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Abstract

Background: There has been a steady increase in the number of studies aiming to identify DNA methylation
differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding
study design and interpretation have been discussed in detail, however there are analytical concerns that are
outstanding and require further exploration. In this study we seek to address three analytical issues. First, we
quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA
methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen
statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of
DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation
association studies.

Results: We quantified DNA methylation in the Understanding Society cohort (n=1175), a large population based
study, using the lllumina EPIC array to assess the statistical properties of DNA methylation association analyses. By
simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and
calculated the 5% family-wise error for EPIC array studies to be 9x 10~ %, Next, we tested whether the assumptions
of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the
assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing
the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA
methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to
detect small differences at the majority of sites.

Conclusion: We propose that a significance threshold of P < 9x 10~ 2 adequately controls the false positive rate for
EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical
methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of
this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a
framework for the interpretation of findings from current and future studies.

Keywords: DNA methylation, Epigenome-wide association study (EWAS), Multiple testing, lllumina EPIC array,
Power

* Correspondence: ej.hannon@exeter.ac.uk

1University of Exeter Medical School, University of Exeter, RD&E Hospital,
Barrack Road, Exeter, Devon EX2 5DW, UK

Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-019-5761-7&domain=pdf
http://orcid.org/0000-0001-6840-072X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:e.j.hannon@exeter.ac.uk

Mansell et al. BMC Genomics (2019) 20:366

Background

There is increasing interest in the role of epigenetic
processes in health and disease, with the primary focus
of most epigenetic epidemiological studies being on
DNA methylation (DNAm) [1]. Platforms such as the
[lumina 450 K Human Methylation microarray (450 K
array) and the Illumina EPIC Human Methylation
microarray (EPIC array) have enabled the economical,
high-throughput profiling of methylomic variation
across large numbers of samples. In recent years a
number of epigenome-wide association studies (EWAS),
which aim to identify DNAm differences associated with
environmental exposure and disease, have been re-
ported for a range of complex phenotypes including
cancer [2—4], autoimmune disorders [5-7], psychiatric
illnesses [8, 9], neurodevelopmental disorders [10, 11]
and dementia [12, 13].

Primarily due to the dynamic nature of the epigenome
throughout development, across different cell types and
in response to environmental exposures, much has
previously been written regarding the specific nuances of
performing an EWAS compared to a genome-wide asso-
ciation study (GWAS) of genetic variation [14-16].
However, this literature is mainly focused on study de-
sign and interpretation rather than specific analytical is-
sues relating to the characteristics of the data. One
concern that has merited some discussion relates to
whether the distribution of DNAm data violates the
assumptions of Gaussian linear regression [17, 18], the
most commonly used analysis model as it allows for the
inclusion of covariates relating to both biological and
technical confounders. For each molecule of DNA in a
single cell, DNAm is a binary entity, in that at any cyto-
sine it is either present or absent. However, as almost all
DNAm studies profile either bulk tissue - comprising
multiple cell types - or a population of purified cells, the
analyses are essentially measuring the proportion of cells
(taking a value between 0 and 1) in a sample that are
methylated at a specific genomic position [19]. While
across the sites profiled on Illumina arrays DNAm has a
bimodal distribution with peaks of hypomethylation (i.e.
unmethylated sites) and hypermethylation (ie. methyl-
ated sites), there is a significant subset of sites exhibiting
intermediate levels of DNAm (proportion of methylated
alleles =~ 0.5). As the presence/absence of DNAm
primarily distinguishes different cell types and tissues, in
studies of a single tissue, which the majority of epigen-
etic epidemiology studies are, it is unlikely that the
distribution at individual DNAm sites (the standard unit
of analysis in an EWAS) will be bimodal. However, it is
likely that the distributions will be variable and often
non-normal, meaning that the assumption that the
residuals of a linear regression fit are normally distrib-
uted may not hold. Furthermore, as DNAm levels are
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bounded by the limits of 0 and 1 it means that at the
extreme ends of the distribution the variance is
compressed. States of hypo and hypermethylation often
define cell types and would not be expected vary bio-
logically within a cell type, beyond any technical noise in
the assay. This is exacerbated by the fact that the sensi-
tivity of the microarray technology is less precise at
these extremes of the distribution, and hence some mea-
sured variation is often present for these theoretically
non-variable sites. This property of the data is called
heteroskedasticity, defined as a relationship between the
mean and variance of a dataset, and violates another
assumption of linear regression. Although these con-
cerns should be considered when it comes to deciding
the statistical methodology, it is not currently known
whether these violations are sufficient to bias analyses
and introduce false positive or even false negative
findings.

Consistent with studies of other types of genomic
variation, another challenge for EWAS is how to account
for the multiple testing burden in a typical analysis; for
example, the Illumina EPIC array assays DNAm at base
pair resolution for >850,000 sites across the genome.
Currently, a range of approaches are used to establish an
appropriate significance threshold and there is no stand-
ard significance threshold as is used in GWAS. A com-
mon approach is a Bonferroni correction for the number
of probes on the array [20-23] although this is often
presumed to be too conservative as DNAm values at
neighboring probes are known to be correlated [24], and
many sites on the array are non-variable. An alternative,
potentially more powerful, approach sets a permissible
false discovery rate (FDR), and identifies the top associ-
ated sites that satisfy this criterion [25]. While FDR can
be calculated by generating the empirical null distribu-
tion of test statistics [26], it is most commonly applied
using the approach introduced by Benjamini and
Hochberg [27]. This makes the assumption that under
the null hypothesis the p-values across individual sites
are uniformly distributed [28], which is not necessarily
true. In EWAS it is not uncommon to see inflated test
statistics [29, 30], even in the scenario of no true associ-
ations [31], indicating a skewed p-value distribution and
perhaps reflecting unaccounted confounders such as
differences in cellular composition, or certain environ-
mental exposures such as smoking. This variation in the
distribution of p-values across studies means that the
FDR approach often demonstrates variable behaviour
making it challenging to compare results across studies.
A better approach would be to estimate the number of
independent tests performed in a EWAS and make the
appropriate adjustment to the significance level. Saffari
and colleagues have previously applied the methodology
successfully used for GWAS to DNAm data profiled on
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the [llumina 450 K array [32] in an attempt to establish a
standard multiple testing threshold, however this is yet
to be repeated for the EPIC array.

