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Abstract

Background: Parts of Europe and the United States have witnessed dramatic losses in commercially managed
honey bees over the past decade to what is considered an unsustainable extent. The large-scale loss of bees has
considerable implications for the agricultural economy because bees are one of the leading pollinators of numerous
crops. Bee declines have been associated with several interactive factors. Recent studies suggest nutritional and
pathogen stress can interactively contribute to bee physiological declines, but the molecular mechanisms underlying
interactive effects remain unknown. In this study, we provide insight into this question by using RNA-sequencing to
examine how monofloral diets and Israeli acute paralysis virus inoculation influence gene expression patterns in bees.
Results: We found a considerable nutritional response, with almost 2000 transcripts changing with diet quality. The
majority of these genes were over-represented for nutrient signaling (insulin resistance) and immune response (Notch
signaling and JaK-STAT pathways). In our experimental conditions, the transcriptomic response to viral infection was
fairly limited. We only found 43 transcripts to be differentially expressed, some with known immune functions
(argonaute-2), transcriptional regulation, and muscle contraction. We created contrasts to explore whether protective
mechanisms of good diet were due to direct effects on immune function (resistance) or indirect effects on energy
availability (tolerance). A similar number of resistance and tolerance candidate differentially expressed genes were
found, suggesting both processes may play significant roles in dietary buffering from pathogen infection.
Conclusions: Through transcriptional contrasts and functional enrichment analysis, we contribute to our
understanding of the mechanisms underlying feedbacks between nutrition and disease in bees. We also show that
comparing results derived from combined analyses across multiple RNA-seq studies may allow researchers to identify
transcriptomic patterns in bees that are concurrently less artificial and less noisy. This work underlines the merits of
using data visualization techniques and multiple datasets to interpret RNA-sequencing studies.
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Background
Managed honey bees have undergone health declines in
the United States and parts of Europe over the past decade
[1–3], with annual mortality rates exceeding what bee-
keepers consider sustainable [4, 5]. More than 70 per-
cent of major global food crops (including fruits, veg-
etables, and nuts) at least benefit from pollination, and
yearly insect pollination services are valued worldwide
at $175 billion [6]. As honey bees are largely consid-
ered to be the leading pollinator of numerous crops, their
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marked loss has considerable implications for agricultural
sustainability [7].
Honey bee declines have been associated with sev-

eral factors, including pesticide use, parasites, pathogens,
habitat loss, and poor nutrition [8, 9]. Researchers gen-
erally agree that these stressors do not act in isolation;
instead, they appear to influence the large-scale loss of
honey bees in an interactive fashion as the environment
changes [10]. Nutrition and viral infection are two fac-
tors that pose heightened dangers to honey bee health
in response to recent environmental changes. Interac-
tions between nutrition and viral infection may cre-
ate feedbacks that impact bee health through several
mechanisms [11, 12].
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Pollen is a main source of nutrition (including pro-
teins, amino acids, lipids, sterols, starch, vitamins, and
minerals) in honey bees [13, 14]. At the individual level,
pollen supplies most of the nutrients necessary for phys-
iological development [15] and is believed to have con-
siderable impact on longevity [16]. At the colony level,
pollen enables young workers to produce jelly, which then
nourishes larvae, drones, older workers, and the queen
[17, 18]. Various environmental changes (including urban-
ization and monoculture crop production) have signifi-
cantly altered the nutritional profile available to honey
bees. In particular, honey bees are confronted with a less
diverse selection of pollen, which is of concern because
mixed-pollen (polyfloral) diets are generally considered
healthier than single-pollen (monofloral) diets [19–21].
Reported colony mortality rates are higher in developed
land areas compared to undeveloped land areas [22], and
beekeepers rank poor nutrition as one of the main reasons
for colony losses [23]. Understanding how low diversity
diets (i.e. monofloral diets) affect honey bee health will
be crucial to resolve problems that may arise as agricul-
ture continues to intensify throughout the world [24, 25].
Indeed, differing qualities of monofloral diets have been
shown to affect nurse bee physiology and tolerance to
parasites [26].
Viral infection was considered a comparatively minor

problem in honey bees until the last century when
the ectoparasitic varroa mite (Varroa destructor) spread
worldwide [27–29]. This mite feeds on honey bee
hemolymph and/or fat body tissue [30, 31], and is believed
to decrease lipid and glycogen reserves and reduce protein
synthesis in bees [32]. Additionally, it transmits mul-
tiple viruses and supports replication of some viruses
[33–36]. More than 20 honey bee viruses have been iden-
tified [37]. One of these viruses that has been linked to
honey bee decline is Israeli acute paralysis virus (IAPV),
a positive-sense RNA virus of the family Dicistroviridae
[38]. IAPV infection causes shivering wings, decreased
locomotion,muscle spasms, paralysis, and high premature
death percentages in caged infected adult honey bees [39].
IAPV has demonstrated higher infectious capacity [40]
and is more prevalent in colonies that do not survive the
winter [41].
Although there is growing interest in how viruses and

diet quality affect the health and sustainability of honey
bees, as well as a recognition that such factors might
operate interactively, there are only a small number of
experimental studies thus far directed toward elucidating
the interactive effects of these two factors in honey bees
[42–46]. We recently used laboratory cages and nucleus
hive experiments to investigate the health effects of these
two factors, and our results show the importance of the
combined effects of both diet quality and virus infection.
Specifically, ingestion by honey bees of high quality pollen

is able to mitigate virus-induced mortality to the level of
diverse, polyfloral pollen [11].
Following up on these findings, we now aim to

understand the corresponding underlying mechanisms by
which high quality diets protect bees from virus-induced
mortality. For example, it is not known whether the pro-
tective effect of good diet is due to direct, specific effects
on immune function that reduce the pathogen load of the
host (resistance, [47]) or if it is due to indirect effects
of good nutrition on the ability of the host to withstand
pathogen impacts without affecting pathogen load (tol-
erance, [47]). Transcriptomics is one means to better
understand the mechanistic underpinnings of dietary and
viral effects on honey bee health. Transcriptomic analysis
can help us identify 1) the genomic scale of transcrip-
tomic response to diet and virus infection, 2) whether
these factors interact in an additive or synergistic way
on transcriptome function, and 3) the types of pathways
affected by diet quality and viral infection, which can help
us generate candidate gene lists to further investigate the
relative roles of tolerance and resistance. This informa-
tion, heretofore lacking in the literature, can help us better
understand how good nutrition may be able to serve as a
“buffer” against other stressors [12].
There are only a small number of published exper-

iments examining gene expression patterns related to
diet effects [48] and virus infection effects [49–53] in
honey bees, but there have been several such studies in
model organisms. Model insect studies can inform studies
of honey bee transcriptomic responses, using functional
inference of as-of-yet uncharacterized honey bee genes
based on orthology to Drosophila and other model organ-
isms. Previous Drosophila studies that examined various
diet effects have found gene expression changes related
to immunity, metabolism, cell cycle activity, DNA bind-
ing, transcription, and insulin signaling [48, 54–56].While
similar transcriptomic studies have been limited in honey
bees, one study found that pollen nutrition upregulates
genes involved in macromolecule metabolism, longevity,
and the insulin/TOR pathway [48, 51]. Previous tran-
scriptomic studies have identified genes serving as links
between metabolism and antiviral defense in honey bees
[57, 58]; see [59] for an overview. Numerous studies on the
transcriptomic effects of virus infection in model insect
organisms have shown that RNA silencing, transcrip-
tional pausing, Toll pathways, IMD pathways, JAK/STAT
pathways, and Toll-7 autophagy pathways play substantial
roles in virus-host systems [60, 61]. Studies of virus-bee
systems have revealed some of the antiviral defense path-
ways known in model organisms are conserved and also
related to bee antiviral immune responses [62].
To our knowledge, there are few to no studies inves-

tigating honey bee gene expression patterns specifically
related to monofloral diets, and few studies investigating
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honey bee gene expression patterns related to the com-
bined effects of diet in any broad sense and viral inocu-
lation in any broad sense [45]. In this study, we examine
how monofloral diets and viral inoculation influence gene
expression patterns in honey bees by focusing on four
treatment groups (low quality diet without IAPV inoc-
ulation, high quality diet without IAPV inoculation, low
quality diet with IAPV inoculation, and high quality diet
with IAPV inoculation). For our diet factor, we exam-
ined two monofloral pollen diets, rockrose (Cistus sp.)
and chestnut (Castanea sp.). Rockrose pollen is generally
considered less nutritious than chestnut pollen because it
contains smaller amounts of protein, amino acids, antiox-
idants, calcium, and iron [11, 26]. For specific quantitative
differences between these two pollen groups, please see
[26]. Throughout this paper, we refer to our four treatment
groups as “NR” (non-inoculation and low quality rockrose
pollen), “NC” (non-inoculation and high quality chestnut
pollen), “VR” (IAPV inoculation and low quality rock-
rose pollen), and “VC” (IAPV inoculation and high quality
chestnut pollen). We conduct RNA-sequencing analysis
on a randomly selected subset of the honey bees we used
in our previous study (as is further described in our meth-
ods section). We then examine pairwise combinations of
treatment groups, the main effect of monofloral diet, the
main effect of IAPV exposure, and the combined effect of
the two factors on gene expression patterns.
Because RNA-seq data can be noisy and subject to high

