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Abstract

Background: Our understanding of the pig transcriptome is limited. RNA transcript diversity among nine tissues
was assessed using poly(A) selected single-molecule long-read isoform sequencing (Iso-seq) and Illumina RNA
sequencing (RNA-seq) from a single White cross-bred pig.

Results: Across tissues, a total of 67,746 unique transcripts were observed, including 60.5% predicted protein-
coding, 36.2% long non-coding RNA and 3.3% nonsense-mediated decay transcripts. On average, 90% of the splice
junctions were supported by RNA-seq within tissue. A large proportion (80%) represented novel transcripts, mostly
produced by known protein-coding genes (70%), while 17% corresponded to novel genes. On average, four
transcripts per known gene (tpg) were identified; an increase over current EBI (1.9 tpg) and NCBI (2.9 tpg)
annotations and closer to the number reported in human genome (4.2 tpg). Our new pig genome annotation
extended more than 6000 known gene borders (5′ end extension, 3′ end extension, or both) compared to EBI or
NCBI annotations. We validated a large proportion of these extensions by independent pig poly(A) selected 3′-RNA-
seq data, or human FANTOM5 Cap Analysis of Gene Expression data. Further, we detected 10,465 novel genes (81%
non-coding) not reported in current pig genome annotations. More than 80% of these novel genes had transcripts
detected in > 1 tissue. In addition, more than 80% of novel intergenic genes with at least one transcript detected in
liver tissue had H3K4me3 or H3K36me3 peaks mapping to their promoter and gene body, respectively, in
independent liver chromatin immunoprecipitation data.

Conclusions: These validated results show significant improvement over current pig genome annotations.

Keywords: Porcine, Transcriptome sequencing, PacBio, Iso-seq, Single molecule long read sequencing, RNA-seq,
Genome annotation

Background
Domestic pigs (Sus scrofa domesticus) are closely related
to humans in terms of anatomy, genetics and physiology
and represent an excellent animal model in many fields
of biomedical research [1, 2]. Comparative analysis indi-
cates that there is more genetic similarity between pig
and human than mouse and human [2]. In addition, ex-
periments in pigs are much more likely to be predictive
of therapeutic treatments in humans than experiments
in rodents [2]. Despite the value of pigs to agriculture,

food security and medicine, our current knowledge of
pig genome functional elements is limited [3].
The recent, long read-based update to the pig refer-

ence genome assembly was a major step forward for
swine research. This genome assembly (Sscrofa11.1) was
annotated both at the European Bioinformatics Institute
(EBI) [4] and National Center for Biotechnology Infor-
mation (NCBI) [5]. Although these annotations repre-
sent significant improvement over the previous pig
genome annotation (Sscrofa10.2) [6], they are still far
from complete. For example, the number of annotated
genes and transcripts per gene (tpg) in the current pig
genome annotations (NCBI release 109: 30,334 genes
and 2.9 tpg, Ensembl release 93: 25,880 genes and 1.9
tpg) are fewer than reported for genome of human
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(NCBI release 109: 54,644 genes and 4.2 tpg, Ensembl
release 93: 57,373 genes and 3.5 tpg, coding, non-coding
and pseudogenes were included in this calculation). The
most significant difference is in the number of
non-coding genes. Despite the fact that non-coding re-
gions of the human genome harbor a rich array of func-
tionally significant elements [7, 8] (e.g. majority of
trait-associated loci in human genome located outside
protein coding regions [9–11]), very few numbers of
these elements have been annotated in the current pig
genome annotations (NCBI release 109: 6460
non-coding genes, Ensembl release 93: 3250 non-coding
genes) compared to the report in human genome (NCBI
release 109: 17,835 non-coding genes, Ensembl release
93: 22,107 non-coding genes). The characteristics of
NCBI and Ensembl genome annotations differ because
of variations in their annotation strategies and resources
[5, 12, 13]. Ensembl annotates using an automated
process called Ensembl genebuild pipeline, whose main
focus is to generate a conservative set of protein-coding
gene models in combination with manual annotation
provided by HAVANA team [12]. The Ensembl gene-
build pipeline uses the following steps to annotate
protein-coding genes [12]: (1) produce gene models
using species-specific proteins and proteins from closely
related species, species-specific cDNAs and Expressed
Sequence Tags (ESTs), short-RNA sequencing and
long-RNA sequencing data, (2) add Untranslated regions
(UTRs) to derived gene models from previous step using
species-specific cDNAs and ESTs and RNA sequencing
data and (3) merge exon match transcripts built in the
first step to produce multi-transcript genes. The NCBI
pipeline [13] passes protein and RNA read alignments to
Gnomon [5] for gene prediction and then integrates the
results with available RefSeq transcripts to select the
best gene models. As described by Thibaud et al. [13]:
“Gnomon first chains together non-conflicting align-

ments into putative models. In a second step, Gnomon
extends predictions missing a start or a stop codon or
internal exon(s) using an HMM-based algorithm.
Gnomon additionally creates pure ab initio predictions
where open reading frames of sufficient length but with
no supporting alignment are detected”.
These are how the two annotations are different for

coding regions, and we investigated these as well as
other types of transcripts in this study.
Deciphering transcriptome (the total RNA molecules

produced from the genes of an organism) complexity is
critical to connect the genome sequence to gene func-
tion [14–16]. Next-generation sequencing (NGS) tech-
nologies (e.g. Illumina) that can produce millions of high
quality (99% base-level accuracy) sequence reads was an
important step towards the elucidation of tissue tran-
scriptomes [17, 18]. However, the sequence read length

of NGS technologies (100–150 base pairs, bp) is much
shorter than the actual transcript lengths (the median
length of human transcripts is about 2.5 k bases, kb).
This creates computational challenges to accurately
deciphering full-length transcripts [19–21]. In recent
years single-molecule long-read isoform sequencing
(Iso-seq) technology was developed [22] capable of pro-
ducing reads > 4 kb, providing an alternative approach to
overcome many of these limitations [23]. Indeed, Iso-seq
data has been used for genome annotation of different
species from Maize to Human [24–26]. However, the
error rate in single molecule sequencing on the Pacific
Biosciences (PacBio) platform (15–20%) is much higher
than for the Illumina platform sequence reads (1%) [17].
In addition, the error model of both technologies differs.
Although Illumina reads mainly contain miscalled bases
with increasing frequency toward the end of sequence
reads, PacBio generates primarily insertions (10%) and
deletions (5%) in a random pattern [17]. The accuracy of
PacBio long reads can be increased using in silico hybrid
error correction approaches by Illumina reads from
matched samples [17, 27].
A recent study on the pig transcriptome [28] used Pac-

Bio Iso-seq data from 38 porcine tissues to improve the
previous pig genome assembly (Sscr10.2). However, this
study pooled tissue RNAs together prior to library cre-
ation, which makes it impossible to trace transcripts
back to the original tissue and study transcript variability
among porcine tissues. To identify a more complete
catalogue of transcript isoforms across porcine tissues,
we processed poly(A) selected PacBio Iso-seq and Illu-
mina RNA sequencing (RNA-seq) data from nine tissues
(brain, hypothalamus, liver, muscle, thymus, pituitary,
small intestine, spleen and diaphragm). This data pro-
vided evidence to improve the annotation of thousands
of protein-coding and long non-coding RNA (lncRNA)
genes, such that the complexity of the pig transcriptome
(number of transcripts per gene, lncRNA transcripts and
alternative splicing events) is similar to that reported for
the highly-annotated human genome. We also provide
direct evidence that the predicted novel genes and tran-
scripts are valid for creating improved annotation, by
performing independent chromatin immunoprecipita-
tion sequencing (ChIP-seq), poly(A) selected 3′-RNA--
seq experiment and human FANTOM5 CAP Analysis of
Gene Expression (CAGE) data. We show that these
complementary technologies directly support the validity
of our additions to annotation of the pig reference
genome.

