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Abstract

biological contexts.

to enable robust and reproducible results.

Background: Non-coding gene regulatory enhancers are essential to transcription in mammalian cells. As a result, a
large variety of experimental and computational strategies have been developed to identify cis-regulatory enhancer
sequences. Given the differences in the biological signals assayed, some variation in the enhancers identified by
different methods is expected; however, the concordance of enhancers identified by different methods has not
been comprehensively evaluated. This is critically needed, since in practice, most studies consider enhancers
identified by only a single method. Here, we compare enhancer sets from eleven representative strategies in four

Results: All sets we evaluated overlap significantly more than expected by chance; however, there is significant
dissimilarity in their genomic, evolutionary, and functional characteristics, both at the element and base-pair level,
within each context. The disagreement is sufficient to influence interpretation of candidate SNPs from GWAS
studies, and to lead to disparate conclusions about enhancer and disease mechanisms. Most regions identified as
enhancers are supported by only one method, and we find limited evidence that regions identified by multiple
methods are better candidates than those identified by a single method. As a result, we cannot recommend the
use of any single enhancer identification strategy in all settings.

Conclusions: Our results highlight the inherent complexity of enhancer biology and identify an important
challenge to mapping the genetic architecture of complex disease. Greater appreciation of how the diverse
enhancer identification strategies in use today relate to the dynamic activity of gene regulatory regions is needed
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Background

Enhancers are typically defined as genomic sequences
that regulate the transcription of one or more genes,
regardless of orientation or relative distance to the target
promoter [1]. These cis-regulatory regions can bind
specific transcription factors and cofactors to increase
transcription, and in current models of enhancer func-
tion, they physically interact with their long-range
targets via loops in the three-dimensional chromatin
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structure [1-3]. Enhancers play a vital role in the regula-
tion of genes during development and cell differentiation
[3, 4], and genetic variation in enhancers has been impli-
cated in etiology of complex disease [5, 6] and in differ-
ences between closely related species [7-9].

Given their importance, enhancers have seen consider-
able study in recent years. More than 2300 papers have
been published on enhancer biology (MeSH: Enhancer
Elements, Genetic) since the start of 2015, and hundreds
of these have focused on the role of enhancers in
disease. Despite the importance of enhancers, they
remain difficult to identify [1, 10, 11]. Experimental
assays that directly confirm enhancer activity are time-
consuming, expensive, and not always conclusive [1, 12].
And, despite recent promising developments in massively
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parallel reporter assays (MPRAs), current methods are un-
able to definitively identify and test enhancers on an un-
biased genome-wide scale [13]. As a result, many studies
have used more easily measurable attributes associated
with enhancer activity, including DNA sequence motifs,
evolutionary conservation, and biochemical modifications,
as proxies for enhancer activity [1, 13-16]. For example,
active enhancers localize in regions of open chromatin,
which are commonly assayed by testing the sensitivity of
DNA segments to DNase I nuclease followed by sequen-
cing (DNase-seq) [17, 18]. Enhancers also often have char-
acteristic sets of histone modifications on surrounding
nucleosomes. Monomethylation of lysine 4 on histone H3
(H3K4mel) and lack of trimethylation of lysine 4 on his-
tone H3 (H3K4me3) are used to distinguish enhancers
from promoters, while acetylation of lysine 27 on histone
H3 (H3K27ac) often denotes active enhancers [1, 14, 19].
Additionally, features such as evolutionary sequence con-
servation [20-22] and the presence of known transcrip-
tion factor binding motifs [16] or known enhancer
associated proteins, such as the histone acetyltransferase
p300 [14, 23, 24], have been used to successfully locate
enhancer elements [1]. Furthermore some enhancers are
transcribed, and active enhancers can be mapped by iden-
tifying characteristic bi-directionally transcribed enhancer
RNAs (eRNAs) [25, 26], although the specificity of this
pattern to enhancers has recently been questioned [27].
While informative, none of these attributes are compre-
hensive, exclusive to enhancers, or completely reliable
indicators of enhancer activity. In addition, enhancer
activity is also context- and stimulus-dependent, creating
a further layer of complexity [19, 28].

In addition to these experimental approaches, many
complementary computational enhancer identification
methods have been developed that integrate the above-
mentioned data in both supervised and unsupervised
machine learning approaches [11, 15, 29]. Since there
are no genome-wide gold standard enhancer sets, such
enhancer identification studies and algorithms validate
their results via a combination of small-scale transgenic
reporter gene assays and enrichment for other functional
attributes, such as trait-associated genetic variants, evo-
lutionary conservation, or proximity to relevant genes.
As a result, there is substantial variation in these compu-
tational approaches [11].