levels of inter-experiment variation, we further sought to
validate our transcriptomic data via comparison to a pre-
vious RNA-seq study on honey bee responses to viral
infection. To do this, we compare the main effect of IAPV
exposure in our dataset to that obtained in a previous
study conducted by Galbraith and colleagues [49]. While
our study examines honey bees derived from naturally-
mated queens, the Galbraith study examined honey bees
derived from single-drone inseminated queens. As a con-
sequence, intracolony worker relatedness in our study is
around 25%, compared to 75% in the Galbraith study [63].
Genetic diversity of bees in our study was thus higher
than the Galbraith study, and was likely to be especially
high because we sampled from 15 different colonies, i.e.
from 15 different, naturally-mated queens. We should
therefore expect that the Galbraith study may generate
data with higher signal-to-noise ratios than our data due
to lower genetic variation between its replicates. At the
same time, our honey bees will be more likely to dis-
play the health benefits gained from increased genotypic
variance within colonies, including decreased parasitic
load [64], increased tolerance to environmental changes
[65], and increased colony performance [66, 67]. Given
that honey bees are naturally very polyandrous [68], our
naturally-mated honey bees may also reflect more realis-
tic environmental and genetic conditions. To achieve this

comparison, we use visualization techniques to assess the
signal:to:noise ratio between these two datasets, and dif-
ferential gene expression (DEG) analyses to determine any
significantly overlapping genes of interest between these
two datasets. As RNA-sequencing data can be biased
[69–71], this comparison allowed us to characterize how
repeatable and robust our RNA-sequencing results were
in comparison to previous studies. It also allowed us
to shine light on how experimental designs that control
genetic variability to different extents might affect the
resulting gene expression data in honey bees. We sug-
gest that in-depth data visualization approaches (includ-
ing scatterplotmatrices, parallel coordinate plots, and litre
plots from the bigPint software package [72]) can be use-
ful for cross-study comparisons and validation of noisy
RNA-sequencing data in the future.

Methods
Mortality and virus titers
Details of the procedures we used to prepare virus inocu-
lum, infect and feed caged honey bees, and quantify IAPV
can be reviewed in our previous work [11, 40]. In brief,
our virus inoculumwas prepared by injection of infectious
virus particles (derived from infected adults) into white-
eyed honey bee pupae; these pupae were then homoge-
nized and virus particles enriched and resuspended. This
inoculum was then characterized for presence of acute
bee paralysis virus, black queen cell virus, deformed wing
virus (DWV), IAPV, Kashmir bee virus, and sacbrood
bee virus (SBV). Experimental infection tests of adult
bees and honey bee cell cultures [40] showed that only
IAPV is amplified in adult bees. To infect caged bees for
these experiments, newly emerged bees from 15 healthy
colonies at the Iowa State University research apiary were
homogeneously mixed, then counted into clear acrylic
cages in groups of 35 bees per cage. Cages were then
presented with open feeders containing 30% sucrose solu-
tion (control) or 30% sucrose solution containing a 1:1000
dilution of viral inoculum (treatment). Dietary treatments
were then added (described below). To quantify virus
titers, two live bees were randomly sampled at 36 hpi
from each of 9–10 randomly selected cages. Virus lev-
els were then measured via RT-qPCR and quantified
against a standard curve, identically to methods described
in [11, 40].
A linear mixed effects model was used to relate the

mortality rates and IAPV titers to the main and inter-
action effects of the diet and virus factors. The model
was fit to the data by restricted maximum likelihood
(REML) using the “lme” function in the R package “nlme”.
A random (intercept) effect for experimental setup was
included in the model. Post-hoc pairwise comparisons of
the four (diet and virus combination) treatment groups
were performed and Benjamini-Hochberg adjusted
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p-values were calculated to limit familywise Type I error
rates [73].

Design of two-factor experiment
For our nutrition factor, we examined two monofloral
pollen diets, rockrose (Cistus sp.) and chestnut (Cas-
tanea sp.). Rockrose pollen is generally considered less
nutritious than chestnut pollen due to its lower levels
of protein, amino acids, antioxidants, calcium, and iron
[11, 26]. For our virus factor, one level contained bees
that were inoculated with IAPV and another level con-
tained bees that were not inoculated with IAPV. This
experimental design resulted in four treatment groups
(NR: low quality rockrose pollen without IAPV expo-
sure; NC: high quality chestnut pollen without IAPV
exposure; VR: low quality rockrose pollen with IAPV
exposure; VC: high quality chestnut pollen with IAPV
exposure) that allowed us to assess main effects and inter-
active effects between diet quality and IAPV infection in
honey bees.
There are several reasons why our design focused only

on diet quality (monofloral diets) as opposed to diet diver-
sity (monofloral diets versus polyfloral diets). First, when
assessing diet diversity, a sugar diet is often used as a
control. However, such an experimental design does not
reflect real-world conditions for honey bees as they rarely
face a total lack of pollen [26]. Moreover, younger larvae
tend to be fed pollen diets, whereas older larvae tend to
be fed nectar diets. By focusing on pollen diets, our study
design reflects natural diet conditions for larvae of a spe-
cific age category [74]. Second, in studies that compared
honey bee health using monofloral and polyfloral diets at
the same time, if the polyfloral diet and one of the high
quality monofloral diets both exhibited similarly benefi-
cial effects, then it was difficult for the authors to assess
if the polyfloral diet was better than most of the monoflo-
ral diets because of its diversity or because it contained
as a subset the high quality monofloral diet [26]. Third,
as was previously mentioned, honey bees are now con-
fronted with less diverse sources of pollen. As a result,
there is a need to better understand how monofloral diets
affect honey bee health.

RNA extraction
Fifteen cages per treatment were originally produced for
monitoring of mortality. From these, six live honey bees
were randomly selected from each cage 36 h post inocu-
lation and placed into tubes [40]. In summary, 8 samples
(representing two bees each) were sequenced per experi-
mental condition (i.e., 32 samples sequenced). Tubes were
kept on dry ice and then transferred into a -80C freezer
until processing. From the fifteen possible cages, eight
were randomly selected for RNA-sequencing. From these
eight cages, two of the honey bees per cage were randomly

selected from the original six live honey bees per cage.
These two bees were combined to form a pooled sam-
ple representing the cage. Whole body RNA from each
pool was extracted usingQiagen RNeasyMiniKit followed
by Qiagen DNase treatment. Samples were suspended in
water to 200-400 ng/μl. All samples were then tested on
a Bioanalyzer at the Iowa State University DNA Facility to
ensure quality (RIN >8).

Gene expression
Samples were sequenced starting on January 14, 2016 at
the Iowa State University DNA Facility (Platform: Illumina
HiSeq Sequencing 2500 in rapid run mode; Category:
Single End 100 cycle sequencing). A standard Illumina
mRNA library was prepared by the DNA facility. Reads
were aligned to the BeeBase Version 3.2 genome [75] from
the Hymenoptera Genome Database [76] using the pro-
grams GMAP and GSNAP [77]. There were four lanes of
sequencing with 24 samples per lane. Each sample was run
twice. Approximately 75-90% of reads were mapped to the
honey bee genome. Each lane produced around 13 million
single-end 100 basepair reads.
We tested all six pairwise combinations of treatments

for DEGs (pairwise DEGs: NR versus NC, NR versus
VR, NR versus VC, NC versus VR, NC versus VC, and
VR versus VC). We also tested the diet main effect (diet
DEGs), virus main effect (virus DEGs), and interaction
term for DEGs (interaction DEGs). We then also tested
for virus main effect DEGs (virus DEGs) in public data
derived from a previous study exploring the gene expres-
sion of IAPV virus infection in honey bees [49]. We tested
each DEG analysis using recommended parameters with
DESeq2 [78], edgeR [79], and LimmaVoom [80]. For our
DEG analysis, we used R software version 3.3.3 [81]. In
all cases, we used a false discovery rate (FDR) threshold
of 0.05 [82]. Fisher’s exact test was used to determine sig-
nificant overlaps between DEG sets (whether from the
same dataset but across different analysis pipelines or
from different datasets across the same analysis pipelines).
The eulerr shiny application was used to construct Venn
diagram overlap images [83]. In the end, we focused
on the DEG results from DESeq2 [78] as this pipeline
was also used in the Galbraith study [49]. We used the
independent filtering process built into the DESeq2 soft-
ware that mitigates multiple comparison corrections on
genes with no power rather than defining one filtering
threshold.

Comparison to prior studies on transcriptomic response to
viral infection
We compare the main effect of IAPV exposure in our
dataset to that obtained in a previous study conducted
by Galbraith and colleagues [49] who also addressed
honey bee transcriptomic responses to virus infection.
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We applied the same downstream bioinformatics analyses
between our count table and the count table provided in
the Galbraith study. When we applied our bioinformatics
pipeline to the Galbraith count table, we obtained dif-
ferent differential expression counts compared to the
results published in the Galbraith study. However, there
was substantial overlap and we considered this justifica-
tion to use the differential expression list we obtained
in order to keep the downstream bioinformatics anal-
yses as similar as possible between the two datasets
(Additional file 17).
We used honey bees from naturally-mated colonies,

whereas Galbraith et al. [49] used honey bees from single-
drone colonies. In light of this, we should expect the
Galbraith et al. dataset to contain lower genetic variation
between its replicates and higher signal-to-noise ratios
than our dataset.We use visualization techniques to assess
the signal-to-noise ratio between these two datasets, and
differential gene expression (DEG) analyses to determine
any significantly overlapping genes of interest between
these two datasets.

