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Abstract

shellfish.

Background: Color polymorphism, a high-valued trait, is frequently observed in molluscan shellfish. The QN Orange
scallop, a new scallop strain successively selected from the interspecific hybrids of the bay scallop (Argopecten
irradians irradians) and the Peruvian scallop (Argopecten purpuratus), is distinguished from other scallops by its
orange adductor muscles. In this study, to reveal the mechanisms of the formation of adductor muscle coloration

in the QN Orange scallops, we compared the proteome and transcriptome of orange adductor muscles of the ON
Orange and those of white adductor muscles of the Bohai Red scallop, another strain selected from the
interspecific hybrids of the bay scallop and the Peruvian scallop.

Results: Transcriptomic analysis revealed 416 differentially expressed genes (DEGs) between white and orange
adductor muscles, among which 216 were upregulated and 200 were downregulated. Seventy-four differentially
expressed proteins (DEPs), including 36 upregulated and 38 downregulated proteins, were identified through label-
free proteomics. Among the identified DEGs and DEPs, genes related to carotenoids biosynthesis including
apolipophorin, and Cytochrome P450 and those related to melanin biosynthesis including tyrosinase and Ras-related
protein Rab-11A were found to express at higher levels in orange adductor muscles. The high expression levels of
VPS (vacuolar protein sorting) and TIF (translation initiation factor) in orange adductor muscle tissues indicated that
carotenoid accumulation may be affected by proteins outside of the carotenoid pathway.

Conclusions: Our results implied that the coloration of orange adductor muscles in the QN Orange scallops may
be controlled by genes modulating accumulation of carotenoids and melanins. This study may provide valuable
information for understanding the mechanisms and pathways underlying adductor muscle coloration in molluscan
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Background

Color polymorphism, a high-valued trait that appeals to
consumers, is common in molluscan shellfish [1], and
more variations in color are observed in shell color than
in softbody color. Previous studies on coloration in shell-
fish showed that color polymorphism is inheritable and
may be tightly regulated by a set of genes [2—4]. To in-
crease the product value, numerous varieties have been
selected on either shell color or softbody color in mol-
luscan shellfish such as the Pacific abalone (Haliotis
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discus hannai), the Pacific oyster (Crassostrea gigas), and
the Japanese pearl oyster (Pinctada fucata martensii)
[5-7].

In molluscan shellfish, variations in color are often
caused by the presence of different pigments such as
pyrroles, melanins, bile, and porphyrins [8, 9]. Caroten-
oids are the most seen porphyrins in animals. Existing
evidence suggests that orange coloration in some mol-
lusks is the result of carotenoid accumulation in these
animals [8], although presence of melanins also leads to
orange coloration in other animals [10, 11]. Carotenoids
in most animals are taken from diets as they are not able
to synthesize carotenoids endogenously. Carotenoid ac-
cumulation in the adductor muscles of the yesso scallop
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(Patinopecten yessoensis), the bay scallop (Argopecten
irradians irradians), and the noble scallop (Chlamys
nobilis) have been reported [12-14]. These carotenoids
included pectenolone and pectenoxanthin as seen in the
yesso scallop [14, 15]. In the yesso scallop, one genomic
region and two SNPs have been found to be associated
with coloration as revealed by genome-wide association
studies [15]. In the bay scallops, 126 single-nucleotide
polymorphisms (SNPs) related to carotenoid accumula-
tion have been detected by Genotyping-by-Sequencing
analysis [12]. Despite these efforts, the mechanism
underlying carotenoid accumulation in molluscs remains
poorly understood and we are still not sure whether
other pigments or genetic factors are also involved in ad-
ductor muscle coloration.

In our previous studies, two scallop strains, the QN
Orange and Bohai Red (Fig. 1), have been selected from
the interspecific hybrids of the bay scallop and the Peru-
vian scallop (Argopecten purpuratus). Unlike Bohai Red
whose adductor muscles are white, the QN Orange
strain was intentionally selected for its orange adductor
muscle. It has been found that high contents of pecteno-
lone and pectenoxanthin are present in the QN Orange
strain (unpublished). As both strains were selected from
the same origin cohort and share the same genetic back-
ground, they may thus provide excellent opportunity for
studies on adductor muscle coloration in molluscs. In
this study, we aimed to identify the potential genes that
may be involved in scallop adductor muscle coloration
based on transcriptomic and label-free proteomic
analyses.