The genome-wide enhancer maps resulting from these
experimental and computational approaches are com-
monly used in many different applications, including
studies of the gene regulatory architecture of different
tissues and the interpretation of variants identified in
genome-wide association studies (GWAS) [5, 6, 30].
However, in these applications, a single enhancer set
frequently serves as the working definition of an “enhan-
cer” for all analyses and individuals. Furthermore, a
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recent study found significant discordance in regions
identified by histone marks plus ChromHMM predic-
tions and activity levels in an MPRA [31].

Here, we evaluate the robustness of the “single defin-
ition” approach by performing a comprehensive analysis
of similarities in genomic, evolutionary, and functional
attributes of enhancers identified by different strategies
in two tissues (liver and heart) and two cell lines (K562
and Gm12878). By comparing characteristics of different
enhancer sets identified in the same biological context,
we were able to assess the stability of conclusions made
using only one enhancer identification strategy. All
methods overlapped more than expected by chance, but
we observed striking differences between the strategies
we compared. While some variation is expected due to
differences in the underlying assays, the differences
between identification strategies applied within the same
context are substantial enough to influence biological in-
terpretations and conclusions about enhancer evolution
and disease-associated variant function. In our compari-
sons, we find that enhancers defined by transcriptional
signatures, such cap analysis of gene expression or global
run-on sequencing, are modestly more enriched for
proxies of function than those identified based on evolu-
tionary or functional genomics data; however, they iden-
tify a much smaller fraction of active enhancers than
other approaches. We also demonstrate that focusing on
enhancers supported by multiple identification methods
does not provide a satisfactory remedy for disagreement
between methods, and it ignores many functional
enhancers. As a result, we cannot recommend the use of
any single current enhancer identification strategy in iso-
lation or simply considering the intersection of many
strategies. These results highlight a fundamental chal-
lenge to studying gene regulatory mechanisms and to
evaluating the functional relevance of thousands of non-
coding variants associated with traits. Incorporating the
unique characteristics of different enhancer identifica-
tion strategies will be essential to ensuring reproducible
results and to furthering our understanding of enhancer
biology. As a step toward this goal, we have created
creDB, a large, easily queried database of putative
enhancers identified by different methods across com-
mon tissues and cellular contexts.

Results

A panel of enhancer identification strategies across four
biological contexts

To evaluate the variation in enhancer sets generated by
different enhancer identification strategies, we developed
a consistent computational pipeline to compare enhan-
cer sets genome-wide. Our approach is based on publicly
available data, and we applied it to a representative set
of methods in four common cell types and tissues
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(biological contexts): K562, Gm12878, liver, and heart
cells (Fig. 1 and Methods). Given the large number of
enhancer identification strategies that have been proposed
[1, 11], it is not possible to compare them all; so for each
context, we consider methods that represent the diversity
of experimental and computational approaches in com-
mon use.

For all contexts, we consider two enhancer sets derived
solely from chromatin immunoprecipitation followed by
sequencing (ChIP-seq) for histone modifications inform-
ative about enhancer activity from the ENCODE Project
[32]. The “H3K27acPlusH3K4mel” set includes all
H3K27ac ChIP-seq peaks that also overlap an H3K4mel
peak, and the “H3K27acMinusH3K4me3” set contains
H3K27ac peaks that do not overlap an H3K4me3 peak
[33-35]. We used broad peak files processed using a con-
sistent custom pipeline and quality control criteria by EN-
CODE (Methods). In liver only, we consider an additional
set of enhancers identified using the H3K27acMi-
nusH3K4me3 definition on different samples (“Villar15”)
[35]. We also consider a method that incorporates DNase
I hypersensitive sites (DHSs) with histone modifications to
generate the “DNasePlusHistone” enhancer set, which is
composed of DHSs where the ratio of H3K4mel to
H3K4me3 is less than one [36]. For the two cell lines we
also include ChIP-seq peaks for the transcription cofactor
p300, “p300”, that is known to be associated with active
enhancers [23, 32, 34]. Since transcriptional signatures are
increasingly used to identify enhancers, we consider
“FANTOM” enhancers identified from bidirectionally
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transcribed eRNA detected via cap analysis of gene ex-
pression (CAGE) by the FANTOMS5 Project [25, 37, 38].
For K562 and Gm12878 we include a set of transcribed
regions defined by nascent bidirectional transcription in a
modification of the global run-on sequencing (GRO-seq)
as “GRO-cap” [39]. Finally, we also include several
methods that combine machine learning with functional
genomics data, such as the ENCODE consortium’s “Enco-
deEnhancerlike” made by combining DHSs and H3K27ac
peaks using an unsupervised ranking method and the
“ChromHMM” predictions generated by a hidden Markov
model trained on ChIP-seq data from eight histone modi-
fications, CTCEF, and RNA Pol II [15, 40—42]. For the
K562 and Gm12878 cell lines we include enhancer predic-
tions made by two supervised machine learning methods
trained to identify enhancers based on ChIP-seq data in
conjunction with other functional genomic features. We
will refer to these sets as “Yip12” and “Hol4” [43, 44]. An
overview of the data and computational approaches used
by each method is given in Fig. 1 and full details are avail-
able in the Methods.