Visualization
We used an array of visualization tools as part of our anal-
ysis.We used the PCA plot [84] from the DESeq2 package,
a well-known and established tool. Along with that, we
used lesser-known multivariate visualization tools from
our R package called bigPint [72]. Specifically, we used
parallel coordinate plots [85], scatterplot matrices [86],
and litre plots (which we recently developed based on
“replicate line plots” [87]) to assess the variability between
the replicates and the treatments in our data. We also
used these plotting techniques to assess for normaliza-
tion problems and other common problems in RNA-
sequencing analysis pipelines [87].
Furthermore, we used statistical graphics to better

understand patterns in our DEGs. However, in cases of
large DEG lists, these visualization tools had overplotting
problems (where multiple objects are drawn on top of one
another, making it impossible to detect individual values).
To remedy this problem, we first standardized each DEG
to have a mean of zero and standard deviation of unity for
its read counts across its samples [88, 89]. Then, we per-
formed hierarchical clustering on the standardized DEGs
using Ward’s linkage. This process divided large DEG lists
into smaller clusters of similar patterns, which allowed us
to more efficiently visualize the different types of patterns
within large DEG lists (see Figs. 3 and 4 for examples).

Gene ontology
DEGs were uploaded as a background list to DAVID
Bioinformatics Resources 6.7 [90, 91]. The overrepre-
sented gene ontology (GO) terms of DEGs were deter-
mined using the BEEBASE_ID identifier option (honey

bee gene model) in the DAVID software. To fine-tune
the GO term list, only terms correlating to Biological
Processes were considered. The refined GO term list was
then imported into REVIGO [92], which uses semantic
similarity measures to cluster long lists of GO terms.

Probing tolerance versus resistance
To investigate whether the protective effect of good diet is
due to direct, specific effects on immune function (resis-
tance), or if it is due to indirect effects of good nutrition
on energy availability and vigor (tolerance), we created
contrasts of interest (Table 2). In particular, we assigned
“resistance candidate DEGs” to be the ones that were
upregulated in the chestnut group within the virus inoc-
ulated bees but not upregulated in the chestnut group
within the non-inoculated bees. Our interpretation of
these genes is that they represent those that are only acti-
vated in inoculated bees that are fed a high quality diet.
We also assigned “tolerance candidate DEGs” to be the
ones that were upregulated in the chestnut group for both
the virus inoculated bees and non-inoculated bees. Our
interpretation of these genes is that they represent those
that are constitutively activated in bees fed a high quality
diet, regardless of whether they are experiencing infec-
tion or not. We then determined how many genes fell into
these two categories and analyzed their GO functions.

Post hoc analysis
We found considerable noisiness in our data and saw,
through gene-level visualizations, that our DEGs con-
tained outliers and inconsistent replicates. Hence, we
wanted to explore whether our DEG read counts cor-
related with pathogen response metrics, including IAPV
titers, SBV titers (also present in our inoculum [11,
40]), and mortality rates. We explored correlation with
SBV because our inoculum [40] does contain SBV, and
bees from both inoculated and non-inoculated groups
do exhibit detectable SBV titers. For this process, we
considered virus main effect DEGs (Fig. 4), “tolerance
candidate” DEGs (Additional file 15), and “resistance
candidate” DEGs (Additional file 16). For each DEG in
each cluster, we calculated a coefficient of determina-
tion (R-squared) value to estimate the correlation between
its raw read counts and the pathogen response met-
rics across its 24 samples. We then used the Kruskal–
Wallis test to determine if the distribution of the R-
squared values in any of the DEG clusters significantly
differed from those in the non-DEG genes (the rest of
the data). As there were four clusters for each of the
nine combinations of DEG lists (“tolerance” candidate
DEGs, “resistance” candidate DEGs, and virus-related
DEGs) and pathogen response measurements (IAPV titer,
SBV titer, and mortality rate), this process resulted in 36
statistical tests.
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Results
Mortality and virus titers
We reanalyzed our previously published dataset with a
subset that focuses on diet quality and is more relevant to
the current study. We show the data subset here to inform
the RNA-sequencing comparison because we reduced the
number of treatments from the original published data
(from eight to four) [11] as ameans to focus on diet quality
effects.
As shown in Fig. 1, mortality rates of honey bees 72

h post-inoculation significantly differed among the treat-
ment groups (mixed model ANOVA across all treatment
groups, df = 3, 54; F = 10.03; p <2.34e-05). The effect
of virus treatment (mixed model ANOVA, df = 1, 54; F
= 24.73; p <7.04e-06) and diet treatment (mixed model
ANOVA, df = 1, 54; F = 5.32; p <2.49e-02) were signifi-
cant, but the interaction between the two factors (mixed
model ANOVA, df = 1, 54; F = 4.72e-02, p = 8.29e-01)
was not significant. We compared mortality levels based
on pairwise comparisons: For a given diet, honey bees
exposed to the virus showed significantly higher mortal-
ity rate than honey bees not exposed to the virus. Bees
fed rockrose pollen had significantly elevated mortality
with virus infection compared to non-inoculated controls
(Benjamini-Hochberg, p <1.53e-03), and bees fed chest-
nut pollen similarly had significantly elevated mortality
with virus infection compared to controls (Benjamini-
Hochberg, p <3.12e-03) (Fig. 1).
As shown in Fig. 2, IAPV titers of honey bees 72 h

post-inoculation significantly differed among the treat-
ment groups (mixed model ANOVA across all treatment
groups, df = 3, 33; F = 6.10; p <2.03e-03). The effect of
virus treatment (mixed model ANOVA, df = 1, 33; F =

15.04; p <4.75e-04) was significant, but the diet treatment
(mixed model ANOVA, df = 1, 33; F = 2.55; p = 1.20e-01)
and the interaction between the two factors (mixed model
ANOVA, df = 1, 33; F = 7.02e-01, p = 4.08e-01) were not
significant. We compared IAPV titers based on pairwise
comparisons: Bees fed rockrose pollen had significantly
elevated IAPV titers with virus infection compared to
non-inoculated controls (Benjamini Hochberg, p <7.56e-
03). However, bees fed chestnut pollen did not have sig-
nificantly elevated IAPV titers with virus infection com-
pared to non-inoculated controls (Benjamini Hochberg,
p = 6.29e-02). While many of the non-inoculated treat-
ment groups showed some RT-qPCR amplification (non-
inoculated average Ct=33.92; inoculated average Ct=24.9),
and thus have virus titers calculable on a standard curve,
these Ct levels are similar to those deemed uninfected
in previous studies [49]. Overall, we interpreted these
findings to mean that high quality chestnut pollen could
partially reduce high virus titers resulting from the inoc-
ulation treatment, whereas low quality rockrose pollen
could not (Fig. 2).

Transcriptomic responses to virus infection and diet
In bees collected 36 h post treatment, we observed a
substantially larger number of differentially expressed
genes (DEGs) in our diet main effect (n = 1914) than
in our virus main effect (n = 43) (Additional file 1:
Table S1A and B). There were only four genes that
were DEGs in both our diet main effect and our
virus main effect (GB48747, GB47214, GB42908, and
GB42507). In the diet factor, more DEGs were upregu-
lated in the more-nutritious chestnut group (n = 1033)
than in the less-nutritious rockrose group (n = 881).

Fig. 1Mortality rates for the four treatment groups, two virus groups, and two diet groups. Left to right: Mortality rates for the four treatment
groups, two virus groups, and two diet groups. “N” represents non-inoculation, “V” represents viral inoculation, “C” represents chestnut pollen, and
“R” represents rockrose pollen. The mortality rate data included 59 samples with 15 replicates per treatment group, except for the “NC” group having
14 replicates. ANOVA values and p-values for the statistical tests are listed in the text of the paper. The letters above the bars represent significant
differences with a confidence level of 95%
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Fig. 2 IAPV titers for the four treatment groups, two virus groups, and two diet groups. Left to right: IAPV titers for the four treatment groups, two
virus groups, and two diet groups. “N” represents non-inoculation, “V” represents viral inoculation, “C” represents chestnut pollen, and “R” represents
rockrose pollen. The IAPV titer data included 38 samples with 10 replicates per treatment group, except for the “NR” group having 8 replicates.
ANOVA values and p-values for the statistical tests are listed in the text of the paper. The letters above the bars represent significant differences with
a confidence level of 95%

In the virus factor, there were more virus-upregulated
DEGs (n = 38) than control-upregulated DEGs (n =
5). While these reported DEG counts are from the
DESeq2 package, we saw similar trends for the edgeR and
limma package results (Additional file 1: Table S1 and
Additional file 18).
We performed GO analysis to statistically assign our