Results
Transcript level analyses-transcript diversity across tissues
The extent of RNA transcript diversity among nine dif-
ferent porcine tissues (brain, diaphragm, hypothalamus,
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liver, longissimus dorsi (LD) muscle, pituitary, small in-
testine, spleen and thymus), collected from a healthy

48-day old crossbred barrow pig (Yorkshire ð5
.
8
Þ x

Landrace ð1
.
4
Þ x Duroc ð1

.
8
Þ ), was assessed using

poly(A) selected PacBio Iso-seq (Additional file 1: Table S1)
and Illumina RNA-seq data (Additional file 1: Table S2). A
total of approximately 4.4M Iso-seq reads and 499M
RNA-seq reads were collected, with a minimum of 398,629
(399 K) Iso-seq and 32,689,730 (32.7M) RNA-seq reads
from each tissue (average 491 K ± 92 K and 55M± 20M,
respectively) (Additional file 1: Table S1 and Additional file
1: Table S2). The RNA-seq data was not independently as-
sembled; instead transcripts and transcript isoforms were
defined from the Iso-seq reads and error-corrected, vali-
dated, and quantified using the short reads. This approach
identified a total of 67,746 unique transcripts (1.2% of total
Iso-seq reads) across all nine tissues. Predicted classification
of these transcripts identified 41,003 (60.5%) predicted
protein-coding, 24,527 (36.2%) lncRNA and 2216 (3.3%)
non-sense mediated decay (NMD) transcripts (Additional
file 1: Figure S1a). The error-corrected transcripts had a
median length of 2900 nucleotides (nt; Additional file 1:
Figure S1b), and mapped to the Sscrofa11.1 assembly to
identify exons and introns. The median length of
exons was 136 nt, and of introns was 1428 nt (Additional
file 1: Figure S1b-d). On average, there were 6 exons per
transcript (Additional file 1: Figure S1e) and most
(97–98%) of the predicted acceptor and donor splice
sites conformed to the canonical consensus sequences
(Additional file 1: Figure S1f ). An average of 90% of
predicted splice junctions across the nine tissues were
supported by Illumina-seq reads that spanned the
splice junction (Additional file 1: Figure S2), support-
ing the accuracy of the transcript definition from
Iso-seq reads.
We evaluated the set of Iso-seq-defined transcripts for

potential tissue-specific transcripts. RNA-seq data were
used to test whether the absence of these transcript from
the Iso-seq reads in the other tissues is due to
tissue-specificity or potentially due to lack of data. From
the complete set of 4733 unique brain transcripts that
were not observed in the Iso-seq data from any other
tissue, 1136 (24%) transcripts had RNA-seq reads span-
ning all splice junctions in at least one other tissue, and
these reads represent transcripts with expression levels
more than 0.1 FPKM (inflection point in expression plot
of transcripts detected in more than one tissue by
Iso-seq data; Additional file 1: Figure S3) (see blue bars
in Additional file 1: Figure S4). Thus, reliance on just
Iso-seq data to predict tissue-specific transcripts may
overestimate tissue-specificity due to a high false nega-
tive rate for transcript detection. To solve this over pre-
diction of tissue specificity problem, we marked a
transcript as “detected” in a given tissue only if (1) it had

been detected by Iso-seq data in that tissue or (2) it had
been detected by Iso-seq data in another tissue but all of
its splice junctions were validated by Illumina reads in
the tissue of interest with expression level more than 0.1
FPKM (see Methods section). This resulted in a total of
37,595 (55%) transcripts detected between 2 and 9 tis-
sues and 30,151 tissue-specific transcripts (44%) (Fig. 1).
While brain had lower numbers of detected transcripts
(19,793) compared to other tissues (except muscle), it
ranked third in terms of tissue specific transcripts (3597)
(Fig. 1). Brain had the lowest number of transcripts per
gene (1.65) compared to the other tissues. Furthermore,
25% of transcripts detected in the brain (4979) were from
single-transcript genes, which was greater than any other
tissues (Table 1). In addition, brain transcripts had on
average one exon fewer (5 exons per transcript) than the
other tissues (Table 1). Spleen had the highest number of
detected transcripts (28,269) and 72% of these transcripts
were produced by multi-transcript genes (averaging 2
transcripts per gene), which was more than that observed
for the other tissues (Fig. 1). In general, groups of
functionally-related tissues, such as thymus-spleen,
muscle-diaphragm and hypothalamus-brain, tended to
have more specific transcripts (detected only in these
groups of tissues) than other pairwise tissue combinations
(such as diaphragm-brain) (Fig. 1).

Comparison of transcript structures across current pig
genome annotations
Comparing predicted transcript isoforms with known
transcripts in the current pig genome annotations
(Ensembl release 93 and NCBI Release 109) resulted in a
total of 13,038 annotated transcripts exactly matching
previously annotated transcripts (19% of all transcripts,
or class “=” transcripts in Fig. 2), including 11,021 anno-
tated NCBI transcripts, 8418 annotated Ensembl tran-
scripts and 6401 transcripts that were common to both
annotation gene sets (Fig. 2 and Fig. 3a). The remaining
54,708 transcripts (81%) in the Iso-seq data had no coun-
terpart in currently available porcine genome annotations
(Ensembl and NCBI), which we denote as predicted novel
transcripts (Fig. 3b). A majority of these transcripts were
spliced (82%; Fig. 3c) and protein-coding (54%; Fig. 3d). In
general, these novel transcripts had a lower expression level
as compared to known transcripts (Fig. 3e, f), and 50% of
them were only detected in a single tissue (Fig. 3g). This pro-
portion was 20% for known transcripts (Fig. 3h).
To study these novel transcripts in more detail, we clas-

sified them based on their structural similarity with anno-
tated transcripts from Ensembl or NCBI annotations, into
9 different classes. Class “j” included transcripts that had
at least a one splice junction in common with a reference
transcript (Fig. 2). This class contained more than 60% of
novel transcripts in either Ensembl-referenced transcripts
or NCBI-referenced transcripts (Fig. 2). Class “k” included
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Fig. 1 Number of detected transcripts in each tissue and their intersections with other tissues using UpSetR [65]. Red color identifies the
proportion of tissue-specific (TS) transcripts that are produced by non-TS genes