In this study, we used a large population based study,
Understanding Society (n = 1175), where DNA extracted
from whole blood was profiled using the EPIC array
[33, 34] to investigate potential statistical biases of
DNAm association analyses, with the goal of provid-
ing recommendations for future epigenetic epidemi-
ology studies. First, we used a permutation procedure
to establish an appropriate significance threshold that
accounts for the multiple testing burden of the EPIC
array. Second, we investigated whether the assump-
tions of linear regression are satisfied when measuring
DNAm as beta-values and whether any violations bias
the results of DNAm studies. Although transforma-
tions of beta-values (e.g. conversion to M-values [18])
have been proposed in order to better satisfy the as-
sumptions of linear regression, these approaches have
not been unanimously adopted by the community
therefore we seek to determine the validity of studies
that analysed beta-values. Finally, we used the signifi-
cance threshold derived from our simulations to ex-
plore the statistical power of DNAm studies across
various scenarios. These results of our analyses will
inform the optimal approach to designing and analys-
ing DNAm data.

Results

Estimating a multiple testing corrected significance
threshold for the EPIC array

After a stringent quality control (QC) pipeline (see
Methods) and the exclusion of DNAm sites that may be
technically biased by either the presence of genetic
variants or cross-hybridisation to multiple genomic loci,
our final dataset included DNAm estimates for 804,826
sites across the autosomes and X chromosome derived
from 1175 individuals. Applying the Bonferroni
correction formula for multiple testing, the significance
threshold for hypothesis testing would be set to P<
6.21 x 10”8 (0.05/804,826). In order to establish a signifi-
cance threshold for EPIC array DNAm studies that
controls for the number of independent tests (as op-
posed to the total number of sites tested), we used a per-
mutation approach previously applied to GWAS [35]
and 450 K array DNAm studies [32]. This method pre-
serves the correlation structure between sites and
simulates null association studies by randomly assign-
ing case control status. Repeating this process 100
times generates the distribution of p-values obtained
by chance. From this distribution we calculated the
5% family-wise error rate (FWER) to be 9.42 x 10°8
(Additional file 1: Figure S1). Using the inverse of the
Bonferroni correction formula this is equivalent to
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correcting for 530,639 independent tests (0.05/9.42 x
10™®), a reduction of 34.1% compared to the total
number of sites included in the analysis.

Estimating multiple testing corrected significance
threshold for a genome-wide DNAm study

As DNAm microarrays only profile a subset of the ~ 28
million potentially methylated sites in the human
genome, the threshold calculated above is specific to an
EPIC array-based experiment and hence we will refer to
it as an “experiment-wide significance threshold”. Next,
we were interested in using our permutations to
extrapolate from this experiment-wide threshold to a
significance threshold that accounts for all variation in
DNAm across the genome. Given the correlation in
DNAm between proximal DNAm sites, the content of
the EPIC array provides some information about neigh-
boring sites that are not directly profiled. Continuing to
increase the genomic coverage of the microarray should,
therefore, have diminishing returns in terms of novel
association tests as we can use the sites present on the
array to infer the status of other unmeasured neighbor-
ing sites. In order to model the information gain in
terms of number of independent tests as the coverage of
the microarray increases, we applied our permutation
procedure to subsamples of DNAm sites at increasing
densities (x;=5, 15%, ..., 95%). For each density, we
estimated the significance threshold 100 times and cal-
culated the mean 5% FWER (denoted Pr; for density i%).
These estimated Pr; values are plotted in Fig. la, and
demonstrate the expected monotonic, non-linear rela-
tionship where Pr; becomes more significant as the
number of sites sampled increases. Each Pr; value was
then used to calculate the effective number of independ-
ent tests (m;) at density i% using the inverse of
Bonferroni formula (m; = 0.05/Pr;). Again, we observe a
monotonic relationship where the effective number of
tests increases as the proportion of sites sampled
increases (Fig. 1b; Additional file 2: Table S1). As the
proportion of additional independent tests should de-
crease as the number of sites increases, this relationship
is expected to be non-linear and converge to an asymp-
tote which represents the total number of independent
tests across the genome. These properties can be repre-
sented by the Monod function, which was originally
proposed for the growth of microorganisms but is
applicable to scenarios where subsequent growth is in-
creasingly restricted over time. In this application, con-
tinually increasing the number of sites profiled in an
experiment leads to smaller and smaller increments in
the number of independent sites tested until all variation
in DNAm is captured. This upper limit represents the
total number of independent tests in the genome and is
the value we want to estimate in order to determine the
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Fig. 1 Subsampling sites on the EPIC array to estimate a genome-wide significance threshold. Line graphs depicting the relationship between
the number of EPIC array DNA methylation sites (x-axis) and a) the 5% family-wise error rate (FWER) (~log;o(p-values); y-axis) and b) the mean
effective number of tests (y-axis) estimated from 1000 simulated null association studies. Error bars present the 95% confidence intervals from
1000 simulations. The final point includes all DNA methylation sites on the EPIC array and therefore could not be resampled to generate a
confidence interval

genome-wide multiple testing burden. We observe that
this non-linear behaviour only starts to appear after
~ 600,000 sites. Fitting a Monod function to the
subsampling results, we estimated the asymptote to
be 5,803,067 (Fig. 2a) reflecting the total number of

