fold change cut-off of 0.5 for aFold still yields a total of
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15,339 DE genes. A more efficient way to reduce eFDR
at 1st quartile for DESeq2 and Voom is to use a combin-
ation of cut-offs for expression level and also p-value
(eFDR =0 under logCPM> 0 & adjusted p-value < 0.05).
These results therefore suggest that aFold is able to con-
trol FDR by reducing false positives at all expression
level while retaining sensitivity, even when more strin-
gent cut-offs are used.

We next compared the methods in their ability to
control type I error rates (i.e., the null hypothesis is
falsely rejected and thus results in false positives). We
used two gene expression data sets: 1) the ABRF data
set as above, including data from the same RNA sam-
ple but generated by three different laboratory sites,
each with 3 replicates; and 2) the modencodefly data
set, which contains data for development processes of
the fruitfly Drosophila melanogaster [39], with tech-
nical replicates ranging from 4 to 6. For the moden-
codefly data set, we randomly selected 4 replicates for
each condition and separated them into two groups,
which should thus only be characterized by stochastic var-
iations but not true DE. The results of our analysis are
summarized in Fig. 7e (ABRF) and 7F (modencodefly). At
the p-value cut-off of 0.05, only aFold is able to control
the type I error rate around 0.05 for the ABRF data set
while the other two methods produce a rate above 0.2. For
the modencodefly data set, all three methods are able to
control type I error rate around 0.05, but aFold reports
the smallest number of false positives (average of 15),
followed by DESeq2 (119) and Voom (867). Thus, for both
data sets, aFold reduces the type I error rate to a larger
extent than the alternative methods (Wilcoxon rank test,
p <0.1), consistent with above results for eFDR.

Taken together, the approach implemented in aFold
is able to control FDR and type I error rates more
effectively than the two tested alternative approaches.
Moreover, p-values inferred from aFold are directly
deduced from and thus monotonically correlated with
fold-change, which allows to apply single cut-off
values to select candidate DE genes for further ana-
lysis. More importantly, aFold also takes into consid-
eration uneven dispersion across expression levels,
which avoids possible biases in inferred DE genes due
to large fold change at low expression level [10] and
thus permits comparable analysis of DE across differ-
ent types of data distributions (and thus gene expres-
sion characteristics).

Improved visualization of RNA-Seq data

The results of transcriptomic studies are often visualized
using a heatmap, which usually takes log fold change as
input data to compare the expression difference across
treatments or conditions [40, 41]. However, ordinary fold
change ignores sample variance, potentially yielding
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artefactual differences. aFold takes the observed and
mean related variance into account during fold change
calculation and, thus, it produces more consistent fold
change measures across groups. Here we used the ABRF
data set to demonstrate how aFold improves the
visualization of RNA-Seq data. The ABRF data sets con-
sist of RNA-Seq data from the same RNA samples, mea-
sured under two conditions, but processed and analyzed
by three different laboratories. The inferred DE variation
among lab sites should only result from random or
batch effects of (unwanted) environmental or procedural
variations, for example due to some differences during
library preparation and/or sequencing error. The analysis
results indeed identify a high overlap across lab sites of
more than 80% for DE genes detected by the three
methods.

However, there are still unique genes identified at each
lab site by each method, which are most likely caused by
variance under-estimation due to limited sample size (n
=3). We take genes that show significance at one lab site
from each method as unique genes for each method (ad-
justed p-value < 0.05), as illustrated in Fig. 8. aFold iden-
tifies the smallest number of genes with unique DE
(most of them retain log fold change < 0.5) at only one
site but similar pattern across three lab sites (all are up
or down-regulation). In contrast, DESeq2 and Voom
report many genes that show opposite regulation pat-
terns with high fold change (log fold change > 1), which
are likely caused by high dispersion across samples and
lab sites.

Fold change measures reported by DESeq2 and Voom
are unable to capture the magnitude of expression
differences and therefore might result in unreal opposite
regulation patterns. Indeed, over 75% of genes in each
unique set show very low expression (logCPM <O0).
These genes also often exhibit high variance combined
with high fold change (Fig. 8, scatter plot) [3, 4, 10], thus
requiring shrinkage of fold change or additional filtering
of expression level to reduce false positives [6, 8—10].
The difficulty here is that there is no universal cut-off
value for expression levels because reliability addition-
ally depends on sample size (e.g., large sample size
can enhance reliable variance estimation in highly dis-
persed data and thus also reduces error rates). Here,
we demonstrate that aFold is able to accurately esti-
mate fold change by taking into account variance.
Thus, aFold improves the visualization of expression
data by reducing DE variation, which in turn will fa-
cilitate pattern discovery (clustering) and gene set en-
richment analyses [41].