Table 1 Distribution of detected genes and transcripts across tissues

Tissue Number of detected
genes

Number of detected
transcripts1

Average Number of exons
per transcript

Number of transcripts
produced by
multi-transcript genes

Number of transcripts
produced by
single-transcript genes

Brain 12,064 19,973 (1.65) 5.20 14,994 4979

Diaphragm 11,417 21,468 (1.88) 6.22 17,453 4015

Hypothalamus 13,041 22,528 (1.72) 6.12 17,039 5489

Liver 11,118 22,008 (1.97) 6.33 18,028 3980

Muscle 9930 22,528 (2.26) 6.12 14,175 3334

Pituitary 12,662 23,240 (1.83) 6.26 18,098 5142

Small intestine 11,906 22,268 (1.87) 6.38 17,798 4470

Spleen 13,604 28,269 (2.07) 6.40 22,789 5480

Thymus 12,895 26,721 (2.07) 6.44 21,522 5199
1Number in parenthesis shows the number of transcripts per gene
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Fig. 2 Comparision of PacBio transcript structure with known transcripts in Ensembl (a) and NCBI (b) genome annotations. (c) Exploratory key to
different comparisons. Reference and predicted Iso-seq transcripts are identified by black and blue color, respectively
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transcripts that extended the reference transcript (Fig. 2).
This class included 815 Ensembl-referenced transcripts
and 492 NCBI-referenced transcripts (Additional file 1:
Figure S5a). There were 105 transcripts with “class k” that
were present in both of the Ensembl and NCBI gene sets
(Additional file 1: Figure S5a), which included 58
protein-coding, 40 lncRNA and 7 NMD transcripts (see
Methods for NMD definition) (Additional file 1: Figure S5b).
When averaged across tissues, 60% of class “k” transcripts
had an expression level greater than 1 FPKM in their de-
tected tissue (Additional file 1: Figure S5c). In addition,
around 60% of these transcripts were detected in more than
one tissue (Additional file 1: Figure S5d). These transcripts
could be potentially used as the reference transcript in
current Sus scrofa annotations. Class code “c” included
transcripts that were contained in a reference
transcript (Fig. 2). This class included 3% (2260
transcripts) of Ensembl-referenced transcripts and 5%
(3801 transcripts) of NCBI-referenced transcripts (Fig. 2).
On average, 75% of the transcripts included in “=”, “j”, “c”
and “k” classes were protein-coding (Additional file 1:
Figure S6). Class “o” included transcripts that had an exon
overlap, but no shared splice junction with a reference

transcript (Fig. 2). Transcripts in this class comprised 3%
(2260 transcripts) of Ensembl-referenced transcripts and
7% (3801 transcripts) of NCBI-referenced transcripts.
Class “s”, included transcripts that contained at least one
shared splice junction with their reference transcripts, but on
the opposite strand of the genome (Fig. 2). There were 448
transcripts with this structure in both Ensembl-referenced
and NCBI-referenced transcripts and more that 90% of them
(417 transcripts) were detected in more than one tissue
(Additional file 1: Figure S7). Class “x” included transcripts
with the same structure as class “o”, but on the opposite
DNA strand (Fig. 2). There were 1662 transcripts with this
structure in both Ensemb and NCBI annotations and
60% (997) of them were detected in more than one
tissue. Classes “i”, “y” and “u” included transcripts that did
not overlap with Ensembl or NCBI transcripts (Fig. 2). On
average, 74% of class “i”, “y” and “u” transcripts were
lncRNA (Additional file 1: Figure S6).

Gene level analyses
Transcript that contained an exon that overlapped (“=”,
“j”, “c”, “k” and “o”) with either an Ensembl or NCBI an-
notated gene was considered to belong to a known gene.

Fig. 3 Venn diagram of known (a) and novel (b) PacBio transcripts based on Ensembl and NCBI annotations. (c) Classification of PacBio transcripts
to spliced and non-spliced transcripts. (d) Novel transcripts biotypes. Expression level of known (e) and novel (f) transcripts across different tissues.
Classification of known (g) and novel (h) transcripts based on the number of tissues in which they were detected
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This resulted in the identification of transcripts for
14,021 known genes or 57% of all Iso-seq data-associ-
ated genes (24,486) (Fig. 4a lower). Approximately 80%
of novel transcripts (43,249) were associated with known
genes (Fig. 4b). The median number of transcripts
per known gene (tpg) was three, which was higher
than that was observed in either the Ensembl (2 tpg)
or NCBI (2 tpg) annotated gene sets (Fig. 4c). Known
genes (in either Ensembl or NCBI gene sets) that we
did not detect in our Iso-seq data (Fig. 4c) had only
1 tpg. This may indicate that these genes are likely to
be lowly expressed or tissue-specific, i.e. expressed in
tissues not represented here (Fig. 4c). Known genes
were associated with 95% (38,956) of protein-coding
transcripts, 62% (15,290) of lncRNA transcripts and
more than 92% (2041) of NMD transcripts (Fig. 4d).

Further, we identified novel genes; i.e., predicted
Iso-seq genes (see Method) that produced “s”, “x”, “i”,
“y” and “u” transcript structures (Fig. 2) that were not
found in either Ensembl and NCBI gene sets. This re-
sulted in total of 10,465 novel genes or 43% of all
Iso-seq data-associated genes. Novel genes were further
classified into novel intragenic genes (with at least one
“i” transcript, Fig. 2c) and novel intergenic genes (with-
out “i” transcript). A total of 8678 novel genes had the
same classification (5552 intergenic novel genes and
3126 intragenic novel genes) in both the Ensembl and
NCBI gene sets (Fig. 4a). In contrast, 1787 novel genes
had different classifications in the Ensembl (1376 intra-
genic novel genes and 411 intergenic novel genes) and
NCBI gene sets (411 intragenic novel genes and 1376
intergenic novel genes) (Fig. 4a). Only 21% of the novel