Enhancers identified by different strategies in the same
context differ substantially

Each of the enhancer identification strategies considered
here is based on molecular signatures resulting from
different aspects of the complex processes underlying
the regulation of gene expression (e.g., co-factor binding,
histone modification, enhancer RNAs). Thus, we antici-
pated some variation between them; however, given that
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Fig. 1 Eleven diverse enhancer identification strategies were evaluated across four cellular contexts. Each row summarizes the data sources,
analytical approaches, and contexts for the eleven enhancer identification strategies we considered. The leftmost columns of the schematic
represent the experimental assays and sources of the data used by each identification strategy. The middle columns describe the computational
processing (if any) performed on the raw data (ML: machine learning). The rightmost columns give the contexts in which the sets were available.
Table 1 gives the number, length, and genomic coverage of each enhancer set
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the results of all of these methods are commonly treated
as “enhancers” in practice, we believe that it is valuable
to quantify their attributes.

The genomic coverage of different enhancer sets varies by
several orders of magnitude

Enhancer regions identified in the same context by
different methods differ drastically in the number of
enhancers identified, their genomic locations, their
lengths, and their coverage of the genome (Table 1; Fig.
2; Additional file 1: Figure S1). As noted above, we ex-
pected to find variation between enhancer sets in these

Table 1 Summary of all enhancer sets analyzed in this study
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attributes. Nevertheless, the magnitude of differences we
observed is striking. For each attribute we considered,
enhancer sets differ by several orders of magnitude
(Table 1; Fig. 2). For instance, FANTOM identifies 326
kilobases (kb) of sequence with liver enhancer activity,
EncodeEnhancerlike identifies 89 megabases (Mb), and
H3K27acMinusH3K4me3 identifies almost 138 mega-
bases (Mb).

In addition, methods based on similar approaches
often differ substantially due to technical factors; e.g.,
Villar15, which uses the same enhancer definition as
H3K27acMinusH3K4me3, only annotates 86.1 Mb with

Context Enhancer Set Number of Base Pairs (kb) Number of Enhancers Median Length Genome Coverage
K562 H3K27acPlusH3K4me1 22,113 6642 1903 0.0078
H3K27acMinusH3K4me3 34,072 19,698 525 0.0120
DNasePlusHistone 6620 13,402 431 0.0023
ChromHMM 96,545 100,837 600 0.0339
EncodeEnhancerlike 39,961 36,008 878 0.0140
Ho14 29,027 35,769 556 0.0102
Yip12 5389 13,303 342 0.0019
p300 7939 26,463 316 0.0028
GRO-cap 3905 23,825 160 0.0014
FANTOM 390 1084 344 0.0001
Gm12878 H3K27acPlusH3K4me1 28,355 8019 2749 0.0099
H3K27acMinusH3K4me3 20,868 11,238 701 0.0073
DNasePlusHistone 9286 19,815 386 0.0033
ChromHMM 73,929 69,314 800 0.0259
EncodeEnhancerlike 50,224 38,872 1018 0.0176
Ho14 41,543 39,550 674 0.0146
Yip12 5389 13,303 342 0.0019
p300 6480 17,532 360 0.0023
GRO-cap 3646 21,308 160 0.0013
FANTOM 1025 2826 343 0.0004
Liver H3K27acPlusH3K4me1 87,576 37,644 1831 0.0307
H3K27acMinusH3K4me3 137,874 77,014 1096 0.0484
DNasePlusHistone 51,292 170,212 152 0.0180
ChromHMM 108,375 101,260 800 0.0380
EncodeEnhancerlike 89,129 37,426 1849 0.0313
FANTOM 326 869 347 0.0001
Villar15 86,139 27,725 2545 0.0302
Heart H3K27acPlusH3K4me1 59,892 42,910 1102 0.0210
H3K27acMinusH3K4me3 157,468 141,162 684 0.0553
DNasePlusHistone 33,224 103,898 168 0.0117
ChromHMM 93,067 113,092 600 0.0327
EncodeEnhancerlike 186,866 47,235 2872 0.0656
FANTOM 611 1720 335 0.0002
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Fig. 2 Enhancer identification methods vary in the number and length of predicted enhancers. (@) The number of K562 and liver enhancers
identified by each method varies over two orders of magnitude. There is considerable variation even among methods defined based on similar
input data, e.g., histone modifications. (b) The length of K562 and liver enhancers identified by different methods shows similar variation.
Enhancer lengths are plotted on a log;q scale on the y-axis. Data for other contexts are available in Table 1 and Additional file 1: Figure S1