DEGs to predefined bins based on their functional char-
acteristics, allowing us to better understand the bio-
logical processes of our DEGs. GO analysis of the
chestnut-upregulated DEGs revealed the following over-
represented biological functions: Wnt signaling, hippo
signaling, and dorso-ventral axis formation, as well as
pathways related to circadian rhythm, mRNA surveil-
lance, insulin resistance, inositol phosphate metabolism,
FoxO signaling, ECM-receptor interaction, phototrans-
duction, Notch signaling, JaK-STAT signaling, MAPK sig-
naling, and carbon metabolism (Additional file 1: Table
S2). These encompassed almost all of the overrepresented
biological functions in chestnut-upregulated DEGs condi-
tioned on non-inoculation (i.e. upregulated in the “NC”
group compared to the “NR” group; Additional file 1:
Table S4) and inoculation (i.e. upregulated in the “VC”
group compared to the “VR” group; Additional file 1:
Table S6). GO analysis of the rockrose DEGs revealed
pathways related to terpenoid backbone biosynthesis,
homologous recombination, SNARE interactions in vesic-
ular transport, aminoacyl-tRNA biosynthesis, Fanconi
anemia, and pyrimidine metabolism (Additional file 1:
Table S3).We note that Fanconi anemia pathways was also
the only GO term discovered in rockrose DEGs condi-
tioned on viral inoculation (i.e. upregulated in the “VR”

group compared to the “VC” group) (Additional file 1:
Table S7). However, Fanconi anemia pathways were not
found in rockrose DEGs conditioned on non-inoculation
(i.e. upregulated in the “NR” group compared to the “NC”
group) (Additional file 1: Table S5).
With so few DEGs (n = 43) in our virus main

effect comparison, we focused on individual genes
and their known functionalities rather than GO over-
representation (Table 1). Of the 43 virus-related DEGs,
only 10 had GO assignments within the DAVID database.
These genes had putative roles in the recognition of
pathogen-related lipid products and the cleaving of tran-
scripts from viruses, as well as involvement in ubiquitin
and proteosome pathways, transcription pathways, apop-
totic pathways, oxidoreductase processes, and several
more functions (Table 1).
No interaction DEGs were observed between the diet

and virus factors of the study, in any of the pipelines
(DESeq2, edgeR, and limma).
The number of DEGs across the six treatment pairings

between the diet and virus factor ranged from 0 to 955
(Additional file 1: Table S8). Again, diet level appeared
to have greater influence on the number of DEGs than
the virus level. Across every pair comparing the chestnut
and rockrose levels, regardless of the virus level, the num-
ber of chestnut-upregulated DEGs was higher than the
number of rockrose-upregulated DEGs (Additional file 1:
Table S8C–F). Virus-treated bees showed equal to ormore
upregulated genes relative to controls, under both diet
treatments (Additional file 1: Table S8A and B). These
trends were observed for all three pipelines used (DESeq2,
edgeR, and limma).
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Table 1 Known functions of the mapped subset of 43 DEGs in the virus main effect of our study

BeeBase ID, NCBI Gene ID Gene Name Known functions Us Galbraith

GB41545, 409187 MD-2-related lipid-recognition protein-like Implicated in lipid recognition, partic-
ularly in the recognition of pathogen
related products

N -

GB50955, 411577 Protein argonaute-2 Interacts with small interfering RNAs to
form RNA-induced silencing complexes
which target and cleave transcripts that
are mostly from viruses and transposons

V V

GB48755, 727455 UBA-like domain-containing protein 2 Found in diverse proteins involved in
ubiquitin/proteasome pathways

V V

GB47407, 406132 Histone H4 Capable of affecting transcription, DNA
repair, and DNA replication when post-
transcriptionally modified

V V

GB42313, 409923 Leishmanolysin-like peptidase Encodes a protein involved in cell migra-
tion and invasion; implicated in mitotic
progression in D. melanogaster

V V

GB50813, 410127 Rho guanine nucleotide exchange factor 11 Implicated in regulation of apoptopic
processes, cell growth, signal transduc-
tion, and transcription

V V

GB54503, 411255 Thioredoxin domain-containing protein Serves as a general protein disulphide
oxidoreductase

N -

GB53500, 100576392 Transcriptional regulator Myc-B Regulator gene that codes for a tran-
scription factor

V V

GB51305, 551252 Tropomyosin-like Related to protein involved in muscle
contraction

N N

GB50178, 726905 Cilia and flagella-associated protein 61-like Induces components required for wild-
type motility and stable assembly of
motile cilia

V V

Whether the gene was overrepresented in the virus or non-virus group is also indicated for both our study and the Galbraith study. Functionalities were extracted from
Flybase, National Center for Biotechnology Information and The European Bioinformatics Institute databases

Additional file 20: Tables S1–9 contain complete DEG
lists for all comparisons performed in this study.

Transcriptomic data visualization and comparison to a
previous study
Wewished to explore the signal:to:noise ratio between the
Galbraith dataset and our dataset. Note that the Galbraith
dataset contained three individual bees per treatment
group as a single pooled sample, while our dataset con-
tained 16 individual bees per treatment group in 8 RNA-
seq samples. Basic PCA plots were constructed with the
DESeq2 analysis pipeline and showed that the Galbraith
dataset may separate the inoculated and non-inoculated
honey bees better than our dataset (Additional file 2).
Wanting to learn more about the data at the gene level,
we continued with new visualization techniques that are
available online [72]. Formore information about the visu-
alizations used here, please refer to (https://lindsayrutter.
github.io/bigPint/articles/plotIntro.html).
We used parallel coordinate lines superimposed onto

side-by-side boxplots to visualize the DEGs associated
with virus infection in the two studies. The background
side-by-side boxplot represents the distribution of all
genes in the data (all 15,314 genes in our count table),

and each parallel coordinate line represents one DEG. In
a parallel coordinate line, connections between samples
with positive correlations should be flat, while connec-
tions between samples with negative correlations should
be crossed. We expect DEGs to show more variability
between treatments than between replicates. This means
the parallel coordinate lines should be flat between repli-
cates but crossed between treatments. However, over-
plotting problems would obscure our visualization if we
were to plot all DEGs onto the same side-by-side box-
plot. Therefore, we graphed clustered subsets of the DEGs
(based on hierarchical clustering).
The 1019 DEGs from the Galbraith dataset form rela-

tively clean-looking visual displays, with consistent repli-
cates and differences between treatments. The few incon-
sistent replicates we observed (such as V.1 from Cluster
1 and V.2 from Cluster 4) were small enough that consis-
tent differences between the treatment groups remained
apparent across the samples (Fig. 3). In contrast, we see
that the 43 virus-related DEGs from our dataset do not
look as clean in their visual displays (Fig. 4). The replicates
appear somewhat inconsistent in their estimated expres-
sion levels and there is not always such a large (or even
consistent) difference between treatment groups. We see

https://lindsayrutter.github.io/bigPint/articles/plotIntro.html
https://lindsayrutter.github.io/bigPint/articles/plotIntro.html


Rutter et al. BMC Genomics          (2019) 20:412 Page 9 of 20

Fig. 3 Parallel coordinate plots of the 1019 virus-related DEGs of the Galbraith data [49]. Parallel coordinate plots of the 1019 DEGs after hierarchical
clustering of size four between the virus-infected and control groups of the Galbraith study. “N” represents non-inoculation, “V” represents viral
inoculation. Clusters 1, 2, and 4 seem to represent DEGs that were overexpressed in the virus inoculated group, and Cluster 3 seems to represent
DEGs that were overexpressed in the non-inoculated control group. In general, the DEGs appeared as expected, but there is rather noticeable
deviation of the first replicate from the virus-treated sample (“V.1”) from the other virus-treated replicates in Cluster 1. We also note a deviation of the
second replicate from the virus-treated samples (“V.2”) from the other virus-treated replicates in Cluster 4

a similar finding when we also examine a larger subset of
1914 diet-related DEGs from our study (Additional file 3).
We next used repLIcate TREatment (“litre”) plots, which

we recently developed for our bigPint software package
[72]. Litre plots allow users to visualize one DEG onto
the Cartesian coordinates of one scatterplot matrix. In the
litre plot, each gene in the data is plotted once for every
combination of replicates between treatment groups. We
use hexagon bins to summarize this massive informa-
tion. Once the background of hexagons has been drawn
to reveal the distribution of all between-treatment sample
pair combinations for all genes, the user can superimpose
all between-treatment sample pair combinations for one
gene of interest.
Additional file 4 shows nine example litre plots for

our dataset; each litre plot shows the 144 between-
treatment sample pair combinations for one DEG of inter-
est. Additional files 5 and 6 similarly each show nine

example litre plots for the Galbraith dataset; each litre
plot shows the nine between-treatment sample pair com-
binations for one DEG of interest. We see that indeed the
virus DEGs from our data (Additional file 4) show less
consistent replications and less differences between the
treatment groups compared to the virus DEGs from the
Galbraith data (Additional files 5 and 6). We also observe
that, in the Galbraith dataset, the DEG points in the first
cluster show less tight cluster patterns than the DEG
points in the second cluster (Additional files 5 and 6), an
observation we saw previously in the parallel coordinate
plots (Fig. 3).
Finally, we used scatterplot matrices from the bigPint

software to further assess the DEGs [72]. A scatter-
plot matrix is another effective multivariate visualization
tool that plots read count distributions across all genes
and samples. Specifically, it represents every gene in the
dataset as a black point in each scatterplot. DEGs can
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Fig. 4 Parallel coordinate plots of the 43 virus-related DEGs of our data. Parallel coordinate plots of the 43 DEGs after hierarchical clustering of size
four between the virus-inoculated and control groups of our study. “N” represents non-inoculated control group, and “V” represents treatment of
virus. The vertical red line indicates the distinction between treatment groups. We see from this plot that the DEG designations for this dataset do
not appear as clean compared to what we saw in the Galbraith dataset in Fig. 3