Results

Transcriptomic analysis

[llumina sequencing yielded 321,347,360 raw reads
(GEO accession number: GSE122451). A total of
157,546,736 clean reads were obtained for white ad-
ductor muscles with Q20 values of 96.74-98.33% and
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163,800,624 clean reads were obtained for orange ad-
ductor muscles with Q20 values of 97.99-98.08%. The
total size of the clean data of each sample exceeded 7.0
Gb (Additional file 1: Table S1). Moreover, 91.78—92.63%
of the clean reads from white adductor muscles and
92.24-92.75% of the clean reads from orange adductor
muscles were aligned to the bay scallop genome (Add-
itional file 2: Table S2).

A total of 416 DEGs, including 216 upregulated and 200
downregulated genes, were identified between the white
adductor muscles of the Bohai Red scallops and the or-
ange adductor muscle of the QN Orange scallops (Fig. 2).
GO functional analyses revealed that most of the DEGs
were assigned to DNA integration, cellular amino acid
biosynthetic process, channel inhibitor activity, channel
inhibitor activity, ion channel inhibitor activity, and or-
ganophosphate biosynthetic process, as shown in Fig. 3.
KEGG pathway analyses of DEGs showed that the most
enriched pathways are carbon metabolism, fructose and
mannose metabolism, neuroactive ligand-receptor inter-
action, amino acid biosynthesis, and glycolysis. Two
carotenoid-related genes, apolipophorin and cytochrome
P450 (CYP450), and one melanin-related gene, tyrosinase,
were found to be differentially expressed in the white and
orange adductor muscles, which were subsequently veri-
fied by RT PCR analysis (Fig. 4).

Notably, transcriptome data showed that genes known
to be related to carotenoid deposition, including
B-carotenel5, 15'-monooxygenase (BCOI), [-carotene-9,
10’-oxygenase (BCO2), microsomal triglyceride transfer
protein (MTTP), apolipoprotein A (ApoA), apolipoprotein
B (ApoB), and scavenger receptors (SCAR) were not differ-
entially expressed in two kinds of adductor muscles. These
results were also verified with RT PCR (Fig. 4).

Proteomic analysis
Label-free proteomics yielded 8498 unique peptides and
1154 protein groups (ProteomeXchange identifier

scallops with adductor white muscles

Fig. 1 The adductor muscles of QN Orange scallops and Bohai Red scallops. a QN Orange scallops with orange adductor muscles; b Bohai Red
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Fig. 2 Volcano plots for differentially expressed genes (DEGs)
between orange and white adductor muscle samples. Points of the
plots represent genes that are significantly differentially expressed.
Green points represent up regulated genes of orange adductor
muscles, while red circles represent down regulated genes of white
adductor muscles. Abscissa represents multiple genes expressed in
different samples change; ordinate represents the statistically
significant differences in gene expression quantity change. Padj
represents the adjusted p values. O vs W stands for orange adductor
muscle samples versus white adductor muscle samples

_

PXD011708). A total of 74 proteins were identified to be
differentially expressed with 26 upregulated and 24
downregulated in orange adductor muscles, and 10 only
present in orange and 14 only in adductor muscles
(Additional file 3: Table S3). All DEPs were enriched in
9 GO terms including sulfur amino acid metabolic
process, methionine metabolic process, carbohydrate
metabolic process, nucleoside metabolic process, hydro-
lase activity, acting on glycosyl bonds, aspartate family
amino acid metabolic process, metal ion binding, and
cation binding, as shown in Table 1. Moreover, the most
enriched KEGG pathways were other glycan degradation,
Kaposi’s sarcoma-associated herpes virus infection, lyso-
some, VEGF signaling pathway, and cellular senescence.
Three proteins related to carotenoid or melanin accu-
mulation were identified to be differentially expressed in
the white and orange adductor muscles, namely
Ras-related protein Rab-11A (RAB11A), translation initi-
ation factor (TIF) and vacuolar protein sorting (VPS).
These results were confirmed by Western-blotting using
antibodies against RABI11A, TIE and VPS (Fig. 5).
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Transcriptome and proteome association analysis