enhancer function in liver. Enhancer sets also vary in
their relative distance to other functional genomic
features, such as transcription start sites (TSSs). For
example, in liver, the average distance to the nearest TSS
ranges from 14 kb for EncodeEnhancerlike to 64 kb for
DNasePlusHistone (Additional file 2: Table S1). Overall,
as expected, methods based on histone modifications
tend to identify larger numbers of longer enhancers
compared with CAGE data, and machine learning
methods are variable. However, these differences span
orders of magnitude. We highlight these trends in liver,
but they are similar in other contexts (Table 1; Fig. 2;
Additional file 1 :Figure S1).

Enhancer sets overlap more than expected by chance but
have low genomic similarity

Given the diversity of the enhancer sets identified by
different methods, we evaluated the extent of both bp
and element-wise overlap between them. All pairs of
enhancer sets overlap more than expected if they were
randomly distributed across the genome (Fig. 3a,b, ~ 5—
100x, p < 0.001 for all pairs, permutation test (Methods))
. As expected due to the greater cellular heterogeneity
and genetic variation of tissue samples vs. cell lines, en-
hancer sets identified by different methods in the same

cell line have more significant overlap than enhancer
sets identified in tissues (Fig. 3b).

However, most (54%) predicted enhancers are “single-
tons” that are annotated by only a single enhancer iden-
tification strategy. Furthermore, the magnitude of
overlap between enhancer sets is typically low: less than
50% for nearly all pairs of methods (median 17% bp
overlap for K562 and 30% for liver; Fig. 3c,d; Additional
file 1: Figure S2; Additional file 1: Table S2). Further-
more, the largest overlaps are in comparisons including
one enhancer set with high genome coverage or in com-
parisons of sets that were identified based on similar
data. These patterns were similar when evaluating over-
lap on an element-wise basis (median element-wise over-
lap: 18—34%; Additional file 1: Figure S3-S4, Additional
file 1 : Table S2).

To further quantify overlap, we calculated the Jaccard
similarity index—the number of shared bp between two
enhancer sets divided by the number of bp in their
union—for each pair of methods. Overall, the Jaccard
similarities are also low for all contexts, with an average
of 0.07 for K562 and 0.13 for liver and all pairwise com-
parisons below 0.35 (Fig. 3e,f, Additional file 1: Figure
S2, upper triangle). Since the Jaccard similarity is sensi-
tive to differences in set size, we also computed a
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Fig. 3 Enhancer sets have low genomic overlap. (@) Pairwise bp enrichment values (log, fold change) for overlap between each K562 (upper triangle) or
liver (lower triangle) enhancer set, compared to the expected overlap between randomly distributed, length-matched regions. (b) The log, enrichment for
bp overlap compared to a random genomic distribution for each pair of enhancer sets within each context. Only contexts with annotations across all
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relative Jaccard similarity in which the observed similarity is divided by the maximum possible similarity for the pair of sets




Benton et al. BMC Genomics (2019) 20:511 Page 7 of 22

“relative” Jaccard similarity by dividing the observed
value by the maximum value possible given the set sizes. A 5
The relative similarities were also consistently low (Fig.
3e,f, Additional file 1: Figure S2, lower triangle).