be superimposed as colored points to assess their pat-
terns against the full dataset. We expect DEGs to mostly
fall along the x=y line in replicate scatterplots (denot-
ing replicate consistency) but deviate from the x=y line
in treatment scatterplots (denoting significant treatment
changes). The x=y line is shown in red in our plots.
We created standardized scatterplot matrices for each

of the four clusters (from Fig. 3) of the Galbraith data
(Additional files 7, 8, 9, and 10). We also created standard-
ized scatterplot matrices for our data. However, as our
dataset contained 24 samples, we would need to include
276 scatterplots in ourmatrix, which would be too numer-
ous to allow for efficient visual assessment of the data. As
a result, we created four scatterplot matrices of our data,
each with subsets of 6 samples to be more comparable
to the Galbraith data (Additional files 11, 12, 13, and 14).
Specifically, we arbitrarily subsetted the samples so each
one was represented once in each of these four files (i.e.
Additional file 11 shows samples 1–3; Additional file 12
shows samples 4–6; Additional file 13 shows samples 7–9;

and Additional file 14 shows samples 10–12). We can
again confirm through these plots that the DEGs from the
Galbraith data appeared more as expected: They deviated
more from the x=y line in the treatment scatterplots while
staying close to the x=y line in replicate scatterplots.
Despite the virus-related DEGs (n = 1019) from the Gal-

braith dataset displaying the expected patterns more than
those from our dataset (n = 43), there was significant
overlap (p-value <2.2e-16) in the DEGs between the two
studies, with 26/38 (68%) of virus-upregulated DEGs from
our study also showing virus-upregulated response in the
Galbraith study (Fig. 6).

Tolerance versus resistance
Using the contrasts specified in Table 2, we discovered
122 “tolerance” candidate DEGs and 125 “resistance” can-
didate DEGs. Within our 122 “tolerance” gene ontolo-
gies, we found functions related to metabolism (such
as carbohydrate metabolism, fructose metabolism, and
chitin metabolism). However, we also discovered gene
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Table 2 Contrasts in our study for assessing GO and pathways analysis

Contrast DEGs Interpretation Results

V (all) vs N (all) 43 Genes that change expression due to
virus effect regardless of diet status in
bees

Table 1

NC vs NR 941 Genes that change expression due to
diet effect in non-inoculated bees

Additional file 1: Table S4
and 5

VC vs VR 376 Genes that change expression due to
diet effect in inoculated bees

Additional file 1: Table S6
and 7

VC upregulated in VC vs VR, and NC upregulated in NC vs NR 122 “Tolerance” genes that turn on by good
diet regardless of virus infection status in
bees

Fig. 5a

VC upregulated in VC vs VR, but NC not upregulated in NC vs NR 125 “Resistance” genes that turn on by good
diet only in inoculated bees

Fig. 5b

ontologies related to RNA polymerase II transcription,
immune response, and regulation of response to reactive
oxygen species (Fig. 5a). Within our 125 “resistance” gene
ontologies, we found functions related to metabolism
(such as carbohydrate metabolism, chitin metabolism,
oligosaccharide biosynthesis, and general metabolism)
(Fig. 5b).
To visually explore gene expression patterns related to

tolerance and resistance, we used hierarchical clustering
to separate candidate DEGs into common patterns, and
then visualized these clusters using parallel coordinate
lines superimposed onto side-by-side boxplots. To reduce
overplotting of parallel coordinate lines, we again used
hierarchical clustering techniques to separate DEGs into
common patterns. Perhaps unsurprisingly, we still see a
substantial amount of noise (inconsistency between repli-
cates) in our resulting candidate DEGs (Additional files 15
and 16). However, the broad patterns we expect to see still
emerge: For example, based on the contrasts we created to
obtain the ‘tolerance” candidate DEGs, we expect them to
display larger count values in the “NC” group compared
to the “NR” group and larger count values in the “VC”
group compared to the “VR” group. Indeed, we see this
pattern in the associated parallel coordinate plots (Addi-
tional file 15). Likewise, based on the contrasts we created
to obtain the ‘resistance” candidate DEGs, we still expect
them to display larger count values in the “VC” group
compared to the “VR” group, but we no longer expect to
see a difference between the “NC” and “NR” groups. We
do generally see these expected patterns in the associated
parallel coordinate plots: While there are large outliers in
the “NC” group, the “NR” replicates are no longer typi-
cally below a standardized count of zero (Additional file
16). The genes in Cluster 3 follow the expected pattern the
most distinctively (Additional file 16).

Post hoc analysis
To better understand sources of transcriptomic noise,
we explored whether pathogen response measurements

(virus titers and mortality), which varied widely across
samples, were correlated with observed patterns in gene
expression.
The R-squared values between gene read counts and

pathogen response measurements were generally low
(R-squared <0.1) across our dataset (Additional file 1:
Table S9). We further explored whether clusters of DEGs
showed higher correlations with pathogen response mea-
surements than non-DEGs (the latter serving as a control,
where we do not expect a correlation). A Kruskal–Wallis
test was used to determine if R-squared distributions
of DEG clusters significantly differed from those in the
rest of the data. The p-values and Bonferroni correction
values for each of the 36 tests (as described in the meth-
ods section) is provided in Additional file 1: Table S9.
Distribution of the R-squared values for DEG cluster
read counts and pathogen response metrics is provided
in Additional file 19. An overall trend emerges to sug-
gest that DEGs may have significantly larger correlation
with the pathogen response measurements compared to
non-DEGs.

Discussion
Challenges to honey bee health are a growing concern,
in particular the combined, interactive effects of nutri-
tional stress and pathogens [12]. In this study, we used
RNA-sequencing to probe mechanisms underlying honey
bee responses to two effects, diet quality and infection
with the prominent virus of concern, IAPV. In general,
we found a major nutritional transcriptomic response,
with nearly 2000 transcripts changing in response to
diet quality (rockrose/poor diet versus chestnut/good
diet). The majority of these genes were upregulated in
response to high quality diet, and these genes were
over-represented for functions such as nutrient signal-
ing metabolism (insulin resistance), immune response
(Notch signaling and JaK-STAT pathways), and carbon
metabolism (Additional file 1: Table S2). These data sug-
gest high quality nutrition may allow bees to alter their
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Fig. 5 Gene ontology results for the 122 “tolerance” and 125 “resistance” DEG candidates in our data. GO analysis results for the 122 DEGs related to
our “tolerance” hypothesis (A) and for the 125 DEGs related to our “resistance” hypothesis (B). The color and size of the circles both represent the
number of genes in that ontology. The x-axis and y-axis are organized by SimRel, a semantic similarity metric [106]
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metabolism, favoring investment of energy into immune
responses.
One of the few studies that has investigated tran-

scriptomic response to nutrition in honey bees similarly
found that pollen upregulates genes related to macro-
molecule metabolism, insulin pathways, and TOR path-
ways [48]. Diet effects on transcriptomics have been more
extensively studied in the insect model Drosophila. One
recent transcriptomic study in Drosophila melanogaster
reported an overexpression of genes related to immunity,
metabolism, and hemocyanin in a high-fat diet and over-
expression of genes related to cell cycle activity, DNA
binding and transcription, and CHK kinase-like protein
activity in a high-sugar diet [54]. This same study also dis-
covered an upregulation of genes related to peptide and
carbohydrate processing in both high-fat and high-sugar
diets, a finding the authors attributed to a general increase
in caloric intake. Another recent study investigated the
transcriptomic effects of diets high in protein relative to
sugar, diets high in sugar relative to protein, and diets
with equal amounts of protein and sugar [55]. Drosophila
mojavensis and Drosophila arizonae showed substantial
differential expression between the dietary conditions:
genes involved in carbohydrate and lipid metabolism
were upregulated in response to high sugar low pro-
tein diets and genes involved in juvenile hormone (JH)
and ecdysone were upregulated in response to low sugar
high protein diets. Interestingly, prior studies have sug-
gested that JH regulates body size by controlling ecdysone
production, which modifies insulin signaling [56]. As we
saw in our study, these studies generally suggest that
diet differences may relate to gene expression changes in
metabolism and immune responses in honey bees.
While some insect systems have shown relatively low

transcriptional responses to dicistrovirus infection [93,
94], previous work on honey bees has revealed many
hundreds of DEGs [49]. Discrepancies between datasets
may be due to noise and complexity of the honey bee
microbiome. The transcriptomic response to virus infec-
tion in our experiment was fairly limited. We found only
43 differentially expressed transcripts, some with known
immune functions such as anMD-2 lipid recognition pro-
tein that is particularly implicated in the recognition of
pathogen products and argonaute-2, a protein that plays
a central role in RNA silencing (Table 1). We also found
genes related to transcriptional regulation, including His-
tone H4, Rho guanine nucleotide exchange factor 11, and
transcriptional regularMyc-B, which is a regular gene that
codes for a transcription factor. We additionally found
Tropomyosin-like, a gene involved in muscle contraction.
The small number of DEGs in this study may be partly
explained by the large amount of noise in the data (Fig. 4
and Additional files 2B, 4, 11, 12, 13, and 14) and baseline
viral titers observed in our control bees (Fig. 2).