Compared to the total number of sites in the genome,
this is a reduction of 79.3%. Calculating the Bonferroni
corrected significance threshold based on this estimate
gives a methylome-wide significance threshold of 8.62 x
107° (=0.05/5.80 x 10°) (Fig. 2b). Comparing this to a

independent tests across the DNA methylome. Bonferroni corrected significance threshold for all sites in
a b

8 o |

é‘; I ©
g ] 2 - et
8 ~ -7
Is. . .
g € o /’
£ g _ == § ~
=] N =
c _--" o
o o= 1
z 8 .- °
| -

7] e o |
— Observed © — Observed
§ — / - - FittedMonod i - - FittedMonod
L T T T T T T I | T I T
0e+00 2e+06 4e+06 6e+06 8e+06  1e+07 0e+00 2e+06 4e+06 6e+06 8e+06  1e+07
Number of sites Number of sites
Fig. 2 Extrapolation to a genome-wide significance threshold. Line graphs depicting the relationship between the number of DNA methylation
sites (x-axis) and a) the effective number of independent tests (y-axis) and b) the multiple testing corrected threshold (~log;o(p-value); y-axis)
estimated after fitting a Monod function to the observed data presented in Fig. 1b. The observed values are plotted as the solid black line, and
the estimated Monod model is plotted as a dashed line. The grey shaded region represents the 95% Cl created by fitting a Monod model to the
95% Cl of the subsampled data. The blue horizontal line represents the estimated asymptote of the Monod model of 5,803,067 independent tests
equivalent to a genome-wide significance threshold of 8.62 x 10~°
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the genome of 1.79 x 1077 (0.05/2.8 x 107), our estimate is
almost an order of magnitude smaller. The Monod func-
tion was also fitted to the subsample 95% confidence
interval (CI) limits, estimating a 95% CI for the asymptote
of 1.69 x 10° to 3.36 x 10"3, which equates to a 95% CI of
297x10°° to 149x 10" for the methylome-wide
significance threshold.

Testing the assumptions of linear regression for DNAm
analyses

To assess whether the assumptions of linear regression
are satisfied, we performed an EWAS of age, a trait
known to robustly co-vary with DNAm at multiple loci
[21, 36]. The four assumptions of linear regression were
assessed using four statistical tests implemented within
the gvlma R package [37]. Specifically, these were tests
for i) skewness, an asymmetrical distribution of the
residuals, ii) kurtosis, a non-bell-shaped distribution of
the residuals, iii) incorrect link function, a non-linear
relationship between independent and dependent
variables, and iv) heteroskedasticity, inconstant variance
of the residuals (Additional file 1: Figure S2). In addition,
a global test was performed providing an omnibus test
of the four individual statistical tests. QQ plots of all five
tests demonstrated dramatic inflation of p-values smaller
than expected by chance (Additional file 1: Figure S3),
indicating that the null hypothesis that DNAm data
meets the assumptions of linear regression can be
rejected for a large number of DNAm sites. Based on
the experiment-wide significance threshold we previ-
ously derived for the EPIC array (ie. P<9.42x10™%),
71.8% of sites rejected the null hypothesis for at least
one assumption, with the majority of sites having
non-normal residuals that exhibited evidence of excess
skewness (41.3%) or excess kurtosis (67.6%) (Table 1).
Furthermore, the specific DNAm sites whose residuals
were skewed overlapped with the sites whose residuals
were kurtotic (i.e. either highly or shallowly peaked)
(Fig. 3). A much smaller percentage of sites reject the
null hypothesis in favour of a non-linear model (7.4%) or
heteroskedasticity (4.3%).

Characterising DNAm sites that infringe the assumptions
of linear regression

In order to propose guidelines for future EWAS studies,
we were interested in whether DNAm sites that per-
formed poorly in the gvlma tests could be characterized
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by common features such as DNAm level or variability.
First, we considered the level of DNAm at each site,
hypothesising that sites which are located at the
extremes of the distribution would be more likely to
violate the assumptions of the tests. We observed that
the sites with the most significant p-values in the gvima
tests (i.e. those with the largest —logl0 p-values) are gen-
erally either hypo- or hypermethylated (Additional file 1:
Figure S4). Furthermore, by grouping sites based on
their mean DNAm level we can pinpoint where in the
distribution of DNAm values the assumptions are typic-
ally not satisfied. We observe a U-shaped relationship
whereby sites with DNAm levels at the extremes (i.e.
approaching 0 or 1), are more likely to violate the
assumptions compared to sites with intermediate levels
of DNAm (Fig. 4; Additional file 2: Table S2). This
pattern generally holds for all four tests, but is most ap-
parent for tests of skewness and kurtosis. Of interest, the
relationship is not symmetrical, with the first two bins
on the left of the distribution (containing sites with
means of between 0 and 0.2) but only one bin on the far
right of the distribution (containing sites with means of
between 0.9 and 1.0) showing elevated mean —loglO
p-value compared to the middle seven bins. Second, we
considered site variability, hypothesising that sites with
low levels of variation would be more likely to violate
the test assumptions. Using the standard deviation to
index variability, we observed that sites with lower
standard deviations had larger -logl0 p-values when
testing the assumptions of linear regression (Additional
file 1: Figure S5). This was most evident for the tests of
skewness, kurtosis and heteroskedasticity, in particular
for sites with a standard deviation <0.02 (Fig. 5;
Additional file 2: Table S3). A more complex pattern
was seen for the link function test, where the most vari-
able probes and the second group of least variable
probes had the highest —logl0 p-values. Using an
alternative non-parametric method to characterize sites
as ‘variable’ (range of middle 80% of values >5%) or
‘non-variable, we observed a similar pattern of results
(Additional file 1: Figure S6; Additional file 2: Table S4)
where non-variable sites were more likely to reject
the assumptions of linear regression compared to
variable sites. Taken together, these findings suggest
that sites with extreme DNAm levels or low variation
are most likely not to satisfy the assumptions of lin-
ear regression. These characteristics are not unrelated