To assess the influence of biological variation on the
observed overlaps, we compared the overlap of replicates
from H3K27ac ChIP-seq data in K562, Gm12878, and
liver generated by the same laboratory and processed by
the same peak calling pipeline (Methods). H3K27ac
ChIP-seq data are used in the definition of most of the
enhancer sets considered here, so high variability in this v >
data would likely impact many of the predictions. We IR
expected the replicates to have high overlap and serve as fb%~“§@(~°‘i\>l\éoo@‘3‘i¢°
an “upper bound” on similarity in practical applications. N AN
On average, the replicates overlap 76% at the bp level @:\'o,\,bc, Nl «&
(with a range of 54—88%) and 84% element-wise (with a ‘3‘{5\3\‘5
range of 51-89%). The only value less than 66% comes B
from a single K562 comparison. Thus, while there is
variation, the amount of overlap observed between en-
hancers identified by different methods almost always
falls far below the variation between ChIP-seq replicates.
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Enhancer sets have different levels of evolutionary
conservation

Enhancers identified by different methods also differ in 10
their levels of evolutionary constraint. Using primate
and vertebrate evolutionarily conserved elements defined R (\\gﬁ‘ Q¥ Q/(\“%
by PhastCons [45], we calculated the enrichment for
overlap with conserved elements for each enhancer set. L \e\q,‘i*
All enhancer sets have more regions that overlap with
conserved elements than expected from length-matched C
regions drawn at random from the genome (Methods).
However, enhancers identified by some methods are
more likely to be conserved than others (Fig. 4a). Across
each context, the histone-mark-based, ChromHMM,
Villar15, and Hol4 enhancer sets are approximately 1.3x
to 1.8x enriched for overlap with conserved elements.
Adding DNasel hypersensitivity data, as in the DNase- e ® P
PlusHistone and EncodeEnhancerlike sets, increases the YRS e 5 KY
level of enrichment slightly compared to solely histone- Q}‘(\@@\é\\é‘o‘\ N e

derived enhancers (1.9x-2.3x). In contrast, the FAN-
TOM, Yipl2, and p300 enhancers are nearly twice as 4T
enriched for conserved regions as the histone-based sets \%\'5%3\%‘@
(2.7x, 3.3x, and 2.9x, respectively). GRO-cap enhancers
in K562 and Gm12878 are the most enriched for overlap
with conserved elements (4.7-4.8x). Evolutionary con-
servation was considered in the definition of the Yip12
set, but not directly in the FANTOM, p300, or GRO-cap
sets. Here we considered element-wise enrichment for
the number of enhancer regions overlapping conserved
elements; enrichment trends are similar when we con-
sider the number of conserved base pairs overlapped by
each enhancer set (Fig. S5).
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(See figure on previous page.)

Fig. 4 Enhancers have different levels of enrichment with functional
attributes. (@) Enhancer sets vary in their degree of evolutionary
conservation. Each point represents the enrichment (fold change
compared to randomly shuffled regions) for overlap between a
conserved element (combined primate and vertebrate PhastCons)
and each enhancer set. Methods based on transcriptional assays and
TF binding profiles (GRO-cap, FANTOM, p300, and Yip12) are the
most enriched for conserved elements, while sets based on histone
modification data alone are among the least enriched. (b) GWAS
SNP enrichment among all enhancer sets for each biological
context. All sets are significantly enriched, except FANTOM in K562
and liver contexts due to small sample size. (c) GTEx eQTL
enrichment among all enhancer sets for each biological context.
Transparent points indicate nonsignificant enrichment (p > 0.05)

Identification strategies highlight different subsets of
experimentally validated enhancers