Fig. 4 (a) Classification of predicted Iso-seq genes into known, novel-intergenic and novel-intragenic genes using Ensembl (release93) and NCBI
(release 109) Sscrofa11.1 annotations by UpSetR [65]. Proportion of protein-coding genes in each class is identified by “orange” color. Intersections
related to annotated genes are identified by “green” lines. (b) Distribution of transcripts across different classes of predicted genes. (c)
Comparison of predicted and annotated genes in term of average number of produced transcripts. Number of genes in each class is shown on
each bar. (d) Proportion of transcripts produced by novel and known genes in different transcript biotypes. (e) Gene biotypes. (f) Classification of
genes into spliced and un-spliced genes using UpSetR [65]. (g) Classification of novel genes based on the number of tissues in which they were
detected. (h) Validation of novel-intergenic genes detected in liver tissue by an independent liver chromatin immunoprecipitation (ChIP)
sequencing experiment (2 histone modifications per sample). Venn diagram shows the distribution of 616 validated genes (with significant
H3K4m3e and H3K36me3 peaks) across samples. (i) validation of NCBI specific Iso-seq genes that were located in intergenic region of pig
genome based on Ensembl gene set (see text) detected in liver tissue by an independent liver ChIP sequencing experiment (2 histone
modifications per sample). Venn diagram shows the distribution of 358 validate genes (with significant H3K4m3e and H3K36me3 peaks) across
samples. (j) validation of liver detected Ensembl specific Iso-seq genes that were located in intergenic region of pig genome based on Ensembl
gene set (see text) by an independent liver ChIP sequencing experiment (2 histone modifications per sample). Venn diagram shows the
distribution of 137 validate genes (with significant H3K4m3e and H3K36me3 peaks) across samples
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transcripts (11,459 out of 54,708) were associated with
novel genes (Fig. 4b). These genes had fewer transcript
per gene (1 tpg) than known genes (3 tpg) (Fig. 4c).
Novel genes produced approximately 5% of the
protein-coding transcripts (2047), 38% of the lncRNA
transcripts (9237) and 8% of the NMD transcripts (175)
(Fig. 4d). In addition, the proportion of protein-coding
genes, i.e. genes that had at least one protein-coding
transcript, was lower in novel genes (19% - 1950 genes)
than in known genes (77% of annotated genes or 10,328
genes) (Fig. 4e). While the proportion of genes with
spliced transcripts was 30% in novel genes (3186), it was
94% in known genes (13,192) (Fig. 4f ).
We also investigated differences between the anno-

tated gene sets. All possible combinations of presence or
absence in NCBI and Ensembl annotations for the
Iso-seq annotated genes, as well as intragenic/intergenic
location relative to those annotations, were determined
and are summarized in Fig. 4a. For example, there were
1965 Iso-seq genes that were found in the NCBI gene
set but not in the Ensembl annotation gene set (NCBI
specific Iso-seq genes). These genes were located in
intergenic (1474 genes) or intragenic (491 genes) regions
of pig genome based on Ensembl gene set (Fig. 4a,
fourth and sixth bars). In contrast, only 364 Iso-seq
genes were found in the Ensembl gene set, by not in the
NCBI gene set (Ensembl specific Iso-seq genes). These
genes were located in intergenic (332 genes) or inter-
genic (32 genes) regions of pig genome based on NCBI
gene set. (Fig. 4a, last two bars). However, the propor-
tion of protein-coding genes, i.e. genes that had at least
one protein-coding transcript in these 364 Ensembl spe-
cific Iso-seq genes (56%) was higher than that for the
1965 NCBI specific Iso-seq genes (24%) (Fig. 4a).

Validation of novel genes
More than 80% of the novel genes had transcripts de-
tected in more than one tissue (Fig. 4g). Interestingly,
413 novel genes had transcripts that were detected in all
9 tissues (Fig. 4g). Using data from an independent liver
chromatin immunoprecipitation (ChIP) sequencing ex-
periment (Additional file 1: Table S3), we found that
more than 80% (616) of the novel Ensembl and NCBI
intergenic genes detected in liver tissue (694) had signifi-
cant H3K4me3 (tri-methylation of lysine 4 on histone
H3) that mapped to their promoters, i.e. the genomic re-
gion that spans from 500 base pairs (bp) 5′ to 100 bp 3′
of the genes first exon (Fig. 4h, see illustrative examples
in Fig. 5 and Additional file 1: Figure S8). Similar results
were found for ChIP data using H3K36me3 (tri-methyla-
tion of lysine 36 on histone H3) peaks mapping to gene
bodies (Fig. 5 and S8). In addition, around 80% of these
genes (558 out of 616), had significant H3K4me3 and

H3K36me3 peaks in all ChIP-seq samples (2 histone
modifications per sample).
Out of 493 liver detected NCBI specific Iso-seq genes

that were located in intergenic region of pig genome
based on Ensembl gene set, 358 genes (72%) had
H3K4me3 and H3K36me3 peaks that mapped to their
promoter and gene body, respectively (Fig. 4i). This pro-
portion was 82% (137 genes) for liver detected Ensembl
specific Iso-seq genes that were located in intergenic re-
gion of pig genome based on NCBI gene set (165 genes)
(Fig. 4j).

Identification and validation of annotated gene border
extensions
This new Iso-seq based pig gene set annotation extended
(5′ end extension, 3′ end extension or both) more than
6000 known Ensembl or NCBI gene borders (Table 2). Ex-
tensions were longer on the 3′ side, but the median in-
crease was 90 nt for the latter group. To validate 3′ end
extensions, an independent liver poly(A) selected
3′-RNA-seq dataset (Quantseq, Lexogen; Additional file 1:
Table S4) was utilized. Out of 3228 3′ end extended
Ensembl genes with transcripts detected in liver, 2902
genes (90%) had 3′-RNA-seq reads that mapped to the 3′
extension (Additional file 1: Figure S9a, and see illustrative
examples in Fig. 6 and Additional file 1: Figure S10). Simi-
larly, 88% of liver-detected 3′ end extended NCBI genes
(2980 out of 3368) (Additional file 1: Figure S9b) were val-
idated with this gene expression set. To measure the effect
of these 3′ end extension events on gene expression
values, we narrowed down the analysis to those liver de-
tected Iso-seq genes with exact same 5′ end but extended
3′ end compared to the reference Ensembl genes (233
genes). The results showed that the expression level of the
extended genes (read counts) increased on average 40% in
Iso-seq genes compared to their matched Ensembl genes
(Additional file 1: Figure S11).
To validate the 5′ end extension events, we used a

total of 45,067,042 CAGE sequences from eight matched
human tissues (brain, diaphragm, liver, LD muscle, pitu-
itary, small intestine, spleen and thymus). Around 70%
of the CAGE reads (31,486,934) mapped to the pig gen-
ome and 22% of them (6,963,037) were mapped uniquely
to the genome. These uniquely mapped reads were used
in the rest of the analyses. A total of 1270 human-pig
orthologous genes, i.e. one-to-one orthologous genes
with more than 90% nucleotide similarity [29], with an
extended 5′ end based on Iso-seq data were selected for
validation. The median genomic length of the extended
5′ end for these genes was 135 bp. The promoter region
as defined by the median length of H3K4me3 peaks
(600 bp) that overlapped with both the Iso-seq and
Ensembl gene set annotations, is too broad to identify
the correct 5′ end. To differentiate the Ensembl and
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Iso-seq defined 5′ ends, we developed an ad hoc method
as described here. The candidate 5′ end region predicted
by Ensembl or Iso-seq genes was defined based on the
gene start site plus or minus 1/3 of the Ensembl gene
extended region length (Additional file 1: Figure S12a).
This allowed us to determine whether the human CAGE
data (median length = 32 nt) mapped unambiguously to
either the predicted extended exon, the Ensembl
annotated 5′ end, or to neither (Additional file 1:
Figure S12a). Out of 1270 human-pig orthologous
genes with an extended 5′ end, 320 genes had human
CAGE reads that uniquely mapped from the region de-
fined as the Iso-seq candidate 5′ end to the Ensembl can-
didate 5′ end (Additional file 1: Figure S12a). This 320
gene subset was used to determine the validity of a gene’s
5′ end annotation from Ensembl or our analysis. Of these
320 genes, 203 genes (63%), had CAGE reads that mapped
to the Iso-seq candidate 5′ end, i.e. these reads validated

the Iso-seq 5′ end (Additional file 1: Figure S12a). This in-
cludes 105 genes with only validated Iso-seq 5′ end and 98
genes with both validated Iso-seq and Ensembl 5′ end
(multiple promoter genes) (Fig. 7, Additional file 1:
Figure S12b and Figure S13).