There have been numerous studies on the transcrip-
tomic effects of virus infection in model organisms like
fruit flies and mosquitoes that can provide a useful frame-
work for interpreting virus responses in honey bees.
These studies have showed that RNA silencing is a major
antiviral strategy, along with transcriptional pausing, Toll
pathways, IMD pathways, JAK/STAT pathways, and Toll-
7-autophagy pathways [60, 61]. Recent transcriptomic
studies in honey bees have shown similar hallmarks of
these same antiviral defense mechanisms, including RNA
silencing, Toll pathways, IMD pathways, JAK/STAT path-
ways, autophagy, and endocytosis [62]. It is important
to note that general immune responses to viral infec-
tion in insects might be an indirect result of cellular
damage [61]. In fact, every virus-host interaction has
its own particularities derived from the diverse meth-
ods of replication and infection cycle evolved by different
viruses. An intricate set of pro- and anti-virus host factors
such as ribosomal proteins and autophagy pathways are
involved, but the response depends on the virus species,
as has been elucidated in Drosophila [60, 61]. In addition,
a non-sequence-specific antiviral response mediated by
unspecific dsRNA pathway was discovered in honey bees
[50, 95]. In the case of dicistroviruses, few works have
studied the impact of IAPV infection at transcriptional
level. Chen et al. 2014 analyzed responses to IAPV infec-
tion in larvae and workers using microarrays [51]. Many
of the DEGs found were involved in immune response and
energy-related metabolism, particularly in adults but not
in brood. The authors propose this observed difference
could be connected to latent infections in larvae (where
host immunity is not perturbed) versus acute infections
in adulthood (induced by stressors faced during devel-
opment) [51]. IAPV acute infection also alters the DNA
methylation pattern of numerous genes that do not over-
lap the genes that are up- or down-regulated at the tran-
scriptional level [49]. These works reiterate the conclusion
that viruses trigger particular antiviral mechanisms by dif-
ferent means and depending on several factors. The honey
bee antiviral pathways induced by specific viruses were
recently reviewed [62]; it is noteworthy that many honey
bee factors discovered by transcriptomics need further
characterization to uncover their role in controlling (or
promoting) viral infection in honey bees.
Given the noisy nature of our data, and our desire to

home in on genes with real expression differences, we
compared our data to the Galbraith study [49], which also
examined bees response to IAPV infection. In contrast
to our study, Galbraith et al. identified a large number of
virus responsive transcripts, and generally had less noise
in their data (Fig. 3 and Additional files 2A, 5, 6, 7, 8, 9,
and 10). To identify the most consistent virus-responsive
genes from our study, we looked for overlap in the DEGs
associated with virus infection on both experiments. We
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found a large, statistically significant (p-value <2.2e-16)
overlap, with 26/38 (68%) of virus-responsive DEGs from
our study also showing response to virus infection in Gal-
braith et al. (Fig. 6). This result gives us confidence that,
although noisy, we were able to uncover reliable, replica-
ble gene expression responses to virus infection with our
data.
Data visualization is a useful method to identify noise

and robustness in RNA-sequencing data [79]. In this
study, we used extensive data visualization to improve
the interpretation of our RNA-sequencing results. For
example, the DESeq2 package comes with certain visu-
alization options that are popular in RNA-sequencing
analysis. One of these visualization is the principal com-
ponent analysis (PCA) plot, which allows users to visualize
the similarity between samples within a dataset. We could
determine from this plot that indeed the Galbraith data
may show more similarity between its replicates and dif-
ferences between its treatments compared to our data
(Additional file 2). However, the PCA plot only shows us
information at the sample level. We wanted to investi-
gate how these differences in the signal:to:noise ratios of
the datasets would affect the structure of any resulting
DEGs. As a result, we also used three plotting tech-
niques from the bigPint package: We investigated the
1019 virus-related DEGs from the Galbraith dataset and
the 43 virus-related DEGs from our dataset using paral-
lel coordinate lines, scatterplot matrices, and litre plots.
To prevent overplotting issues in our graphics, we used a
hierarchical clustering technique for the parallel coordi-
nate lines to separate the set of DEGs into smaller groups.
We also needed to examine four subsets of samples from
our dataset to make effective use of the scatterplot matri-
ces. After these tailorizations, we determined that the
same patterns we saw in the PCA plots regarding the
entire dataset extended down the pipeline analysis into

the DEG calls: Even the DEGs from the Galbraith dataset
showed more similarity between their replicates and dif-
ferences between their treatments compared to those
from our data. However, the 365 DEGs from the Gal-
braith data in Cluster 1 of Fig. 3 showed an inconsistent
first replicate in the treatment group (“V.1”), which was
something we observed in the PCA plot. This indicates
that this feature also extended down the analysis pipeline
into DEG calls. Despite the differences in signal between
these two datasets, there was substantial overlap in the
resulting DEGs. We believe these visualization applica-
tions can be useful for future researchers analyzing RNA-
sequencing data to quickly and effectively ensure that the
DEG calls look reliable or at least overlap with DEG calls
from similar studies that look reliable. We also expect
this type of visualization exploration can be especially
crucial when studying wild populations with high levels
of genetic and environmental variation between repli-
cates and/or when using experiments that may lack rigid
design control.
One of the goals of this study was to use our

RNA-sequencing data to assess whether transcriptomic
responses to diet quality and virus infection provide
insight into whether high quality diet can buffer bees
from pathogen stress via mechanisms of “resistance” or
“tolerance”. Recent evidence has suggested that overall
immunity is determined by more than just “resistance”
(the reduction of pathogen fitness within the host by
mechanisms of avoidance and control) [96]. Instead, over-
all immunity is related to “resistance” in conjunction
with “tolerance” (the reduction of adverse effects and dis-
ease resulting from pathogens by mechanisms of healing)
[96, 97]. Immune-mediated resistance and diet-driven tol-
erance mechanisms are costly and may compete with
each other [97, 98]. Data and models have suggested
that selection can favor an optimum combination of

Fig. 6 Venn diagrams comparing the virus-related DEG overlaps between our dataset and the Galbraith dataset. Venn diagrams comparing the
virus-related DEG overlaps between the Galbraith study (labeled as “G”) and our study (labeled as “R”). From left to right: Total virus-related DEGs
(subplot A), virus-upregulated DEGs (subplot B), control-upregulated DEGs (subplot C). Both the total virus-related and virus-upregulated DEGs
showed significant overlap between the studies (p-value <2.2e-16) as per Fisher’s Exact Test for Count Data. There was one gene that was
virus-upregulated in the Galbraith study but control-upregulated in our study
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both resistance and tolerance [99–102]. We attempted
to address this topic through specific gene expression
contrasts (Table 2), accompanied by GO analysis of the
associated gene lists. We found an approximately equal
number of resistance (n = 125) and tolerance (n = 122)
related candidate DEGs, suggesting both processes may
be playing significant roles in dietary buffering from
pathogen induced mortality. Resistance candidate DEGs
had functions related to several forms of metabolism
(chitin and carbohydrate), regulation of transcription,
and cell adhesion (Fig. 5b). Tolerance candidate DEGs
had functions related to carbohydrate metabolism and
chitin metabolism; however, they also showed functions
related to immune response, including RNA polymerase
II transcription (Fig. 5a). Previous studies have shown
that transcriptional pausing of RNA polymerase II may
be an innate immune response in D. melanogaster that
allows for a more rapid response by increasing the acces-
sibility of promoter regions of virally induced genes
[103]. These possible immunological defense mechanisms
within our “tolerance” candidate DEGs and metabolic
processes within our “resistance” candidate DEGs may
provide additional evidence of feedbacks between diet and
disease in honey bees [12]. Thus, our study uses transcrip-
tome data to generate lists of candidate genes that can
be the focus of future investigations to better experimen-
tally test putative roles of tolerance and resistance genes in
this system.
There were several limitations in this study that could

be improved upon in future studies. For instance, our
comparison between the Galbraith data (single-drone
colonies) and our data (naturally-mated colonies) was
limited by numerous extraneous variables between these
studies. In addition to different molecular pipelines and
bioinformatic preprocessing pipelines used between these
studies, the Galbraith study focused on worker honey bees
that were fed sugar and artificial pollen diets, whereas
we used whole bodies and categorized only into inocu-
lated vs. non-inoculated groups; noise may have been
introduced through different responses in asymptomatic
bees. Also, Galbraith’s bees were sampled at 24 h while
ours were sampled at 36 h. Furthermore, the Galbraith
data used eviscerated abdomens with attached fat bodies
and observations to determine behaviorally symptomatic
bees whereas we used whole bodies and categorized only
into inoculated vs. non-inoculated groups. There are
also differences in the hours post inoculation and pos-
sible differences in the inoculation amount between the
studies. Further differences between the studies can be
found in their corresponding published methods sections
[11, 49]. The different factors between these two stud-
ies may be critical because particular antiviral factors
in honey bees are linked to specific viruses, specific
developmental stages, the analyzed tissue, the route

of inoculation, and the time (post-inoculation) dur-
ing which the study was performed. This was clearly
demonstrated when comparing honey bee responses
to two related iflaviruses with very different infec-
tion dynamics, SBV vs. DWV [52]. Authors observed
differences in induction of defensin and hymenop-
taecin immune-related genes, and suggested the
results reflect adaptations to the different routes of
transmission [52].
Moreover, our comparative visualization assessment