Though we lack unbiased genome-wide gold-standard
sets of enhancers, nearly two thousand human se-
quences have been tested for enhancer activity in vivo in
transgenic mice at E11.5 by VISTA [46] and thousands
more have been tested in cell lines via MPRAs. Strong
ascertainment biases in how regions were selected for
testing in these assays prevent their use as a gold stand-
ard, but they do provide an opportunity to examine
overlap between validated and predicted enhancers. We
evaluated the overlap and enrichment of each heart
enhancer set with 1837 regions tested for enhancer
activity in the developing heart by VISTA and for each
annotated K562 enhancer with 15,720 regions tested in
K562 cells by Sharpr-MPRA [47]. All heart enhancer sets
are significantly enriched for overlap with the 126
VISTA heart positives (Fig. S6; Table S3; p <0.001 for
all), and each set is at least ~3x more likely to overlap
validated enhancers than expected if it was randomly
distributed across the genome. However, the heart
enhancer sets are also significantly enriched for overlap
with VISTA negatives (p <= 0.004). This is not surpris-
ing as the regions tested by VISTA were largely selected
based on having evidence of enhancer activity, and they
may have enhancer activity in other contexts not tested
by VISTA, including adult heart. However, there is sub-
stantial disagreement among the enhancer sets about the
status of the VISTA heart enhancers; 16% (n = 20) of val-
idated heart enhancers are not predicted to have enhan-
cer activity by any method, and 17% [21] are only
predicted by one method (Additional file 1 :Figure S6).
Similarly, all of the enhancer sets in K562 are signifi-
cantly enriched for overlap with both activating and re-
pressive regions characterized by Sharpr-MPRA (Fig. S7;
p<0.001 for all). There is little variation between the
methods in terms of overall enrichment, with most hav-
ing ~2x relative enrichment for activating regions.
Nearly half of the activating regions in the MPRA (47%;
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2508 / 5373) were not identified by any of the enhancer
sets, and 30% of activating regions overlapping a pre-
dicted enhancer are unique to a single set (Additional
file 1: Figure S7; 891 / 2747). Thus, comparisons with
validated enhancers from both VISTA and MPRAs sug-
gest that different strategies identify different subsets of
active regulatory regions in the same context, and that
all strategies miss a sizable portion of functional enhan-
cer sequences. However, we again caution against inter-
preting the relative performance of different enhancer
identification strategies on these data, since there are
strong ascertainment biases in how regions were se-
lected for testing. For example, ChromHMM enhancer
predictions and DNase I hypersensitivity data were used
to select the regions tested by Sharpr-MPRA.

Interpretation of GWAS hits and eQTL is contingent on
the enhancer identification strategy used

Functional genetic variants—in particular mutations
associated with complex disease—are enriched in gene
regulatory regions [5, 6]. Thus, genome-wide enhancer
sets are commonly used to interpret the potential func-
tion of genetic variants observed in GWAS and sequen-
cing studies [33, 38, 42, 48-54]. To illustrate this
situation, Fig. 5a shows a 9kb region at the human
chromosome 1p13 locus containing the noncoding re-
gion between CELSR2 and PSRCI associated with both
low-density lipoprotein (LDL) cholesterol levels and
myocardial infarction (MI) in GWAS [55]. It gives the
locations of variants in high LD with the tag SNP,
rs12749374, and includes regions identified as liver
enhancers by the representative methods analyzed in this
study. A comprehensive series of studies showed that
the minor allele of rs12740374 creates a C/EBP binding
site, causing increased expression of SORTI specifically
in liver and leading to the association with both LDL
cholesterol and increased risk of MI [55]. In this ex-
ample, the region containing the casual SNP is predicted
to be an enhancer by four of the seven methods (Fig. 5a).
This represents a case in which the available enhancer
data help to highlight the causal locus. As an alternative
example, Fig. 5b shows a 60 kb region of human chromo-
some 9 that contains ten loci associated with coronary ar-
tery disease (CAD) in GWAS and other variants in high
LD with the GWAS tag variants. It also shows the regions
identified as enhancers by six representative methods in
heart. Two of these variants (rs10811656 and rs4977757)
out of 59 evaluated were recently demonstrated to disrupt
binding of TEAD transcription factors in vitro and in vivo
in primary human aortic smooth muscle cells, which leads
to reduced expression of the cell cycle suppressor protein,
pl6, and contributes to CAD risk [56]. Figure 5b demon-
strates that the enhancer annotations in this region are
largely non-overlapping and do not highlight these two
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Fig. 5 Enhancers identified by different methods differ in functional attributes. The 9 kb region on human chromosome 1 containing genetic
variants associated with LDL cholesterol levels and Ml in GWAS and the causal SNP (rs12740374). Here, the region containing the casual SNP is
predicted to be an enhancer by four of the seven methods. GWAS tag SNPs are colored in red and LD blocks are shown with a horizontal line.
(b) The 60 kb region of human chromosome 9 containing loci associated with coronary artery disease (CAD) in GWAS. Two of the associated
variants (rs10811656 and rs4977757) have been shown to contribute to CAD risk. However, the enhancer annotations in this region are generally
non-overlapping and do not highlight either functional variant. (c) Few GWAS SNPs overlap an enhancer; the colored bars represent the number
of methods that identified the region as an enhancer. The majority of these variants are not predicted as enhancers, and very few GWAS variants
are overlap enhancers from multiple methods. The conclusions are similar when considering variants in high LD (r* > 0.9) with the GWAS tag
SNPs in liver (Liver LD; Additional file 1: Figure S8). The pattern is also similar when limiting to SNPs associated with liver or heart related
phenotypes (Liver Specific, Heart Specific). When considering the SNP in each LD block with the maximum number of enhancer overlaps there is
still a large percentage of SNPs supported by none or only one method (Liver Max). This demonstrates that the situation illustrated in panel B is
very common. (d) Among all eQTL that overlap at least one enhancer, the majority is supported by only a single method. This holds for LD-
expanded and context-specific sets (Liver LD, Liver Specific, Heart Specific; Additional file 1: Figure S8). Many variants remain unique to a single
method, even when limiting to the variant in each LD block overlapping the maximum of enhancer sets (Liver Max). These trends are similar to
what is seen for GWAS SNPs in (c). (e) Enhancer sets from the same biological context have different functional associations. We identified Gene
Ontology (GO) functional annotations enriched among genes likely to be regulated by each enhancer set using GREAT. The upper triangle
represents the pairwise semantic similarity for significant molecular function (MF) GO terms associated with predicted liver enhancers. The lower
triangle shows the number of shared MF GO terms in the top 30 significant hits for liver enhancer sets. Results were similar when using
enhancer-gene target predictions from JEME (Additional file 1: Figure S9-10)
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functional variants. Indeed, neither overlaps any enhancer
annotation.