Table 1 Summary of DNA methylation sites significantly rejecting the assumptions of linear regression

Global Skewness Kurtosis Link Function Heteroskedasticity
N reject null hypothesis 577919 332457 544,460 59,572 35,001
% reject null hypothesis 718 413 67.6 74 43

For each of the 5 tests performed by the gvima package the number and percentage of DNA methylation sites with significant p-values (P < 9.42 x 107 %)

are reported
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Fig. 3 Overlap of significant violations of linear regression assumptions. Venn diagram depicting the overlap of DNA methylation sites significant
for each test of a linear assumption (P< 942 x 10” %). Presented are the number of overlapping DNA methylation sites along with the percentage
of all tested sites shown in brackets
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because sites with low levels of variation are typically  [18]. Although a direct comparison of beta-values and
located at the boundaries of the distribution of M-values is beyond the scope of this manuscript, we
DNAm (Additional file 1: Figure S7). repeated our analyses on M-values to further interpret

Recently, M-values have been proposed as an alterna-  the results presented above. Using our experiment-wide
tive to beta-values in EWAS analyses of traits and expo-  significance threshold, 70.1% of DNAm sites demon-
sures due to their more desirable statistical properties strated significant bias of at least one assumption when
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Fig. 4 Comparison of tests of linear regression assumptions across the distribution of DNA methylation levels. Boxplots of —log;q(p-value) for each
of the 5 tests (a) global (b) skewness (c) kurtosis (d) link function and (e) heteroskedasticity for groups of DNA methylation sites binned by their
mean DNA methylation level. The boxes are coloured by their mean —log;o(p-value) from light yellow (low) to red (high)
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using M-values; that is just 1.09% less than the original
analysis based on beta-values (Additional file 2: Table
S5). Furthermore, 85.9% of DNAm sites that are consid-
ered statistically inappropriate based on beta-values were
also classed as statistically inappropriate when analysed
as M-values. As with the beta-value analysis, the primary
assumption violated by M-values related to the shape of
the distribution of residuals. In fact, a comparable num-
ber of sites demonstrated excess kurtosis regardless of
whether beta-values (67.6%) or M-values (66.7%) were
used. Furthermore, albeit more subtly, DNAm sites with
methylation levels at the extreme ends of the distribu-
tion were more likely to fail the statistical tests
(Additional file 1: Figure S8), consistent with the results
of the analysis using beta-values.

Evaluating the impact on DNAm studies of sites that do
not meet the assumptions of linear regression

The primary concern about using an invalid analytical
model is the risk of either reporting false positive or false
negative findings in tests of association. As linear regres-
sion is considered robust to violations of the assump-
tions, we next explored whether sites that violated an
assumption were more likely to be significant in a
DNAm analysis using a linear regression model. Using
our simulated null association studies, DNAm sites were
ranked by their association p-value to calculate the mean
rank across the simulations. In a scenario where all sites
are equally likely to be associated and there is no bias in
the analysis, the distribution of these mean ranks should

be symmetrical and unimodal with a mean of 402,413.5.
Any skew in the distribution, or the presence of out-
liers and/or multiple peaks, would indicate an under-
lying bias in which DNAm sites are often identified
as significant or not. We found that the distribution
of the mean rank was normally distributed with a
mean of 402,446 (Additional file 1: Figure S9), similar
to the expected value. We observed no association
between p-values from the gvima tests and a DNAm
site’s mean rank indicating that even highly significant
rejections of the assumptions of linear regression do
not bias EWAS results in terms of either false
positives or false negatives (Fig. 6; Additional file 1:
Figure S10; Additional file 2: Table S6).

Estimating the power of an EPIC array DNAm study

The power of a test is defined as the probability that it
correctly rejects the null hypothesis when the alternative
hypothesis is true. As with other types of genomic
analyses, large sample sizes are required for EWAS in
order to obtain the statistical power required to identify
a significant non-zero effect with a p-value that survives
the adjustment for multiple testing. Having derived an
appropriate multiple testing corrected significance
threshold for the EPIC array, we investigated the typical
sample sizes required for a DNAm study using this
platform. In order to estimate power we need to know
the sample size, multiple testing threshold, expected
effect size and variance. While the first three of these
parameters will remain constant for a particular study,



Mansell et al. BMC Genomics (2019) 20:366

Page 8 of 15

a Global

15
N

-ogyalp-value)

T T T T T T T
390000

Average ranking in 1000 EWAS Permuations

Fig. 6 Comparison of tests of linear regression assumptions with bias in DNA methylation association studies. Scatterplots of —log;q(p-value)
(y-axis) from the (a) global (b) skewness (c) kurtosis (d) link function and (e) heteroskedasticity tests performed in the R gvima package against
average (mean) ranking from 1000 simulated null association studies (x-axis) for all DNA methylation sites. Each point represents a single site, and
the color represents the density of points plotted at that position (low density in grey to high density in yellow)

b Skewness c Kurtosis

10
L

-logyolp-value)
“kogyolp-value)
k]

o - o -
T T T T T T T T T T T T T T T
370000 390000 410000 430000

Average ranking in 1000 EWAS Permuations

430000

Average ranking in 1000 EWAS Permuations

Link Function Heteroskedasticity

o
(1]

5

-bgyolp-value)
10
)