Conclusions
Here, we introduce a new approach for normalization and
DE analysis of RNA-Seq data. The new normalization
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procedure included in the package, qtotal, adjusts for the
influence of the number of DE genes on the overall read
count distribution and accurately approximates the true
sequence depth. Qtotal can also be combined with differ-
ent RNA-Seq analysis methods outside of aFold. It re-
sults in DE identification that is at least as good as
and often better than those produced with alternative
normalization procedures, especially in case of asym-
metrical distrbutions of up- and down-regulated
genes. The new fold change inference and analysis
method, the aFold DE analysis algorithm, is distinct
from other current methods, because it uses polyno-
mial uncertainty modelling to infer fold changes and
considers variance in read count data across genes
and treatment groups. It thus permits reliable
fold-change comparisons across genes, which will en-
hance correct ranking of genes for selection of candi-
dates for subsequent analysis and gene set enrichment
analysis [41]. Using real and simulated data sets, we
demonstrate that aFold is at least as efficient as and
often better in discriminating DE and non-DE, espe-
cially in the presence of outliers or biased DE distrubu-
tions. Our statistical framework shows high power to
control FDR and type I error rate across expression
levels. Based on our analyses, we conclude that the
aFold package represents a highly efficient novel tool
for RNA-Seq data normalization, fold change estima-
tion, and identification of significant DE across a wide
range of conditions. It may help the experimentalist
to avoid an arbitrary choice of cut-off thresholds and
may enhance subsequent downstream functional
analyses.

Materials and methods

Datasets

We used two main types of data sets: simulated and
real data. They are described in detail in the sup-
plemnetary methods in Additional file 1. An overiew
of the real data sets is given in Table 1, including the
average total number of read count, the number of
genes, sample size and the average number of DE
genes. Genes with zero counts in all samples were
filtered out for analysis.

Normalization

The procedure underlying the new qtotal normalization
method is provided in detail in the supplementary
methods in Additional file 1. The alternative, previously
available normalization methods were all used with
default settings (voom and TMM for Voom and edgeR,
geometry mean for DESeq2, qtotal for ABSSeq, quartile
for baySeq, total for ROTS).
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Moderating uncertainty of read count in the aFold approach
Due to biological and/or other sources of variance, the
observed expression value for the i™ gene g; is given as
the mean y; with uncertainty «;.

(1)

In practice, the uncertainty is represented as the
standard deviation (SD) of samples if the SD is inde-
pendent of the mean. However, In RNA-Seq data or
microarray data, the SD is not independent of y; and
could be generally written as

ci=u,+¢

(2)

where a; is the coefficient that stands for the
mean-variance relationship of the i™ gene. This implies

0, = al; a; >0

that there is propagation of error (uncertainty) in meas-
urement of SD based on y;. Therefore, an accurate reads
uncertainty measurement should also include the propa-
gation of error from (2). In theory, the propagation
uncertainty of SD can be written as

(3)

where s; is the sample SD of g;. Thus, the uncertainty of
read counts for each gene becomes

&5 = a;SD (gi) = a;s;

(4)

& =Si T &5 =5+ as;

a; in (3) actually serves as the CV as
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(o] Si
ai:—:—

Hi Wi )

The uncertainty of g; becomes a polynomial function
of sample SD s;

2

& =5+ (6)
g; is then used to moderate the ordinary fold change (see
Additional files for details). A more detailed description
of the new analysis method and also its evaluation in
comparison with available approaches is given in the
supplementary methods in Additional file 1. An illustra-
tion of aFold modelling is provided in Additional file 1:
Figure S9.

Implementation

aFold has been implemented and integrated in the
software package ABSSeq for the cross-platform envir-
onment R, available through the R Core Team [42].
aFold is released under the GPL-3 license as part of the
Bioconductor project [32] at URL: http:// bioconductor.
org/packages/devel/bioc/html/ABSSeq.html.

Software tools
The figures in this study have been plotted using R.

Additional file

Additional file 1: Supplementary Methods, Figures and Tables.
(PDF 2321 kb)
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