The association analysis of the transcriptome and prote-
ome data of white and orange adductor muscles revealed
a nonlinear relationship between mRNA and protein ex-
pression with a Pearson’s correlation coefficient of
0.1907. Fifty-four genes were significantly expressed at
protein expression level but not at mRNA level while 27
genes were significantly expressed at mRNA level but
not at protein level. No genes were found to be statisti-
cally significantly expressed at both mRNA and protein
levels (Fig. 6).

RT PCR amplification and western blotting analysis of
candidate genes and proteins related to pigments
The mRNA expression levels of 12 genes and proteins
that may be directly or indirectly involved in coloration
were evaluated by RT PCR in both orange and white ad-
ductor muscles (Fig. 4). The results showed that the ex-
pression levels of Apolipoprotein, CYP450, tyrosinase,
and VPS were significantly higher in the orange ad-
ductor muscles than in the white adductor muscles (P <
0.05 or P <0.01) while those of the rest of the genes (in-
cluding BCO1, BCO2, ApoA, ApoB, MTTP, SCAR, TIF,
and RABI11A) did not significantly differ between the or-
ange and white adductor muscle samples (P > 0.05).
Western blotting analysis of RABI1A and TIF showed
that the expression of these genes was significantly
higher in the orange adductor muscles than in the white
ones. Using a polyclonal antibody against VPS, a band
(21 kDa) was only detected in orange adductor muscles,
but not in the white ones (Fig. 5).

Discussion

To explore the mechanisms of orange coloration in scal-
lops, we compared the transcriptomes and proteomes of
the orange adductor muscles of the QN Orange scallops
and the white adductor muscles of the Bohai Red scal-
lops. We then examined the differential expression of
genes and proteins that may be involved in the accumu-
lation of carotenoids and melanins, which are believed
to be responsible for orange coloration in mollusks.

DEGs and DEPs related to carotenoid accumulation
Previous study suggested that carotenoid accumulation
may contribute to the orange coloration in scallops [14].
We also found that contents of carotenoids including
pectenolone, pectenoxanthin and fucoxanthin in the QN
Orange scallops are much higher than in the Bohai Red
scallop (unpublished). Difference in carotenoid contents
between orange and white muscle were thought to be
caused by the differential expression of carotenoids ab-
sorbance or transport related genes in scallops [16, 17].
Therefore, in this study we first examined the potential
mechanism of orange coloration caused by carotenoids.
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Fig. 3 GO distributions of differentially expressed genes (DEGs) from orange and white adductor muscles transcriptomes. GO enrichment of
genes and proteins based on biological process (green bar), cellular component (orange bar) and molecular function (blue bar). Abscissa shows
the number of genes distributing into different GO terms
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Fig. 4 The mRNA expression levels of 12 genes examined by RT-PCR. Expression levels were normalized to B-actin and presented as relative
expression to controls (mean + SD). W stands for white adductor muscle samples (gray bar). O stands for orange adductor muscle samples (black
bar). *P < 0.05; ** P < 0.01. BCO1, B-carotene15, 15-monooxygenase; BCO2, 3-carotene-9, 10™-oxygenase; ApoA, apolipoprotein A; ApoB,
apolipoprotein B; MTTP, microsomal triglyceride transfer protein; SCAR, scavenger receptors; CYP450, cytochrome P450; RABT 1A, ras-related protein
Rab-11A; TIF, translation initiation factor; VPS, vacuolar protein sorting
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Table 1 Enriched GO categories of differentially expressed protein

GO ID Term Protein Count P value
GO:0000096 sulfur amino acid metabolic process 3 0013
GO:0006555 methionine metabolic process 3 0.013
GO:0005975 carbohydrate metabolic process 17 0.023
GO:0009116 nucleoside metabolic process 4 0.024
GO:1901657 glycosyl compound metabolic process 4 0.025
GO:0016798 hydrolase activity, acting on glycosyl bonds 4 0.025
GO:0009066 aspartate family amino acid metabolic process 4 0.025
GO:0046872 metal ion binding 68 0.034
GO:0043169 cation binding 70 0.041