L}
L
L

-ogiolp-value)
5

T T T T T T T T T T T T T T T
410000 410000 430000

30000 390000

Average ranking in 1000 EWAS Permuations

430000 0000 390000

Average ranking in 1000 EWAS Permuations

the variance of DNAm will vary across sites. This means
that a single power calculation, perhaps based on an
average probe, provides limited information about the
overall power of a DNAm study. We therefore per-
formed a power calculation for each individual site on
the EPIC array and then established the proportion of
sites that surpass a specific power threshold. The esti-
mated power for a single association test across a range
of standard deviations and sample sizes for a binary
phenotype (as would be tested in a disease case-control
study) are shown in Table 2. For example, to detect a
mean difference of 2% with 500 cases and 500 controls
(total N'=1000), we have 100% power at sites with a
standard deviation <= 0.03. Performing separate power
calculations tailored by the variance of each site, we
plotted power curves for a range of typical DNAm
studies (Fig. 7). This analysis demonstrates that when
N =200 (100 cases and 100 controls), 85% of sites
have >80% power to detect an effect of 5% (yellow
line in Fig. 7b), and when N =1000 (500 cases and
500 controls), 81% of probes have >80% power to de-
tect an effect of 2% (light blue line in Fig. 7a). While
these examples provide a general overview of power
for EPIC array studies, the results are also available for
browsing in an interactive web application (https://
epigenetics.essex.ac.uk/shiny/EPICDNAmPowerCalcs/)
where the parameters can be adjusted in order to generate
bespoke power calculations allowing researchers to assess
the power of their individual study.

Discussion

This study used a large DNAm dataset generated using
the Ilumina EPIC array to assess the statistical proper-
ties that influence the analytical design for hypothesis
testing in epigenome-wide association studies. We
estimated that there are 530,639 independent tests in a
whole blood EPIC array DNAm study, which equates to
a corrected significance threshold of 9.42 x 10™%. For

Table 2 Summary of statistical power to significantly detect
differential methylation between cases and controls

Sample Standard Deviation
S 0.01 0.03 0.05 0.07 0.09 0.15
Mean Difference = 2%
100 100% 1.26% 0.03% 0.00% 0.00% 0.00%
200 100% 214% 0.45% 0.04% 0.01% 0.00%
500 100% 97.8% 17.6% 1.43% 0.19% 0.01%
1000 100% 100% 82.7% 19.7% 322% 0.06%
Mean Difference = 5%
100 100% 99.1% 24.4% 2.18% 0.29% 0.01%
200 100% 100% 93.0% 32.0% 6.07% 0.11%
500 100% 100% 100% 99.4% 784% 4.81%
1000 100% 100% 100% 100% 100% 45.8%

Presented are example power calculations for a range of scenarios, varying
effect size, sample size and variance for a binary phenotype. Power
calculations are for a two-sided, two-sample t-test with a significance
threshold of P < 9.42 x 1078, The sample size is the total number of samples
with a 50:50 split between groups
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ease, we propose 9 x 10~ ® would be an appropriate EPIC
array experiment-wide significance threshold that should
be adopted by the field to minimize the reporting of
false positives. Although this EPIC array experiment-
wide threshold is not substantially different to a
Bonferroni correction for the actual number of tests, our
estimate is comparable to that proposed using a similar
methodology to data from the older 450K array [32],
which includes approximately half the number of sites
(P=24x10"") that were converted to M-values. Our
results indicate that the correlation in DNAm across
sites included on the Illumina EPIC array is relatively
small and does not encompass large genomic regions;
Saffari and colleagues also observed that strong corre-
lations between neighboring sites were typically only
observed within 1 kilobase [32], consistent with the
minimal reduction from number of actual tests to
number of independent tests we report. This
challenges the argument that a Bonferroni correction
is too conservative and therefore a more relaxed
multiple testing threshold can be applied. Existing
and future studies which report results at a more
lenient threshold, particularly those with small sample
sizes and lower statistical power should be interpreted
with caution.

We attempted to extrapolate from the experiment-
wide threshold for the EPIC array to estimate an
appropriate threshold for all potential tests across the
genome, including those not currently profiled by the
EPIC array, by using simulations to profile how the
number of independent tests changes as the coverage of
the microarray increases. At sufficient density, the num-
ber of independent tests should plateau; however this
behaviour was not really evident across the range of
densities we were able to simulate, suggesting that the
EPIC array does not interrogate a large part of the
variation in DNAm across the genome. Therefore, our
estimate of the number of independent tests in the
genome is likely to be imprecise. Moreover, given the
wide confidence interval around the estimated
genome-wide multiple testing burden, we recommend
this result is taken with some caution. Future large
population based studies that include more DNAm sites
across the genome would be required to address this
question. We propose that our experiment-wide signifi-
cance threshold should be adopted for all future EPIC
array EWAS. The use of a standardized significance
threshold would benefit the field by providing a common
standard for reporting associations and facilitate the
comparison of results across different studies. While the
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threshold has been determined to minimize the
reporting of false positives, it does not prevent them
entirely; prudent study design and effective control of
confounders are still required for high quality EWAS
studies. Furthermore, replication of associations across
independent datasets is still required to validate
robust associations.