Alternative splicing events
Alternative splicing events shown in Fig. 8a were classi-
fied into the seven major types as defined by [30]:
“These events are commonly distinguished in terms

of whether RNA transcripts differ by inclusion or ex-
clusion of an exon, in which case the exon involved
is referred to as a ‘skipped exon’ (SE) or ‘cassette
exon’, ‘alternative first exon’, ‘alternative last exon’. Al-
ternatively spliced transcripts may also differ in the
usage of a 5' splice site or 3' splice site, giving rise to
alternative 5' splice site exons (A5Es) or alternative 3'
splice site exons (A3Es), respectively. A sixth type of

Fig. 5 Example of validation of novel intergenic Iso-seq gene using matched RNA-seq reads and independent liver ChIP-seq (H3K4me3 and
H3K36me3) and 3′-RNA-seq experiments

Table 2 Gene border extensions in current Ssc11.1 genome annotations by PacBio Iso-seq data

Annotation Type of gene extension Number of genes Median extension (nucleotides)

Ensembl (release93) 5′ extension only 1476 60

3′ extension only 3160 395

Both ends extended 1712 90 5’

562 3’

NCBI (Release 109) 5′ extension only 1625 46

3′ extension only 3560 550

Both ends extended 1425 67 5’

507 3’
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alternative splicing, ‘mutually exclusive exons’, in
which one of two exons is retained in RNA but not
both. These descriptions are not necessarily mutually
exclusive; for example, an exon can have both an al-
ternative 5' splice site and an alternative 3' splice site,

or have an alternative 5' splice site or 3' splice site
but be skipped in other transcripts. A seventh type of
alternative splicing, ‘intron retention’, in which two
transcripts differ by the presence of an unspliced in-
tron in one transcript that is absent in the other”.

Fig. 6 Example of validation of extended 3′ annotation using an independent liver 3′-RNA-seq experiment

Fig. 7 Example of validation of extended 5′ annotation using an independent Human CAGE data
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Transcripts showing this latter event were excluded
from the analysis as it was difficult to distinguish true
intron retention events from pre-RNA sequences. The
proportion of alternative splicing events were uniform
across the 9 tissues, and alternative 3′ splice site exons
were the predominant splicing event followed by alter-
native 5′ splice site exons and skipped exons (Fig. 8b).
Thymus had the highest number of alternative splicing
events (Fig. 8b) with 80% of the AS event candidate
genes (genes with at least 2 spliced transcripts) exhibiting
one or more form of AS events (average of 4.4 AS events
per gene), followed by spleen and pituitary (Fig. 8b, c).
Brain and muscle had the lowest number of AS genes in
this study (Fig. 8c).

Tissue specific transcripts
Forty-four percent of all transcripts (30,151) were only de-
tected in a single tissue and were denoted as tissue-specific
transcripts (Fig. 1). The proportion of tissue-specific

transcripts was higher in novel transcripts than known
transcripts (Fig. 3g and Fig. 3h) such that more than 90% of
the tissue-specific transcripts (91%) represented novel tran-
scripts (Fig. 9a). Also, a majority of tissue-specific tran-
scripts were produced by known genes (Fig. 9b). Of 9
tissues, thymus had the highest proportion of
tissue-specific transcripts (5847; 21%), followed by spleen
(5309; 19%) and brain (3597; 18%); whereas muscle had the
lowest (1576; 7%) (Fig. 1). Averaging across tissues, 17% of
tissue-specific transcripts were produced by tissue specific
genes and this proportion was highest in brain (24%) and
lowest in diaphragm (12%) (red bars in Fig. 1). There was
close concordance between enriched Gene Ontology (GO)
terms in tissue-specific genes and the biological function of
their related tissue (in Additional file 1: Table S5 we listed
the top three enriched GO terms for each tissue-specific
gene list). Alternative splicing events tended to be more
prevalent in non-tissue specific genes than tissue specific
genes (Fig. 9c).

Fig. 8 Different types of alternative splicing events and their variations within (a) and across (b) tissues. (c) Distribution of genes containing
alternative splicing events within and across tissues. Numbers at the top of each bar showed the percentage of alternative event candidate genes
(genes with at least 2 spliced transcripts) exhibiting one or more form of alternative splicing events
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Unusual transcripts
Three hundred and seventy-nine transcripts had an exon
that overlapped with more than one Ensembl or NCBI an-
notated gene, which are referred to as fused-transcripts
(Fig. 10a and Fig. 11). More than 80% of these transcripts
(320) were protein-coding (Fig. 9b) and 40% of them were
detected in more than 1 tissue (Fig. 10c). Averaging across
tissues, 70% of fused-transcripts had an expression level
more than one FPKM (Fig. 10d). Thymus had the highest
number of tissue-specific-fused-transcripts (45) followed
by spleen (31) and brain (30). In contrast, muscle had the
lowest (9) number of fused transcripts (Fig. 10e). In
addition, this group of transcripts had on average 9 exons,
which was 2 exons more than other transcripts and they
were more frequent in spleen (37% of them detected in
this tissue) than other tissues.

Discussion
Despite a lot of improvement in current pig genome anno-
tation of Sscrofa11.1 assembly (Ensembl release 93 and
NCBI release 109) compared to the previous genome as-
sembly (Sscrofa10.2), these annotations are still far from
complete. For example, in Ensembl (release 93) the number
of annotated genes for the pig genome (25,880 genes) is
around half of what has been reported in human (57,373
genes) as a closely related species [4]. In this study, using
Iso-seq data from nine different porcine tissues, we could
identify 10,465 novel genes not reported in current pig gen-
ome annotations (Ensembl release 93 and NCBI release
109). In addition, there were 1961 predicted Iso-seq genes
reported in NCBI annotation but not in Ensembl annota-
tion and 364 predicted Iso-seq genes reported in Ensembl
annotation but not in NCBI annotation. The high