A set of genes that may be involved in carotenoid me-
tabolism, including BCO1, BCO2, ApoA, ApoB, MTTP
and SCAR was identified in the orange adductor muscles
of the QN Orange scallops. Among these genes, BCO1
and BCO2 are critical enzymes in deposition of caroten-
oids [18]. ApoA, ApoB and MTTP play a crucial role in
transportation of carotenoids [16]. In pearl mussel Hyr-
iopsis cumingii, the hcApo gene expression level existed
positive correlation with the total carotenoid content
[16]. SCAR recognizes lipoproteins binding carotenoids
and facilitates the transfer of carotenoids [17]. In the
noble scallop Chlamys nobilis, down-regulation of SCAR
mRNA by RNA interference remarkably decreased blood
carotenoid, providing compelling evidence that SCAR is
an ideal candidate gene controlling carotenoid depos-
ition and determining orange coloration [19]. However,
mRNA expression levels of 6 genes (BCOI, BCO?2,
ApoA, ApoB, MTTP and SCAR) are not different

between the white and orange adductor muscles as re-
vealed by transcriptomic analyses and RT-PCR, suggest-
ing that these genes are not the determining factors for
the difference in carotenoids between the two types of
adductor muscles.

It is interesting to find that 4 other genes, including
apolipophorin, TIF, VPS and CYP450, which are outside
of carotenoid pathway are found to express differentially
between two types of adductor muscles in this study.
These results suggest that carotenoids accumulation in
orange adductor muscles may be controlled indirectly by
those genes outside of carotenoid pathway in QN Or-
ange scallops.

Apolipophorin

Like apolipoproteins, Apolipophorin is a member of the
large lipid transfer protein superfamily that is respon-
sible for trans-membrane transfer of lipids [20]. The
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expression of apolipoprotein has been reported to be re-
lated to carotenoid synthesis and shell coloration in
pearl mussel [16]. Apolipophorins were light yellow in
color presumably due to the presence of carotenoids
[21]. As apolipophorin mRNA was expressed at higher
levels in orange adductor muscle, it is possible that apo-
lipophorin is also involved in carotenoid transport in the
QN Orange scallop.

TIF

TIF encodes a translation initiation factor that functions
in protein translation and has been found to increase
[B-carotene accumulation in scallops [22], although the
underlying mechanism remains unclear. TIF may pro-
mote the translation of the enzymes of the carotenoid
pathway. It is interesting to note that in this study, the
elevation of TIF expression is only seen at the protein
level but not at mRNA level. It is possible that only a
portion of TIF transcripts were translated or maybe the
protein level of TIF was affected by cotranslational, pre-
translational, or posttranslational modifications.

VPS

VPS proteins are involved in the intracellular sorting
and delivery of soluble vacuolar proteins. VPS has been
reported to promote B-carotene deposition, as evidenced
by the observation that VPS overexpression boosts the
expression of genes related to the [P-carotene pathway
[22]. Furthermore, the gene homolog of VPS is necessary
for the normal production of the pigment responsible
for deep-orange eye coloration in Drosophila [23]. Prote-
ome analysis detected the VPS protein only in orange
adductor muscles but not in white adductor muscles. RT
PCR analysis showed high levels of VPS mRNA in or-
ange adductor muscle. This finding suggests that VPS
exerts positive effects on carotenoid accumulation in ad-
ductor muscles.

CYP450

The high mRNA expression of CYP450 in orange ad-
ductor muscles suggests that CYP450 is also involved in
the coloration in QN Orange scallops. In fact, CYP450
has been reported to be responsible for the
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transformation of P-carotene through hydroxylation in
Haematococcus [24]. In  birds, carotenoid-related
red-orange pigmentation in feathers is controlled by a
CYP450 gene cluster [25]. In marine snails, uropor-
phyrin is present in yellow-brown and pink-red foot tis-
sues [26]. Uroporphyrin is a cyclic tetrapyrrole and can
be either orange, yellow, red, blue, violet, green, or
brown [8]. In the formation of uroporphyrin, CYP450
catalyzes the oxidation of uroporphyrinogen to uropor-
phyrin [17]. Thus, CYP450 also likely has an important
role in the formation of orange coloration by interacting
with several pigments.