We also tested the assumptions of linear regression,
the most commonly used tool for identifying associa-
tions between differentiall DNAm and a trait, when
measuring DNAm using beta-values (i.e. as a propor-
tion) and conclude that the majority of sites do not
satisfy the assumption of normally distributed errors.
This was particularly the case for DNAm sites that have
low levels of variation or are located at the extreme ends
of the distribution. While we use our experiment-wide
p-value threshold to quantify the number of probes not
satisfying these assumptions in order to gauge the pat-
tern of results, we caution against using this threshold to
classify sites as passing or failing these assumptions. As
the statistical evidence required to reject the null hy-
pothesis in these tests is unlikely to equate to the degree
of violation of the assumption needed to influence the
results of the regression analysis, it may not follow that
sites that fail these tests will lead to incorrect conclu-
sions if a linear regression model is used. As these as-
sumptions were tested on an EWAS of chronological
age, it is possible that our results are specific to this
particular analysis. Furthermore, we used a European
adult whole blood cohort as a basis for our assessment,
which may mean that the results are not applicable to
studies of other tissues, cell-types, ages or ethnicities. It
is also likely that these violations of these assumptions
will be more important for studies based on smaller
sample sizes. For these reasons, rather than report a list
of DNAm sites that do not satisfy the assumptions, we
focused on characterising these sites in order to provide
general guidelines. Although the specific sites that not
do vary within a sample may differ between studies, we
predict that it is always the non-variable sites that fail
the tests of the assumptions. Some studies remove
non-variable sites prior to hypothesis testing [38-40]
and our results support such a filtering step. However,
as we found no evidence that the lack of normal resid-
uals, an incorrectly specified link function, or heteroske-
dasticity leads to either false positive or false negative
associations, our data also suggests that this is not
strictly necessary. A number of studies have used trans-
formations of beta-values, for example using log ratios
of methylation percentage referred to as M-values in
order to obtain a normal distribution [3, 10, 18] or
regression based on an alternative distribution (e.g. beta
regression [41]); our results show that the use of linear
regression with beta values in DNAm studies, even if
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the data do not satisfy the standard assumptions of
this test, does not appear to lead to biased results.
Despite considering the four key assumptions of lin-
ear regression, we did not specifically investigate the
effect of outlier DNAm values, which may arise due
to either technical or biological artefacts (e.g. rare
SNP effects). The presence of outliers can introduce
false positive associations as linear regression esti-
mates are derived by minimising the sum of the re-
siduals, therefore extreme values, which would lead to
large residuals, can lead to larger, and therefore sig-
nificant, estimated slope coefficients.

Finally, we performed power calculations to ascertain
the sample size required for EPIC array studies using
our proposed experiment-wide significance threshold.
Most complex phenotypes are expected to be associated
with small effects (typically <5% difference between
cases and controls), and our calculations indicate that
with a sample size of 500 cases and 500 controls, 81% of
sites have >80% power to detect an effect of 2%. This
estimate should be reassuring to the epigenetic commu-
nity, as there are an increasing number of studies
approaching or surpassing this sample size [9, 42—45].
Our approach advances previous efforts [46] by taking
into account the individual properties of each DNAm
site and uses an empirically derived significance thresh-
old to provide an overview of power across the EPIC
array. Finally, we have developed an online tool (https://
epigenetics.essex.ac.uk/shiny/EPICDNAmPowerCalcs/)
where users can perform their own bespoke calculations
to quantify the power of their specific study for individ-
ual DNAm sites; we are currently extending this power
calculation application for use with quantitative trait
variables, and will implement an updated version in the
near future.

Conclusions

We show that linear regression is a valid statistical
methodology for DNAm studies, despite the fact that
the data do not always satisfy the assumptions of the
test. Additionally, we propose that a significance thresh-
old of P<9x10™% should be adopted to adequately
control the false positive rate for EPIC array based
analyses and should be accepted as a standard for
reporting results. These findings have implications for
epidemiological-based DNAm studies and provide a
framework for the interpretation of findings from
current and future studies.

Methods
All analyses were performed using the statistical
language R [47].
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Genomic-wide profiling of DNAm in understanding
society

The DNAm dataset generated as part of the Understand
Society study has been analysed in two previously
published studies [34, 48] and a detailed description of
the sample, DNAm data generation and data preprocess-
ing can be found in the original publication [34]. Briefly,
Understanding Society (https://www.understandingsoci-
ety.ac.uk) is a longitudinal panel survey of 40,000 UK
households which has collected sociodemographic
information, biomedical measures and blood samples
from participants. DNA was extracted from whole blood
samples to facilitate genomic profiling including DNAm.

DNAm data preprocessing

DNAm was profiled for a subset of 1193 individuals
from the Understanding Society study using the Illumina
Infinium HumanMethylationEPIC BeadChip. Raw signal
intensity data were processed from idat files through a
standard pipeline using the bigmelon [48] and
wateRmelon [49] packages in R. A number of quality
control steps were performed to these data prior to
normalization. First, outlier samples were identified
using principal component analysis and mahalanobis
distance equivalents, second, successful bisulphite con-
version was confirmed using control probes, third the
ages of the samples were estimated using the Horvath
Epigenetic Clock algorithm [50] and compared to re-
ported age at sampling, and fourth visualisation of
principal components. These data were then normalized
using the dasen method [49], which performs back-
ground adjustment and between-sample quantile
normalization of methylated (M) and unmethylated (U)
intensities separately for Type I and Type II probes. A
second round of sample filtering was then performed
excluding samples that were either dramatically al-
tered as a result of normalisation or samples that had
>1% of sites with detection p-value >0.05. DNAm
sites were filtered to exclude those with a bead count
<3 or>1% of samples with detection p-value >0.05.
The raw DNAm data of the final sample set was then
re-normalized with the dasen method. Prior to data
analysis, SNP probes, probes with non-specific bind-
ing, probes affected by common SNPs [51], and 65
probes annotated to the Y chromosome were add-
itionally removed. The final dataset contained 1175
individuals and 804,826 DNAm sites (787,400 anno-
tated to autosomes, and 17,426 annotated to the X
chromosome).

Estimating a significance threshold for DNAm studies
using the EPIC array

To estimate an experiment-wide significance threshold
for the EPIC array, we applied the permutation
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procedure previously described by Dudbridge and
Gusnanto [35]. For each permutation, 50% of our
1175 samples (n=557) were randomly assigned as
“cases” and 50% (n=558) as “controls” to simulate a
null EWAS (i.e. no differences between cases and
controls). Each of the 804,826 sites was then tested
for association with this simulated phenotype using a
linear regression model including sex, age, and six es-
timated cellular composition variables (B cells, CD8 T
cells, CD4 T cells, monocytes, granulocytes, natural
killer T cells) [52, 53] as covariates. We repeated this
procedure 1000 times recording the smallest p-value
(i.e. the most significant) from each permutation. The
EPIC array significance threshold was estimated by
taking the 5th percentile point of these 1000 mini-
mum p-values representing the 5% family-wise error
rate (FWER).