between these two datasets was also somewhat limited
because the virus effect in the Galbraith study used
three replicates for each level, whereas the virus effect
in our study used twelve replicates for each level that
were actually further subdivided into six replicates for
each diet level. Hence the apparent reduction in noise
observed in the Galbraith data compared to our data in
the PCA plots, parallel coordinate plots, scatterplot matri-
ces, and litre plots may be an inadvertent product of
the smaller number of replicates used and the lack of a
secondary treatment group rather than solely the reduc-
tion in genetic variability through the single-drone colony
design itself. With this in mind, while our current efforts
may be a starting point, future studies can shed more light
on signal:to:noise and differential expression differences
between naturally-mated colony designs and single-drone
colony designs by controlling for extraneous factors more
strictly than what we were able to do in the current line of
work.
In addition, this study used a whole body RNA-

sequencing approach. In future related studies, it may be
informative to use tissue-specific methods. Previous work
has shown that even though IAPV replication occurs in
all honey bee tissues, it localizes more in gut and nerve
tissues and in the hypopharyngeal glands. Likewise, the
highest IAPV titers have been observed in gut tissues [41].
Recent evidence suggests that RNA-sequencing of com-
posite structures (rather than specific tissues) in honey
bees leads to false negatives, implying that genes strongly
differentially expressed in particular structures may not
reach significance within the composite structure [104].
These studies have also found that within a composite
extraction, structures therein may contain opposite pat-
terns of differential expression. If we were to repeat this
same experimental design at a more refined tissue level,
we would likely provide more detailed answers to our
original transcriptomic questions. Another future direc-
tion related to this work would be to integrate multiple
omics datasets to investigate monofloral diet quality and
IAPV infection in honey bees. Indeed, previous studies in
honey bees have found that multiple omics datasets do
not always align in a clear-cut manner, and hence may
broaden our understanding of the molecular mechanisms
being explored [49].
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Conclusions
To the best of our knowledge, there are few to no stud-
ies investigating honey bee gene expression specifically
related to monofloral diets, and few to no studies exam-
ining honey bee gene expression related to the combined
effects of diet in any general sense and viral inoculation
in any general sense. It also remains unknown whether
the protective effects of good diet in honey bees is due to
direct effects on immune function (resistance) or indirect
effects of energy availability on vigor and health (toler-
ance). We attempted to address these unresolved areas
by conducting a two-factor RNA-sequencing study that
examined how monofloral diets and IAPV inoculation
influence gene expression patterns in honey bees. Over-
all, our data suggest complex transcriptomic responses
to multiple stressors in honey bees. Diet has the capac-
ity for large and profound effects on gene expression and
may set up the potential for both resistance and tolerance
to viral infection, adding to previous evidence of possible
feedbacks between diet and disease in honey bees [12].
Moreover, this study also demonstrated the benefits of

using data visualizations and multiple datasets to address
inherently messy biological data. For instance, by veri-
fying the substantial overlap in our DEG lists to those
obtained in another study that addressed a similar ques-
tion using specimens with less genetic variability, we were
able to place much higher confidence in the differential
gene expression results from our otherwise noisy data.We
also suggested that comparing results derived from mul-
tiple studies varying in level of genetic and environmental
variability may allow researchers to identify transcrip-
tomic patterns that are concurrently more realistic and
less noisy. Altogether, we hope our results underline the
merits of using data visualization techniques and multi-
ple datasets to understand and interpret RNA-sequencing
datasets.

Additional files

Additional file 1: Supplementary tables.
In all tables, “C” represents chestnut diet, “R” represents rockrose diet, “N”
represents control non-inoculated, and “V” represents virus-inoculated.
Table 1: Number of DEGs across three analysis pipelines for the (A) diet
main effect in our study, (B) virus main effect in our study, and (C) virus
main effect in the Galbraith study. Table 2: Pathways related to the 1,033
DEGs upregulated in the chestnut treatment from the diet main effect.
Table 3: Pathways related to the 881 DEGs upregulated in the rockrose
treatment from the diet main effect. Table 4: GO analysis results for the
601 DEGs upregulated in the NC treatment from the NC versus NR
treatment pair analysis. These DEGs represent genes upregulated in
noninoculated honey bees given high quality chestnut pollen versus low
quality rockrose pollen. Table 5: GO analysis results for the 340 DEGs
upregulated in the NR treatment from the NC versus NR treatment pair
analysis. These DEGs represent genes upregulated in noninoculated honey
bees given low quality rockrose pollen versus high quality chestnut pollen.
Table 6: GO analysis results for the 247 DEGs upregulated in the VC
treatment from the VC versus VR treatment pair analysis. These DEGs

represent genes upregulated in inoculated honey bees given high quality
chestnut pollen versus low quality rockrose pollen. Table 7: GO analysis
results for the 129 DEGs upregulated in the VR treatment from the VC
versus VR treatment pair analysis. These DEGs represent genes upregulated
in inoculated honey bees given low quality rockrose pollen versus high
quality chestnut pollen. Table 8: Number of DEGs across three analysis
pipelines for all six treatment pair combinati ons between the diet and
virus factor. Table 9: Kruskal-Wallis p-value and Bonferroni corrections for
the 36 combinations of DEG lists, pathogen response metrics, and cluster
number. (XLS 28 kb).

Additional file 2: PCA plots for the Galbraith dataset and for our dataset.
PCA plots for the Galbraith dataset (A) and for our dataset (B). “V”
represents virus-inoculated, and “N” represents control non-inoculated.
The x-axis represents the principal component with the most variation and
the y-axis represents the principal component with the second-most
variation. (PNG 250 kb)

Additional file 3: Parallel coordinate lines of the diet-related DEGs of our
dataset.
Parallel coordinate plots of the 1914 DEGs after hierarchical clustering of
size six between the chestnut and rockrose groups of our study. Here “C”
represents chestnut samples, and “R” represents rockrose samples. The
vertical red line indicates the distinction between treatment groups. We
see from this plot that the DEG designations for this dataset do not appear
as clean compared to what we saw in the Galbraith dataset in Fig. 3. (PNG
2031 kb)

Additional file 4: Example litre plots from the virus-related DEGs of our
dataset.
Example litre plots of the nine DEGs with the lowest FDR values from the
43 virus-related DEGs of our dataset. “N” represents non-inoculated control
samples and “V” represents virus-treated samples. Most of the magenta
points (representing the 144 combinations of samples between treatment
groups for a given DEG) do not reflect the expected pattern as clearly
compared to what we saw in the litre plots of the Galbraith data. They are
not as clustered together (representing replicate inconsistency) and they
sometimes cross the x=y line (representing lack of difference between
treatment groups). This finding reflects what we saw in the messy looking
parallel coordinate lines of Fig. 4. (PNG 1160 kb)

Additional file 5: Example litre plots of DEGs from Cluster 1 of the
Galbraith dataset.
Example litre plots of the nine DEGs with the lowest FDR values from the
365 DEGs in Cluster 1 (originally shown in Fig. 3) of the Galbraith dataset.
“N” represents non-inoculated control samples and “V” represents
virus-treated samples. Most of the light orange points (representing the
nine combinations of samples between treatment groups for a given DEG)
deviate from the x=y line in a tight bundle as expected. (PNG 964 kb)

Additional file 6: Example litre plots of DEGs from Cluster 2 of the
Galbraith dataset.
Example litre plots of the nine DEGs with the lowest FDR values from the
327 DEGs in Cluster 2 (originally shown in Fig. 3) of the Galbraith dataset.
“N” represents non-inoculated control samples and “V” represents
virus-treated samples. Most of the dark orange points (representing the
nine combinations of samples between treatment groups for a given DEG)
deviate from the x=y line in a compact clump as expected. However, they
are not as tightly bunched together compared to what we saw in the
example litre plots of Cluster 1 (shown in Additional file 5). As a result, what
we see in these litre plots reflects what we saw in the parallel coordinate
lines of Fig. 3: The replicate consistency in the Cluster 1 DEGs is not as clean
as that in the Cluster 2 DEGs, but is still relatively clean. (PNG 1018 kb)

Additional file 7: Scatterplot matrix of DEGs from Cluster 1 of the
Galbraith dataset.
The 365 DEGs from the first cluster of the Galbraith dataset (originally
shown in Fig. 3) superimposed as light orange dots onto all genes as black
dots in the form of a scatterplot matrix. The data has been standardized.
“N” represents non-inoculated control samples and “V” represents
virus-treated samples. We confirm that the DEGs mostly follow the
expected structure, with their placement deviating from the x=y line in the
treatment scatterplots, but adhering to the x=y line in the replicate
scatterplots. However, we do see that sample “V.1” may be somewhat
inconsistent in these DEGs, as its presence in the replicate scatterplots
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shows DEGs deviating from the x=y line more than expected and its
presence in the treatment scatterplots shows DEGs adhering to the x=y
line more than expected. This inconsistent sample was something we
observed in Fig. 3. (PNG 562 kb)

Additional file 8: Scatterplot matrix of DEGs from Cluster 2 of the
Galbraith dataset.
The 327 DEGs from the second cluster of the Galbraith dataset (originally
shown in Fig. 3) superimposed as dark orange dots onto all genes as black
dots in the form of a scatterplot matrix. The data has been standardized.
“N” represents non-inoculated control samples and “V” represents
virus-treated samples. We confirm that the DEGs mostly follow the
expected structure, with their placement deviating from the x=y line in the
treatment scatterplots, but adhering to the x=y line in the replicate
scatterplots. (PNG 589 kb)