To explore the frequency of these scenarios genome-
wide, we evaluated the overlap of GWAS loci with
different enhancer identification strategies by intersect-
ing each of the enhancer sets with 20,458 unique loci
significantly associated with traits from the NHGRI-EBI
GWAS Catalog. Since the GWAS catalog contains re-
gions associated with diverse traits, we manually curated
the set of GWAS SNPs into subsets associated with phe-
notypes relevant to liver (n=346) or heart (n=2127)
(Table S4). We found 27% (92 / 346) of the liver associ-
ated tag SNPs and 24% (503 / 2127) of the heart associ-
ated tag SNPs overlap an enhancer predicted by at least
one of strategies we considered in the appropriate
context. (We consider variants in high linkage disequi-
librium (LD) below.) While the amount of overlap is
low, the heart and liver enhancer sets are almost univer-
sally more enriched for overlap with GWAS SNPs that
influence relevant phenotypes compared to GWAS SNPs
overall (Fig. 4b, Additional file 1: Table S5; 1.74x—2.68x).
FANTOM enhancers are the exception to this trend due
to the small number of overlapping context-specific
SNPs (Additional file 1: Table S6). This suggests that the
different methods, in spite of their lack of agreement, all
identify regulatory regions relevant to the target context.

However, there is variation in the number of overlap-
ping GWAS SNPs between enhancer sets, as is expected
given the large variation in the number and genomic
distribution of enhancers predicted by different methods
(Table S6). The majority of curated GWAS liver SNPs
with any enhancer overlap are overlapped by a single
method (53%) and none are shared by all methods
(Fig. 5¢). This trend is also seen in heart, where 58%
(293 / 503) of the heart associated SNPs overlapping
an enhancer are identified by only a single identifica-
tion strategy (Fig. 5¢). This suggests that cases such as
the one illustrated in Fig. 5b are far more frequent
than those like Fig. 5a.

Since tag SNPs are often not the functional variants, we
also considered SNPs in high LD with the GWAS SNPs
(r* > 0.9). The distribution of enhancer overlaps was simi-
lar when considering all candidate variants in LD (Fig. 5c¢),
although the enrichments were lower (Fig. S8). Even after
limiting to GWAS LD blocks with enhancer overlap and
selecting the variant with maximum overlap between
strategies, 47% (164 / 346) and 50% (1055 / 2127) are not
predicted as enhancers by any method and 17% (60 / 346)
and 18% (381 / 2127) are only predicted by one enhan-
cer identification method in liver and heart, respectively
(Fig. 5¢). This demonstrates that enhancer maps usually
disagree about which variants are likely to be func-
tional, and that the situation illustrated in Fig. 5a is
rare. Across the entire GWAS Catalog, 33% (6736 / 20,
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458) of SNPs overlap an enhancer predicted by at least
one of the strategies in one of the contexts we consid-
ered. The trends are similar for heart, K562, and
Gm12878 (Fig. 5c, Additional file 1: Figure S8). This
illustrates that the annotation of variants in regions
highlighted by GWAS varies greatly depending on the
enhancer identification strategies used.