Estimating a genome-wide significance threshold for
DNAm studies

In order to extrapolate from our experiment-wide sig-
nificance thresholds to one appropriate for genome
wide DNAm association studies, we implemented the
subsampling procedure also implemented by Dud-
bridge and Gusnanto [35]. Briefly, to simulate experi-
ments with a reduced number of sites that capture a
smaller proportion of genome-wide variation, sites
were randomly subsampled at a range of densities (x;
=5, 15%, ..., 95%; i=1, 2, ..., 10). From each permu-
tation, the smallest p-value across the subset of sites
was extracted and the 5th percentile point across all
1000 minimum p-values was recorded. This subsamp-
ling was repeated 100 times and the mean, 2.5 and
97.5 percentile points were calculated to set the sig-
nificance threshold (Py;) and confidence intervals for
density i. At low densities, where the coverage is
sparse, it is assumed that all included DNAm sites
will be independent and a Bonferroni correction for
multiple testing is appropriate. As coverage increases,
correlations between neighboring sites mean that the
number of additional independent tests decreases. In
other words, continually increasing the number of
sites studied has diminishing returns in terms of the
increase in additional variation captured. Therefore,
as the number of sites profiled in an experiment
increases, the effective number of independent tests
converges to an asymptote. To estimate the value of
this asymptote, we fitted a Monod function across the
site densities and their estimated number of inde-
pendent tests. For each of the site densities (x;), the
effective number of independent tests (m;), was
calculated by using the inverse of the Bonferroni
correction for multiple testing (m;=0.05/Pp). A
Monod function, originally a mathematical model for
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bacterial population growth with limited resources,
takes the form:

ux
m = f(x,u,k) :k+x

where u is the limit and k is the half-saturation
parameter, their values given by:

fl =3

fle) =u

This function was fitted using a least squares approach
in R to find the value of u, which represents the number
of independent tests in the entire DNA methylome. To
calculate the methylome-wide significance threshold we
applied the Bonferroni correction using this estimate
(Pgenome = 0.05/u).

Testing the assumptions of linear regression models used
in DNAm studies

To assess the validity of linear regression models in
studies of DNAm, an EWAS of age was performed in-
cluding sex, processing chip and six estimated cellular
composition variables (B cells, CD8 T cells, CD4 T cells,
monocytes, granulocytes, natural killer T cells) [52, 53]
as covariates. For each of the 804,826 models (one per
DNAm site) we tested for violations of the assumptions
of linear regression using the gvima (Global Validation
of Linear Model Assumptions) R package [37]. This
package performs four tests to test the performance of
the model fit with regards to the four assumptions of a
linear regression: linearity, homoskedasticity, uncorrelat-
edness and normality of the residuals (Additional file 1:
Figure S2). The gvlma package provides a numerical
measure of violation through significance testing for
skewness, kurtosis, link function, and heteroskedasticity.
Briefly, the package calculates a directional test statistic
for each assumption using the standardized residuals
from the fitted linear model. These test statistics are
each compared to a 1 degree-of-freedom chi-square
distribution to calculate a p-value for hypothesis testing.
In addition to obtaining a p-value for each of these four
tests, the software also generates a “global” p-value,
which is an omnibus test of the four others. The global
test statistic is the sum of the four components (one for
each assumption) and compared to a 4 degree-of-free-
dom chi-square distribution. The formula for each com-
ponent and further details can be found in the original
manuscript proposing the method [37]. The null hypoth-
esis for the global test is that all four assumptions hold,
and the alternative hypothesis is that at least one does
not (ie. a significant p-value indicates that a linear
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model is not appropriate). In order to assess how DNAm
sites on the EPIC array performed across these five tests
we plotted Quantile-Quantile (QQ) plots of the observed
vs expected p-values. To characterize sites which
perform poorly in these tests we visualized correlations
between the p-values from the five gvima tests and both
the mean level of DNAm and two measures of variance
(standard deviation and range of the middle 80% of
values). For the purpose of assessing which assumptions
are most commonly violated, and which are most
commonly violated simultaneously, we applied the ex-
periment wide p-value threshold derived in the previous
sections (P < 9.42 x 10™®), to identify sites that reject the
assumptions of linear regression. Finally to investigate
the impact of violating the assumptions of linear
regression, we calculated the mean rank across the 1000
null EWAS permutations as an indicator of how likely a
site was to be associated by chance and any bias in
association analyses. These mean ranks were then
compared with the p-values of the gvima tests.

Estimating statistical power for EPIC array studies

Power calculations were performed for each of the
804,826 sites in the dataset using the function pwr.t.test
from the R package pwr [54]. We consider the scenario
with a binary outcome (i.e. case control study), using a
two-sample t-test to compare the means of the two
groups where the null hypothesis of each test is that the
means of the two groups are equal. To calculate power,
the parameters sample size, effect size and significance
level were provided. The significance level was set as our
previously calculated experiment-wide threshold of
9.42 x 10™ %, The effect size was provided as Cohen’s d,
which is the expected difference between the two group
means divided by their pooled standard deviation [55].
In order to get a power estimate for the overall study,
calculations were performed for every site individually
using that site’s variance estimated from the
Understanding Society dataset, for two different mean
differences (2 and 5%). Power calculations were also per-
formed for a range of total sample sizes (n =100, 200,
500, 1000, 2000 and 5000) consisting of equal numbers
of cases and controls. For each combination of parame-
ters (sample size and mean difference), we calculated the
percentage of sites that had sufficient statistical power
across the full range of possible values (0-100%). While
we only present results for a subset of the possible
scenarios as a guide to the power of a typical EWAS
study, we have also developed an R shiny app [7] to
allow users to perform bespoke power calculations
(https://epigenetics.essex.ac.uk/shiny/ EPICDNAmPower-
Calcs/). In this app, the user can specify sample size and
mean difference to generate a summary results table and
downloadable figure. As performing >800,000 power
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calculations is time consuming, the app uses a binning
method, grouping sites with similar variances and
plotting a smoothed curve, to speed up the calculation.
For more accurate results the user can increase the
number of bins, or chose to calculate the power for all
sites individually. There is also an option to search for a
specific DNAm site of interest and calculate its power
under user defined parameters.