Additional file 9: Scatterplot matrix of DEGs from Cluster 3 of the
Galbraith dataset.
The 224 DEGs from the third cluster of the Galbraith dataset (originally
shown in Fig. 3) superimposed as turquoise dots onto all genes as black
dots in the form of a scatterplot matrix. The data has been standardized.
“N” represents non-inoculated control samples and “V” represents
virus-treated samples. We confirm that the DEGs mostly follow the
expected structure, with their placement deviating from the x=y line in the
treatment scatterplots, but adhering to the x=y line in the replicate
scatterplots. (PNG 618 kb)

Additional file 10: Scatterplot matrix of DEGs from Cluster 4 of the
Galbraith dataset.
The 103 DEGs from the fourth cluster of the Galbraith dataset (originally
shown in Fig. 3) superimposed as pink dots onto all genes as black dots in
the form of a scatterplot matrix. The data has been standardized. “N”
represents non-inoculated control samples and “V” represents virus-treated
samples. We confirm that the DEGs mostly follow the expected structure,
with their placement deviating from the x=y line in the treatment
scatterplots, but adhering to the x=y line in the replicate scatterplots. We
also see that the second replicate from the virus-treated sample (“V.2”) may
be somewhat inconsistent in these DEGs, as its presence in the replicate
scatterplots results in the DEGs unexpectedly deviating from the x=y line
and its presence in the treatment scatterplots results in the DEGs
unexpectedly adhering to the x=y line. This inconsistent sample was
something we observed in Fig. 3. (PNG 560 kb)

Additional file 11: Scatterplot matrix of virus-related DEGs from our
dataset, showing only replicates 1, 2, and 3.
The 43 virus-related DEGs from our dataset superimposed as magenta dots
onto all genes in the form of a scatterplot matrix. Only replicates 1, 2, and 3
are shown from both treatment groups. The data has been standardized.
“N” represents non-inoculated control samples and “V” represents
virus-treated samples. We see that, compared to the scatterplot matrices
from certain clusters of the Galbraith data, the 43 DEGs from this subset of
six samples from our data do not paint as clear of a picture, sometimes
unexpectedly deviating from the x=y line in the replicate plots and
sometimes unexpectedly adhering to the x=y line in the treatment plots.
(PNG 584 kb)

Additional file 12: Scatterplot matrix of virus-related DEGs from our
dataset, showing only replicates 4, 5, and 6.
The 43 virus-related DEGs from our dataset superimposed as magenta dots
onto all genes in the form of a scatterplot matrix. Only replicates 4, 5, and 6
are shown from both treatment groups. The data has been standardized.
“N” represents non-inoculated control samples and “V” represents virus-
treated samples. We see that, compared to the scatterplot matrices from
certain clusters of the Galbraith data, the 43 DEGs from this subset of six
samples from our data do not paint as clear of a picture, and most of them
unexpectedly adhere to the x=y line in the treatment plots. (PNG 579 kb)

Additional file 13: Scatterplot matrix of virus-related DEGs from our
dataset, showing only replicates 7, 8, and 9.
The 43 virus-related DEGs from our dataset superimposed as magenta dots
onto all genes in the form of a scatterplot matrix. Only replicates 7, 8, and 9
are shown from both treatment groups. The data has been standardized.
“N” represents non-inoculated control samples and “V” represents
virus-treated samples. We see that, compared to the scatterplot matrices

from certain clusters of the Galbraith data, the 43 DEGs from this subset of
six samples from our data do not paint as clear of a picture, sometimes
unexpectedly deviating from the x=y line in the replicate plots and
sometimes unexpectedly adhering to the x=y line in the treatment plots.
(PNG 565 kb)

Additional file 14: Scatterplot matrix of virus-related DEGs from our
dataset, showing only replicates 10, 11, and 12.
The 43 virus-related DEGs from our dataset superimposed onto all genes in
the form of a scatterplot matrix. Only replicates 10, 11, and 12 are shown
from both treatment groups. The data has been standardized. “N”
represents non-inoculated control samples and “V” represents virus-treated
samples. We see that, compared to the scatterplot matrices from certain
clusters of the Galbraith data, the 43 DEGs from this subset of six samples
from our data do not paint as clear of a picture, and most of them
unexpectedly deviate from the x=y line in the virus-related replicate plots.
(PNG 587 kb)

Additional file 15: Parallel coordinate plots of the “tolerance” candidate
DEGs.
Parallel coordinate plots of the 122 DEGs after hierarchical clustering of size
four between the “tolerance” candidate DEGs. Here “N” represents
non-inoculated control group, “V” represents treatment of virus, “C”
represents high quality chestnut diet, and “R” represents low quality
rockrose diet. The vertical red line indicates the distinction between
treatment groups. We see there is considerable noise in the data
(non-consistent replicate values), but that the general patterns of the DEGs
follow what we expect based on our “tolerance” contrast. (PNG 1741 kb)

Additional file 16: Parallel coordinate plots of the “resistance” candidate
DEGs.
Parallel coordinate plots of the 125 DEGs after hierarchical clustering of size
four between the “resistance” candidate DEGs. Here “N” represents
non-inoculated control group, “V” represents treatment of virus, “C”
represents high quality chestnut diet, and “R” represents low quality
rockrose diet. The vertical red line indicates the distinction between
treatment groups. We see there is considerable noise in the data
(non-consistent replicate values), but that the general patterns of the DEGs
follow what we expect based on our “resistance” contrasts. (PNG 2014 kb)

Additional file 17: Venn diagrams comparing the virus-related DEG
overlaps in the Galbraith data using our pipeline and the pipeline used by
Galbraith et al.
Venn diagrams comparing the virus-related DEG overlaps of the Galbraith
data from the DESeq2 bioinformatics pipelines used in the Galbraith study
(labeled as “G.O.”) and the DESeq2 bioinformatics pipelines used in our
study (labeled as “G.R”). While we were not able to fully replicate the DEG
list published in the Galbraith study, our DEG list maintained significant
overlaps with their DEG list. From left to right: Total virus-related DEGs
(subplot A), virus-upregulated DEGs (subplot B), control-upregulated DEGs
(subplot C). (PNG 164 kb)

Additional file 18: Venn diagrams of main effect DEG overlaps across
DESeq2, edgeR, and limma
Venn diagrams comparing DEG overlaps across DESeq2, edgeR, and limma
for our diet main effect (top row), our virus main effect (middle row), and
the Galbraith virus main effect (bottom row). Within a given subplot, “D”
represents DESeq2, “E” represents edgeR, and “L” represents limma. From
left to right on top row: Total diet-related DEGs (subplot A),
chestnut-upregulated DEGs (subplot B), rockrose-upregulated DEGs
(subplot C). From left to right on middle row: Total virus-related DEGs
(subplot D), virus-upregulated DEGs (subplot E), control-upregulated DEGs
in our data (subplot F). From left to right on bottom row: Total virus-related
DEGs (subplot G), virus-upregulated DEGs (subplot H), control-upregulated
DEGs in the Galbraith data (subplot I) (PNG). With the exception of the
limma pipeline resulting in zero DEGs in our virus main effect analysis, we
found significant overlaps between DEG lists across the different pipelines
(DESeq2, edgeR, and limma). In general, DESeq2 resulted in the largest
number ofDEGs and limma resulted in the least number of DEGs. (PNG 537 kb)

Additional file 19: Analysis of correlation between DEG read counts and
pathogen response metrics
Distribution of R-squared values for DEG cluster read counts and pathogen
response metrics. Columns left to right: SBV titers, mortality rates, and IAPV
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titers. Rows top to bottom: Tolerance candidate DEGs, resistance candidate
DEGs, and virus-related DEGs. Each subplot includes five boxplots which
represent the R-squared value distributions for four DEG clusters and all
remaining non-DEGs in the data. The top number above each boxplot
represents the number of genes included. The first four boxplots also
include a bottom number, which represents the Kruskal–Wallis p-value of
the comparison of the R-squared distribution of the cluster and the
R-squared distribution of the non-DEG data. (PNG 323 kb)

Additional file 20: Tables listing DEGs for contrasts.
Table 1: IDs of 1914 DEGs in our diet main effect. Table 2: IDs of 43 DEGs
in our virus main effect. Table 3: IDs of 178 DEGs in our NR versus VR
contrast. Table 4: IDs of 376 DEGs in our VC versus VR contrast. Table 5:
IDs of 774 DEGs in our NC versus VR contrast. Table 6: IDs of 955 DEGs in
our VC versus NR contrast. Table 7: IDs of 941 DEGs in our NC versus NR
contrast. Table 8: IDs of 125 resistance candidate genes. Table 9: IDs of
122 tolerance candidate genes. (XLS 1376 kb)

Abbreviations
DEG: Differentially expressed gene; DWV: Deformed wing virus; GO: Gene
ontology; IAPV: Israeli acute paralysis virus; NC: Non-inoculation, high quality
pollen (chestnut) pollen treatment; NR: Non-inoculation, low quality (rockrose)
pollen treatment; PCD: Principal component analysis; REML: Restricted
maximum likelihood; SBV: Sacbrood virus; VC: IAPV-inoculated, high quality
pollen (chestnut) pollen treatment; VR: IAPV-inoculated, low quality (rockrose)
pollen treatment
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