Fig. 9 (a) Classification of tissue-specific (TS) transcripts based on their novelty. (b) Fraction of known and novel genes that produce at least a
single TS transcript. (c) Proportion of TS genes and non-TS genes containing alternative splicing events
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Fig. 10 (a) Distribution of transcripts covering more than one known gene across Ensembl and NCBI annotations. (b) biotypes of transcripts with
these structure in both Ensembl and NCBI annotations, their classification based on the number of detected tissues (c), their expression level in
different tissues (d) and the number of transcripts detected in each tissue and their intersection with other tissues (e) using UpSetR [65]
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frequency of validation of these novel genes using an inde-
pendent liver chromatin immunoprecipitation sequencing
experiment verifies the improvement of current pig annota-
tions in term of the number of genes using our methods.
lncRNAs are important regulators of gene expression,

and they are involved in a wide range of biological pro-
cesses [31]. There are 9292 and 483 transcripts anno-
tated as lncRNA in NCBI (Release 109) and Ensembl
(release 93) pig annotation of Sscrofa11.1 assembly. In
the human genome, this number is 25,786 (Ensembl re-
lease 93) that is similar to our 24,527 predicted lncRNA
transcripts. A similar number of lncRNAs (20,516) have
been reported in the chicken genome using Iso-seq data
[24]. These numbers are likely an underestimation as the
Iso-seq transcripts used in this study were poly(A) se-
lected and we did not have the ability to capture
non-polyadenylated lncRNAs. Also, during the process,
we removed predicted single-exon transcripts that had
only been detected in a single tissue by Iso-seq data as
we could not verify whether they were real transcripts or
fragments resulting from a decayed transcript. The se-
lected single-exon transcripts had high base coverage
with RNA-seq reads (on average, each base of
single-exon transcripts was covered at least 16 times in
the detected tissue by RNA-seq) implying that they are
less likely to be genomic DNA contamination. This ana-
lysis produced a rate of 68% spliced transcripts in
lncRNAs. However, the majority of spliced lncRNAs
(64%) were tissue specific which agrees with previous
studies showing a high proportion of tissue specificity in
lncRNAs [32, 33]. In addition, several studies on
lncRNAs from various vertebrate tissues [34–37] re-
vealed that most lncRNAs in each species did not share
any detectable similarity with lncRNAs in other species,
suggesting rapid turnover of lncRNA repertoires. Based
on these findings, it can be expected that majority of

predicted lncRNAs in this study are specific to pig
genome.
The 3′-RNA-seq technology sequences RNA frag-

ments close to the 3′ end of poly-adenylated transcripts
and by reducing the sequencing space/sample, provides
a cheap, alternative tool to quantify gene expression level
[38]. However, the accuracy of this technique in gene ex-
pression quantification is directly related to the accuracy
of 3′ gene end annotation. Our Iso-seq transcripts ex-
tended the 3′ end of more than 4000 known genes in ei-
ther of Ensembl or NCBI annotations. The high
validation rate of these extended regions at both
Ensembl and NCBI annotations using an independent
3′-RNA-seq experiment shows improvement of gene
3′-end location compared to current pig annotations. In
addition, our results showed the significant effect of
these 3′ end extensions on improving gene expression
quantification using 3′-RNA-seq data in pig genomics.
Correct annotation of the 5' end of genes has an im-

portant role in definition of promoter proximal regula-
tory regions. Our novel Iso-seq-based analysis extended
the 5' end of more than 3000 known genes, however the
library preparation method used in this study did not
specially target 5′ end caps, meaning the transcript 5′
ends are not definitive and could be truncated. A recent
study [39] compared different methods required for the
identification of 5′ end of transcripts and reported
higher performance of the CAGE method. Coincident
mapping of a large proportion of these extensions with
human CAGE data aligning to the pig genome showed
the improvement of current pig genome annotations at
gene 5′-ends. We observed a high proportion of human
CAGE reads mapping to multiple locations of the pig
genome, consistent with a previous report [40]. The
multiple mapping could be related to either very short
human CAGE reads mapping to multigene families,

Fig. 11 Example of transcripts covering multiple known genes (identified by red color). Predicted protein-coding region in each transcript is
identified by thicker lines (see Methods for prediction of coding transcripts)
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species-specific copy number variants, or less likely, er-
rors in pig genome assembly [40].
The NMD pathway protects eukaryotic cells by redu-

cing the production of harmful truncated proteins trans-
lated from transcripts with premature termination
codons [41]. NCBI (Release 109) annotation has 33 por-
cine transcripts annotated as NMD, while Ensembl (re-
lease 93) did not make NMD predictions in their pig
genome annotation. In this study, we identified 2216 pu-
tative NMD transcript candidates related to 1710 pre-
dicted genes (7% of all predicted genes) in the porcine
transcriptome for these nine tissues. Previous gene ex-
pression studies on yeast, fruitfly and human cells de-
pleted of essential NMD factors, revealed that NMD
modulates the expression of ~ 3–10% of genes [42–46].
A recent study on the chicken transcriptome using
Iso-seq data [24] reported ~ 8% of predicted Iso-seq
genes in this species have at least one NMD transcript.
We detected alternative splicing events in 9010 genes

(37% of all genes and 90% of all genes with > 1 spliced
transcript (10,064 genes)), consisting of 7525
protein-coding genes (61% of protein-coding genes) and
1485 lncRNA (12% of lncRNA genes). Similar results
have been reported in pig [47] and human [48]. Also,
our results revealed that alternative 3′ and 5′ splice sites
and skipped exons account for the vast majority of alter-
native splicing events which is similar to results previ-
ously reported in other species [48, 49].
A recent study on the pig transcriptome based on Pac-

Bio Iso-seq data [28] improved previous gene structure
annotation (Sscrofa10.2) in terms of novel genes
(26,881) and novel transcripts (28,127). Although this
study used Iso-seq data sourced from 38 porcine tissues,
it has five major differences compared to our study.
First, they pooled all tissue samples together prior to li-
brary creation which make it impossible to trace tran-
scripts back to related tissues and study variability
among porcine tissues. Second, sequencing depth per
tissue in their experiment was lower (514,659 Iso-seq
reads pooled from all 38 tissues) compared to our
Iso-seq dataset (4.4 M Iso-seq reads from all nine tissues;
Additional file 1: Table S1). This approach limits their
datasets to capture only highly expressed genes/tran-
scripts. Third, Illumina data used for error correction of
Iso-seq reads in their study was obtained from a subset
of tissues (8 tissues) with lower sequencing depth (~ 16
million reads per tissue) than we report herein
(Additional file 1: Table S2). Considering the high error
rate of Iso-seq data (15%) [17], this design could increase
the false positive rate for novel transcript detection.
Fourth, around 40% (29,992) of detected transcripts in
their study (77,038) were reported to be un-spliced while
this proportion was 14% (9740 transcripts) in our study.
Because the authors did not describe efforts to remove

genomic DNA (gDNA) contamination, the majority of
these transcripts may not be real. We addressed this
issue by removing predicted gDNA contamination (see
Methods) and removing single-exon transcripts that had
only been detected in a single tissue. High base-coverage
of selected single-exon transcript by RNA-seq data im-
plies that they are less likely to be gDNA. Fifth, a total
number of 8830 loci (22% of all loci) was reported as
multi-transcript genes in this study which is lower than
what we obtained in our experiment (10,517 genes or
43% of all genes). This further indicates the depth of se-
quencing was insufficient to find lowly expressed tran-
scripts for these genes.