Additional files

Additional file 1: Figure S1. Distribution of minimum p-values from
1000 null EWAS simulations. The red line at 9.42 x 10 % is the 5th
percentile point and represents the 5% FWER. Figure S2. The four
assumptions of linear regression (described in the left boxes), were tested
using R package gvima with four statistical tests (described in the right
boxes) with arrows matching the assumptions to the relevant test. Gvima
calculates a p-value for each test, where the null hypothesis is that the
assumption(s) hold true, and the alternative hypothesis is that they do
not (i.e. a significant p-value indicates that the assumption(s) are violated).
Figure S3. Quantile-Quantile plots of the 5 tests of the assumptions of
linear regression. Plotted are the observed (x-axis) against expected (y-
axis) —logio(p-value) from the (a) global (b) skewness (c) kurtosis (d) link
function and (e) heteroskedasticity tests performed in the R gvima pack-
age for all DNA methylation sites. Under the null distribution, of no sig-
nificant associations, all points would be expected to lie on the red line
at y =x. The observed data show a dramatic inflation of p-values smaller
than expected by chance in all 5 plots indicating that many DNA methy-
lation sites fail these statistical tests for the assumptions of linear regres-
sion. Figure S4. Scatterplots of —logo(p-value) against mean DNA
methylation level from the (a) global (b) skewness (c) kurtosis (d) link
function and (e) heteroskedasticity tests performed in the R gvima pack-
age for all DNA methylation sites. Each point represents a single site, and
the color of the point represents the density of points plotted (low dens-
ity in grey to high density in yellow). Figure S5. Scatterplots of DNA
methylation standard deviation against —log;(p-values) from the (a) glo-
bal (b) skewness (c) kurtosis (d) link function and (e) heteroskedasticity
tests performed in the R gvima package. Each point represents a single
DNA methylation site, and the color of the points represents the density
of points plotted (low density in grey to high density in yellow). Figure
S6. Boxplots of —log;o(p-value) for each of the 5 tests: (a) global (b) skew-
ness (c) kurtosis (d) link function and (e) heteroscedasticity separated by
site variability status. DNA methylation sites were defined as variable if
the range of their middle 80% of values, calculated as the 90th percentile
(Pgo) minus the 10th percentile (P1o) was greater than 5%. Each boxplot is
colored by their mean —logo(p-value), from light yellow (lowest —logyo(p-
value)) to red (highest —log;o(p-value). Sites with a p-value of O (i.e. p <
2.22x107"%) were removed from these plots. Figure S7. Scatterplot of
variability (standard deviation; y-axis) against mean methylation level (x-
axis), for all DNA methylation sites tested. The color of the points repre-
sents the density of points plotted (low density in grey to high density in
yellow). Figure S8. Comparison of suitability of linear regression assump-
tions for M-values across the distribution of DNA methylation levels. Box-
plots of —log;o(p-value) for each of the 5 tests (a) global (b) skewness (c)
kurtosis (d) link function and (e) heteroscedasticity for groups of DNA
methylation sites binned by their mean DNA methylation level, measured
as a beta-value. The boxes are coloured by their mean —logq(p-value)
from light yellow (low) to red (high).

Figure S9. Histogram of DNA methylation sites mean rank from simu-
lated null association studies. The red vertical line indicates the expected
value under the scenario of no bias of 402,413.5. Figure S10. Boxplots of
—logo(p-value) for each of the 5 tests: (a) global (b) skewness (c) kurtosis
(d) link function and (e) heteroskedasticity, for groups of DNA methyla-
tion sites binned by their mean ranking from our simulations of null
association studies. Sites were allocated to nine bins based on their
average (mean) rank. Each boxplot is coloured based on their by their
mean —logo(p-value) using a scale from light yellow to red in each
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subplot. This shows that there is generally no trend between significant
p-values and mean rank. Sites with a p-value of 0 (ie. p < 2.22x 107'°)
were removed for these plots. (PDF 591 kb)

Additional file 2: Table S1. Estimating the multiple testing correction
significance threshold for sub-samples of EPIC array DNA methylation
sites. Table S2. Summary of results from tests of assumptions of linear re-
gression separated by mean DNA methylation level. The number and
percentage of DNA methylation sites significant for each test (P < 9.42 x
1078 split by mean DNA methylation level. Table $3. Summary of results
from tests of assumptions of linear regression separated by DNA methyla-
tion standard deviation. The number and percentage of DNA methylation
sites significant for each test (P < 9.42 x 1078 split by DNA methylation
level standard deviation. Table S4. Summary of results from tests of as-
sumptions of linear regression separated by DNA methylation variability
status. The number and percentage of DNA methylation sites significant
for each test (P < 9.42 x 10°°). Variable DNA methylation sites are defined
as those with the range of their middle 80% of values greater than 5%.
Table S5. Summary of DNA methylation sites significantly rejecting the
assumptions of linear regression comparing beta-values and M-values.
For each of the 5 tests performed by the gvima package the number and
percentage of DNA methylation sites with significant p-values (P < 942 x
1078 are reported for linear regression models based on beta-values and
M-values. Table S6. Summary of results from tests of assumptions of
linear regression separated by mean rank in null association studies. The
number and percentage of DNA methylation sites significant for each
test (P <942 x 107%) split by their mean rank across 1000 simulated null
association studies. (PDF 153 kb)
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