DEGs and DEPs related to melanin accumulation

Melanin may also contribute to the orange coloration in
scallops. Presence of melanin results in yellow coloration
in guppies (Poecilia reticulata) and yellow feathers in
birds [10, 11]. In fact, melanin has been reported to con-
tribute to shell pigmentation in mollusks [27, 28]. At the
cellular level, melanocytes synthesize melanin within
discrete organelles, termed melanosomes, which can be
produced in varying sizes, densities, and numbers. The
melanosomes can then be transported to other tissues.
Quite a few melanogenic factors can modulate pigmen-
tation in either a negative or positive fashion, which is
quite complex at cellular level [29]. In this study, we
identified three differentially expressed genes and pro-
teins that may be involved in regulation of melanin ac-
cumulation in orange adductor muscles. These include
tyrosinase, RABI1A and CYP450.

Tyrosinase

Although the complete pathways of melanin production
and regulation are still not clear, numerous enzymes that
are crucial for melanin synthesis and regulation in mol-
lusks have been reported [8]. One of these enzymes is
tyrosinase. Tyrosinase is upregulated in Pacific oysters
with golden coloration [30]. The expression levels of
tyrosinase in the mantles of the red-shelled Japanese
scallop (P. yessoensis) are higher than those in the man-
tles of the white-shelled Japanese scallop [31]. Our tran-
scriptome  analysis revealed that tyrosinase is
differentially expressed between orange and white ad-
ductor muscles. In addition, our RT PCR results illus-
trated that the mRNA abundance of tyrosinase is higher
in orange adductor muscles than in white adductor mus-
cles. These results suggest that tyrosinase may play an
important role in coloration of QN Orange scallops,
possibly through its enhancement on melanin synthesis.

RAB11A

Our data showed that RABI1IA was expressed at high
protein levels but not at mRNA level in orange adductor
muscles. RABIIA belongs to the small Rab GTPase
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superfamily, which is associated with constitutive and
regulated secretory pathways. It may be involved in pro-
tein transport and may play an important role in mela-
nosome release and transport from melanocytes (www.
uniprot.org/uniprot/P62491). Notably, several RAB
genes can modulate pigmentation by controlling mela-
nosome biogenesis in melanocytes [32]. The results in
this study suggest RABI1A may be involved in adductor
muscle coloration in QN Orange scallops possibly
through posttranscriptional regulation.

CYP450

As discussed earlier, CYP450 may affect orange color-
ation through the accumulation of different pigments in
QN Orange scallops. In the Pacific oyster, CYP450 has
been found to be differentially expressed in oysters with
black tissues, suggesting that the CYP450 gene may be
involved in melanogenesis [33]. Thus the possibility that
CYP450 affects orange coloration through the accumula-
tion of melanin in QN Orange scallops can not be
excluded.

Transcriptome and proteome association analysis

In this study, no genes were found to be differentially
expressed at both mRNA and protein levels. This
phenomenon may be caused by the limitation in the
current proteomic analyses which can reveal only limited
number of DEPs. It is also possible that some genes are
regulated at post-transcriptional level, not at mRNA
level [34]. Some factors, such as microRNAs, may also
regulate gene expression by binding to mRNA molecules
and preventing translation, and eventually lead to de-
creased target protein expression [35].

Conclusions

In conclusion, our transcriptomic and proteomic study
revealed that multiple genes and proteins are differen-
tially expressed between white and orange adductor
muscles. Among these genes, Apolipoprotein, VPO, TIF
and CYP450 may affect -carotene accumulation while
other genes such as tyrosinase, RABIIA and CYP450
may regulate the accumulation of melanin. Coloration in
the orange adductor muscles may be controlled by the
accumulation of carotenoids and melanin. These results
provide new insights into the molecular mechanism
underlying the adductor muscle coloration in the QN
Orange scallop.