Conclusions
In-depth analysis of error-corrected long read iso-seq
data for nine porcine tissues provided evidence to im-
prove the annotation of thousands of protein-coding and
lncRNA genes. These validated results increase the com-
plexity of the predicted pig transcriptome (number of
transcripts per gene, lncRNA transcripts and alternative
splicing events) to that reported for the highly-annotated
human genome. We provide direct evidence that the
predicted novel genes and transcripts extended existing
gene models, by verifying such extensions with inde-
pendent ChIP-seq, 3′-RNA-seq experiment and human
CAGE data. Overall, it can be concluded that the
current public pig genome annotations (NCBI and
Ensembl) are still far from complete and our new
Iso-seq based annotation improves these annotations.

Methods
Sequencing the transcriptomes of nine porcine tissues by
using the PacBio Iso-seq and Illumina RNA-Seq
technologies
The transcriptomes of nine tissues (liver, spleen, thymus,
brain, hypothalamus, diaphragm, small intestine, pituit-
ary, longissimus muscle) from a single cross-bred pig,
from which the PacBio long read-based reference gen-
ome was assembled by extraction DNA of lung tissue,
was sequenced by the U.S. Meat Animal Research Cen-
ter (USDA, SRA, USMARC, Clay Center, NE) using the
Illumina NextSeq500 and PacBio RSII platforms for
RNA-Seq and Iso-seq, respectively. Total RNA from
each tissue was extracted using Trizol reagent (Thermo-
Fisher Scientific) and the provided protocol. Briefly, ap-
proximately 100mg of tissue was ground in a mortar
and pestle cooled with liquid nitrogen, and the powder
was transferred to a tube with 1 ml of Trizol reagent
added and mixed by vortexing. After 5 min at room
temperature, 0.2 mL of chloroform was added and the
mixture was shaken for 15 s and left to stand another 3
min at room temperature. The tube was centrifuged at
12,000 x g for 15 min at 4 °C. The RNA was precipitated
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from the aqueous phase with 0.5 mL of isopropanol. The
RNA was further purified with extended DNase I
digestion to remove potential DNA contamination. The
RNA quality was assessed with a Fragment Analyzer
(Advanced Analytical Technologies Inc., IA). Only RNA
samples of RQN above 7.0 were used for library con-
struction. PacBio Iso-seq libraries were constructed per
the PacBio Iso-seq protocol. Briefly, starting with 3 μg of
total RNA, cDNA was synthesized by using SMARTer
PCR cDNA Synthesis Kit (Clontech, CA) according to
the Iso-seq protocol (Pacific Biosciences, CA). Then the
cDNA was amplified using KAPA HiFi DNA Polymerase
(KAPA Biotechnologies) for 10 or 12 cycles followed by
purification and size selection into 4 fractions: 0.8–2 kb,
2–3 kb, 3–5 kb and > 5 kb. The fragment size distribution
was validated on a Fragment Analyzer (Advanced Ana-
lytical Technologies Inc., IA) and quantitated on a
DS-11 FX fluorometer (DeNovix, DE). After a second
round of large-scale PCR amplification and end repair,
SMART bell adapters were separately ligated to the
cDNA fragments. Each size fraction was sequenced on 4
or 5 SMART Cells v3 using P6-C4 chemistry and 6-h
movies on a PacBio RS II sequencer (Pacific Bioscience,
CA). Short read RNA-Seq libraries were prepared using
TruSeq stranded RNA LT kits and supplied protocol
(Illumina, CA), and sequenced on a NextSeq500 plat-
form using v2 sequencing chemistry to generate 2 × 75
paired-end reads. This published data (PRJNA351265)
were used for NCBI and Ensembl gene structure annota-
tions of the pig genome Sscrofa11.1 assembly.

Error-correction of PacBio Iso-seq full-length cDNA reads
The Read of Insert (ROI) were determined by using Con-
sensusTools.sh in the SMRT-Analysis pipeline v2.0, with
reads which were shorter than 300 bp and whose pre-
dicted accuracy was lower than 75% removed. Full-length,
non-chimeric cDNA reads were identified by running the
classify.py command. Primer sequences as well as the
poly(A) tails were trimmed prior to further analysis.
Paired-end Illumina RNA-Seq reads from each tissue sam-
ple were trimmed to remove the adaptor sequences and
low-quality bases using Trimmomatic (v0.32) [50] with ex-
plicit option settings: ILLUMINACLIP:adapters.fa:
2:30:10:1:true LEADING:3 TRAILING:3 SLIDINGWIN-
DOW: 4:20 LEADING:3 TRAILING:3 MINLEN:25, and
overlapping paired-end reads were merged using the
PEAR software (v0.9.6) [51]. Subsequently, the merged
and unmerged RNA-Seq reads from the same tissue sam-
ples were in silico normalized in a mode for single-end
reads by using a Trinity (v2.1.1) [21] utility, insilico_read_-
normalization.pl, with the following settings: --max_cov
50 --max_pct_stdev 100 --single. Errors in the full-length,
non-chimeric cDNA reads were corrected with the pre-
processed RNA-Seq reads from the same tissue samples

by using proovread (v2.12) [17]. Untrimmed sequences
with at least some regions of high accuracy in the. Trim-
med.fq files were extracted based on sequence IDs in
.untrimmed.fa files to balance off the contiguity and accur-
acy of the final reads.

Long read transcriptome processing
The error corrected full-Length circular consensus se-
quences were aligned against Sscrofa11.1 pig genome as-
sembly using GMAP (version 2017-03-17) [52] with a
cut-off of 95% identity and 90% coverage. Un-spliced
reads with stretch of at least 20 A’s (allowed one mis-
match) in a genomic window covering 30 bp down-
stream of their putative terminal site were removed
from analysis as they were likely gDNA contaminations.
The resulted reads were collapsed and grouped into pu-
tative gene models (clustering transcripts that had at
least a one nucleotide overlap) by the pbtranscript-ToFU
package (https://github.com/PacificBiosciences/cDNA_
primer/) with min-identity = 95%, min-coverage = 90%
and max_fuzzy_junction = 5 bp, whereas the 5′-differ-
ence was not considered when collapsing the reads. The
collapsed transcripts from the different tissues were then
merged using in-house python scripts to create an
Iso-seq based transcriptome annotation. Iso-seq tran-
scripts were compared with annotated transcripts of
Ensembl (release 93) and NCBI (Release 109) by
Gffcompare [53] and transcripts were classified into 10
groups based on their exon structures (splicing
junctions).

Mapping of Illumina data
Trimmed Illumina reads were aligned against
Sscrofa11.1 pig genome assembly using TopHat version
2.1.1 [54] with a cut-off of 95% identity and 90% covera-
ge,--library-type fr-firststrand and default settings for
other parameters. Quantification of transcripts was per-
formed using Cufflinks version 2.2.1 [55] using the GTF
annotation file generated by PacBio sequencing. To re-
duce transcription noise, single tissue detected Iso-seq
transcripts were required to have minimum expression
level of 0.1 FPKM (selected based on the inflection point
of > 1 tissue detected Iso-seq transcripts, Fig. 22) in their
detected tissue.