Methods

Tissues

QN Orange scallops with orange adductor muscles and
Bohai Red scallops with white muscles were obtained
from a scallop farm in Laizhou, Shandong Province. Ad-
ductor muscles of 9 animals of each strain were
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dissected and stored in liquid nitrogen individually until
use. Three adductor muscles from each strain of scallops
were pooled together for RNA extraction and proteins
extraction, respectively. Three biological replicates for
transcriptomic and proteomic analyses were prepared
for total RNA and proteins.

Transcriptome analysis

Total RNA was isolated with TRIzol reagent (Invitrogen,
UK) in accordance with the manufacturer’s instructions.
Then RNA purity and integrity were checked using
NanoPhotometer® spectrophotometer (IMPLEN, CA,
USA) and the RNA Nano 6000 Assay Kit of the Bioana-
lyzer 2100 system (Agilent Technologies, CA, USA), re-
spectively. Subsequently, mRNA was purified with
poly-T oligo-attached magnetic beads, fragmented by
First Strand Synthesis Reaction Buffer (NEBNext, MA,
USA), and reverse transcribed into cDNA. After purifi-
cation, end repair and 3'-end adenylation, the cDNA
fragments were ligated to NEBNext Adaptor with a hair-
pin loop structure. Final cDNA fragments with lengths
of 250-300 bp were amplified by polymerase chain reac-
tions (PCR) and the PCR products were purified on an
AMPure XP system (Beckman Coulter, USA). The li-
brary quality was assessed using a Bioanalyzer 2100 sys-
tem (Agilent, USA), and low-quality reads or reads
containing poly-N or adapters were removed from the
raw data to obtain high-quality clean reads. The bay
scallop (A. irradians irradians) genome was used as ref-
erence genome (unpublished). Hisat2 v2.04 was
employed for index calculation and to align the
paired-end clean reads of the reference genome [36].
Gene expression level was quantified with HTSeq v0.9.1
[37] and FPKM [38].

DEGSeq R package 1.18.0 [39] was used to analyze dif-
ferential gene expression in two groups with the filter
criteria of false discovery rate<0.05 and [log,Fold-
Change| >1. Gene ontology (GO) terms and Kyoto
Encyclopedia of Genes and Genomes database (KEGG)
pathways were utilized to analyze differentially expressed
genes (DEGs) with P < 0.05 [40].

Label-free proteomic analysis

Proteins in the tissues were extracted with SDT lysis (4%
sodium dodecyl sulfate, 100 mM Tris/Hcl, and 0.1 mM
dichloro-diphenyl-tricgloroethane) and quantified by
12.5% sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis. Protein enzymolysis was performed using a
filter-aided sample preparation method [41]. Peptides
were then desalted using C;g cartridges (66872-U
Sigma), freeze-dehydrated, and redissolved in 40 puL of
formic acid (0.1%). Each sample was separated by
high-performance liquid chromatography with the
liquid-phase system Easy nLC at the flow rate of 300 nL/
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min with nanoViper C18 column (Thermo Scientific Ac-
claim PepMap100, 100 um x 2 cm, nanoViper C18) and
C18-A2 column (Thermo Scientific EASY column, 10
cm, ID 75 pum, and 3 pm). Peptides were then analyzed
using Q-Exactive (Thermo Scientific) with a survey scan
ranging from 300 m/z to 1800 m/z. Full-scan mass spec-
tra were obtained at an automatic gain control target of
1le6, a resolution of 70,000 at m/z 200, and a dynamic
exclusion within 60s. After full scanning, high-energy
collision dissociation fragmentation was captured with
an underfill of 0.1% and a resolution of 17,500 at m/z
200, and normalized at a collision energy of 30 eV.

MaxQuant software 1.5.3.17 [42] was employed to
analyze mass spectrum (MS) data. The parameters of
the search engine were set as follows: Trypsin was se-
lected as the digestive enzyme; the false discovery rate
for protein and peptide was defined as < 1%; the fixed
modification was carbamidomethyl; the main search was
set at 6 ppm; and the MS tolerance search was set at 20
ppm.