ChIP-seq data analysis
Quality assurance was performed using FastQC (version
0.11.3) [https://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/]. Adapters and low-quality bases were
trimmed by running Trimmomatic (version 0.36) [50].
Trimmed reads were aligned against Sscrofa 11.1 pig
genome assembly using bowtie2 [56]. Read alignment
files were filtered to discard multi-mapping reads and
duplicates. Model-based analysis (narrow peak model for
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H3K4me3 data and broad peak model for H3K36 data)
of ChIP-seq (MACS 2) peak caller (version 2.1.0) [57]
was used to identify regions of ChIP enrichment relative
to corresponding sequenced input-DNA controls. The
maximum false discovery rate of the called peaks was set
to 0.05 and the data were adjusted to the size of the
mappable genome size (2.5e9bp).

3′-RNA-seq sample preparation
Liver tissues from three healthy adult Yorkshire pigs at
Iowa State University were grounded into powder in li-
quid nitrogen using pestle and mortar. Total RNA was
extracted using the Animal Tissue RNA Purification Kit
(Norgen Bioteck Corp., Thorold, ON, Canada) per the
manufacturer’s instructions. The total RNA from each
sample was used for stranded RNA-seq library construc-
tion separately by using the Quantseq 3′ RNA-Seq
Library Prep Kit FWD for Illumina (Lexogen GmbH,
Vienna, Austria). Indexed libraries for individual samples
were pooled together equimolarly and sequenced using
an Illumina Hiseq3000 platform to generate 50 base sin-
gle end reads from ends distal to poly(A)/poly(T) ends.

3′-RNA-seq data analysis
Quality assurance was performed using FastQC (version
0.11.3) [http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/]. Adapters and low-quality bases were trimmed by
running Trimmomatic (version 0.36) [50]. Trimmed reads
were aligned against Sscrofa11.1 pig genome assembly using
TopHat2.1.1 [54] with a cut-off of 95% identity and 90%
coverage, −-library-type fr-secondststrand and default set-
tings for other parameters. 3'RNA-seq reads uniquely
mapped to pig genome were used for downstream analysis.
The number of reads mapped to each gene (read counts)
were calculated using HTseq version 0.10.0 [58]. Relating
reads to the extended 3′ end of annotated genes was per-
formed using bedtools [59] so that 100% of mapped
3′-RNA-seq read length was covered by the exonic region of
the extended 3′ end.

CAGE data analysis
To validate the 5′ end extension events, we used total
of 45,067,042 CAP Analysis of Gene Expression
(CAGE) sequences from eight matched human tissues
(brain, diaphragm, liver, LD muscle pituitary, small in-
testine, spleen and thymus) were downloaded from
FANTOM5 consortium (http://fantom.gsc.riken.jp/5/).
Adapter sequences and low-quality bases were removed
from the raw reads using Trimmomatic (version 0.36)
[50]. Then, the trimmed reads were mapped to the
Sscrofa11.1 reference genome using GMAP (version
2017-03-17) [52] with a cut-off of 95% identity and 90%
coverage and --cross-species option.

Prediction of coding and non-coding transcripts
Transcripts open reading frames (ORFs) were predicted
using the stand-alone version of NCBI ORFfinder (ftp://ftp.
ncbi.nlm.nih.gov/genomes/TOOLS/ORFfinder/linux-i64/)
with “ATG and alternative initiation codons” as ORF start
codon. The longest three ORF’s were matched to the pig,
human, chicken and cow non-redundant protein sequences
from NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/db) using
Blastp [60] with E-value cutoff of 10− 6. The ORF’s with the
lowest E-value to a protein were used as the representative
or if no matches were found, the longest ORF was used. If
the representative ORF had a stop codon that was more
than 50-bp upstream of the final splice junction, it was la-
belled as a non-sense mediated decay transcript [24, 61].
Putative non-coding transcripts with length more than 200
bp were labelled as long non-coding RNAs [24].

Functional enrichment analysis
The potential mechanism of action of tissue-specific genes
was deciphered using ClueGO [62]. The latest update of
gene ontology annotation database (GOA) [63] (January,
2019) was used in the analysis. List of genes with at least
one transcript detected in a given tissue was used as back-
ground for that tissue. The GO tree interval ranged from 3
to 20 with the minimum number of genes per cluster set to
three. Term enrichment was tested with a right-sided
hyper-geometric test that was corrected for multiple testing
by the Benjamini-Hochberg procedure [64].

Endnotes
Mention of trade names or commercial products in

this publication is solely for the purpose of providing
specific information and does not imply recommenda-
tion or endorsement by the U.S. Department of Agricul-
ture. USDA is and equal opportunity provider and
employer.

Additional file

Additional file 1: Figure S1. (a) Classification of biotypes for detected
transcripts; length distribution of transcripts (b), exons (c), and introns (e); (e)
distribution of the number of exons per transcript; (f) percentage of
nucleotides at donor and acceptor sites. Figure S2. Percentage of PacBio
transcript splice junctions supported by short-read Illumina data. Figure S3.
Expression analysis of transcripts detected in more than one tissue by Iso-
seq data. Figure S4. Number of PacBio transcripts detected in each tissue
and their intersections with other tissues using UpSetR [1]. Blue color
identifies the proportion of single tissue detected transcripts by PacBio data
that were also detected by Illumina reads in at least one other tissue (see
the text for more details). Figure S5. (a) Distribution of class “k” transcripts
(contains reference) across Ensembl and NCBI annotations, (b) biotypes of
transcripts with “k” structure in both Ensembl and NCBI annotations. (c)
Expression level of class “k” transcripts across tissues. (d) Classification of class
“k” transcripts based on the number of tissues in which they were detected.
Figure S6. Biotypes of different transcript types based on Ensembl (a) and
NCBI (b) annotations. Figure S7. Classification of class “s” transcripts based
on the number of tissues in which they were detected. Figure S8. Example
of validation of novel intergenic Iso-seq gene using matched RNA-seq reads
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and independent liver ChIP-seq (H3K4me3 and H3K36me3) and 3′-RNA-seq
experiments. Figure S9. Venn diagram of the number of livers detected
Ensembl (a) and NCBI (b) genes with validated extended 3′ end across
different samples of an independent liver 3′-RNA-seq experiment. Figure S10.
Example of validation of extended 3′ annotation using an independent liver
3′-RNA-seq experiment. Figure S11. Effect of extended annotation on the
expression level of Ensembl genes using liver 3′-RNA-seq reads. Genes with
same expression in both Iso-seq and Ensembl annotations were marked with
red color. Blue line in each graph shows the average of Iso-seq gene
expression fold changes over of their matched Ensembl genes in log2 scale
that is equal to 0.485 or 40% expression increase. Figure S12. (a) Definition of
5′ candidate region and (b) number of genes with validated candidate 5′ end
across different annotations. Figure S13. Example of validation of extended 5′
annotation using an independent Human CAGE data. Table S1. PacBio Iso-
seq sequence alignment statistics. Table S2. Illumina sequence alignment
statistics. Table S3. Mapping statistics and quality metrics used for the
evaluation of ChIP-seq experiment. Table S4. 3′-RNA-seq sequences alignment
statistics. Table S5. Functional enrichment analysis of tissue-specific (TS) genes
in different porcine tissues. (DOCX 97254 kb)
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