GO terms were assigned using Basic Local Alignment
Search Tool (BLAST). Differentially expressed proteins
(DEPs) were mapped and annotated with Blast2GO.
KEGG pathway analysis was employed to analyze the
metabolic pathways present in the orange and white ad-
ductor muscles of scallops. DEPs were identified with a
threshold of 0.05 and fold change of > 1.2.

Association analyses of mRNA and protein expression
levels

The relationships between protein and mRNA expres-
sion levels were assessed through Pearson correlation
analysis. The graphical representations of scatter plots
were constructed using R program.

Quantitative real-time polymerase chain reaction analysis
Differentially expressed genes revealed by transcriptomic
and proteomic analyses and genes that may be poten-
tially related to adductor muscle coloration were evalu-
ated by real-time polymerase chain reaction (RT PCR).
These genes include apolipophorin, CYP450, tyrosinase,
RABI11A, TIF, VPS, BCO1, BCO2, MTTP, ApoA, ApoB,
and SCAR. Six orange and six white adductor muscles
were selected for RT PCR analysis. Total RNA was iso-
lated using TRIzol reagent (Invitrogen, UK). B-Actin was
selected as the reference gene. The cDNA fragments
were synthesized with Bestar qPCR RT Kit on a LightCy-
cler 480 RT PCR instrument with Light-Cycler® 480
SYBR Green I Master Kit (Roche, Germany) according
to the manufacturer’s instructions. The primers for RT
PCR are listed in Table 2. The expression levels of genes
were calculated using the comparative Ct method
(AACt). The t-tests were performed using SPSS 17.0 for
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Table 2 Primer sequences for RT PCR

Gene name Primer sequence (5' to 3')
Apolipophorin F: CCACCTTTTGATGCTTTCGG

R: GAGGACGATGGAGAAGTTACC
CYP450 F.GCCGCAATCATTCTGAAGTTG

R: GAAATGCAGGTGTCAGCAAC
VPS F: ATCCAGAGCAGAAGGTTGTAAC

R: TTGTGAGTGTGACCAGAGATG
TIF F: CCAGAAAGATGTAGGGTTCCG

R: GTACCATCAAGTTCCTCTCCAG
BCOD1 F: GAGGGCGTAAAAGATGAGGTAC

R: AGGTGCTTGAAGTTGTCCTG
BCOD2 F: AATGTTGCCGATCAGTACCC

R: GCTTCATCGTTTTGGGATCG
SCAR F: ATGGAGACCTGGCTATTTTGG

R: CAGTCAATGCCATAAAACCCG
MTTP F: CCAGAAAGATGTAGGGTTCCG

R: GTACCATCAAGTTCCTCTCCAG
ApoA F: ACACAGACCCAGGAAATGAAG

R: TGTCCACATTCTCCTTGATCG
ApoB F: CTTACCTGAACGTGACCTCG

R: CTGAAAGTACATCTCCCTGCTC
RABTIA F: TGGCTGGACGAGTTAAAAGAG

R: TCAGGTCAGTTTTGTTCCCG
Tyrosinase F: CCCTCCCAAGACATCAACAG

R: CTCTGTAGATAGCACGCAGTTC
B-Actin F: TATGCCCTCCCTCACGCTAT

R: TITCACTCTTTCCACCGGC

expression analysis and differences were considered sig-
nificant if P < 0.05.

Western blotting analysis

Protein lysates isolated from orange adductor muscles
and white adductor muscles were used for Western blot
analysis as described by Funabara et al. [43]. Proteins
were separated through SDS-PAGE and subsequently
transferred to polyvinylidene fluoride membranes. The
membranes were incubated overnight at 4°C with pri-
mary antibodies. Tubulin was selected as the internal
control. The primary antibodies were anti-tubulin
(Abcam, ab6160, USA), anti-RAB11A (Abcam, ab65200,
USA), anti-VPS (Abcam, ab98929, USA) and anti-TIF
(abcam, ab230321, USA). Then, the membranes were
rinsed thrice with TBS and were incubated with second-
ary antibodies (Beyotime, A0208) for 2h at 37°C. Gel
documentation was observed using Alphalmager® HP
(ProteinSimple, 92-13,824-00, USA). Band intensity was
quantified with IPWIN software.
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