To test if these patterns hold for genetic variants in
other functional regions, we analyzed the overlap of
enhancer sets with expression quantitative trait loci
(eQTL) identified by the GTEx Consortium. Enrichment
for overlap with context-specific eQTL in liver or heart
is generally higher than enrichment for significant eQTL
overall, but the distribution of shared eQTL remains
similar (Fig. 4c, Fig. 5d; Additional file 1: Table S7).
Within a context, most eQTL do not overlap an enhan-
cer, and there is wide variation in the number of eQTL
overlapped by different enhancer sets (Fig. 5D;
Additional file 1: Table S8). Across liver enhancer sets,
52% (2925 / 5585) of all overlapped liver eQTL and 50%
(33,941 / 68,563) of general eQTL overlap an enhancer
called by only one method (Fig. 5d). Considering
variants in high LD (r*>0.9) does not affect this trend
(Fig. 5D). After limiting the analysis to the variants with
the maximum number of overlaps in each LD block,
15% (3386 / 22,234) of liver eQTL with enhancer overlap
are identified by only one enhancer set (Fig. 5d). The
lack of overlap is more extreme in heart, where 60% (13,
925 / 22,919) heart eQTL overlap a single method, as
well as K562 and Gm12878 (Fig. 5d, Additional file 1:
Figure S8). Thus, in regions known to influence traits or
gene regulation, the interpretation of which variants are
causal varies substantially depending on the enhancer
identification strategy used.

Enhancers identified by different strategies have different
functional contexts

Given the genomic dissimilarities between enhancer sets,
we hypothesized that different enhancer sets from the
same context would also vary in the functions of the
genes they likely regulate. To test this hypothesis, we
identified Gene Ontology (GO) functional annotation
terms that are significantly enriched among genes likely
targeted by enhancers in each set. We used two different
approaches to map to genes and associated GO terms:
() using the joint effect of multiple enhancers (JEME)
method for mapping enhancers to putative target genes
and then performing gene-based enrichment analyses,
and (if) applying the Genomic Regions Enrichment of
Annotations Tool (GREAT) (Methods) [57, 58]. Many of
the GO terms identified by both methods for the enhan-
cer sets are relevant to the associated context (Table 2).
However, most of the associated terms for the target-
mapping approach were near the root of the ontologies
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Table 2 Top 5 Gene Ontology (Molecular Function) terms for liver enhancer sets from GREAT and JEME target-mapped WebGestalt

enrichments
Enhancer Set GO MF Terms (GREAT) GO MF Terms (JEME+WebGestalt)
H3K27acPlusH3K4me1 cytoskeletal adaptor activity small molecule binding
14-3-3 protein binding anion binding
leukotriene-C4 synthase activity nucleoside phosphate binding
nucleobase-containing compound nucleotide binding
transmembrane transporter activity
FAD binding transferase activity
H3K27acMinusH3K4me3 14-3-3 protein binding oxidoreductase activity
cytoskeletal adaptor activity anion binding
thyroid hormone receptor binding small molecule binding
ARF guanyl-nucleotide exchange factor activity nucleoside phosphate binding
high-density lipoprotein particle binding nucleotide binding
DNasePlusHistone cytoskeletal adaptor activity small molecule binding
glucocorticoid receptor binding anion binding
nucleobase-containing compound transferase activity
transmembrane transporter activity
high-density lipoprotein particle binding nucleotide binding
14-3-3- protein binding nucleoside phosphate binding
ChromHMM high-density lipoprotein particle binding nucleotide binding
nucleobase-containing compound nucleoside binding
transmembrane transporter activity
cytoskeletal adaptor activity purine nucleoside binding
14-3-3 protein binding DNA binding
retinoid X receptor binding RNA binding
EncodeEnhancerlike cytoskeletal adaptor activity nucleotide binding
14-3-3 protein binding transferase activity
nucleobase-containing compound small molecule binding
transmembrane transporter activity
apolipoprotein A-l binding anion binding
high-density lipoprotein particle binding carbohydrate derivative binding
FANTOM glucocorticoid receptor binding structural constituent of ribosome
protein kinase binding receptor binding
kinase binding cell adhesion molecule binding
methylglutaconyl-CoA hydratase activity molecular function regulator
vitamin D response element binding transcription regulatory region DNA binding
Villar15 protease binding anion binding

phosphatidylinositol 3-kinase binding
14-3-3 protein binding
cytoskeletal adaptor activity

glucocorticoid receptor binding

small molecule binding
oxidoreductase activity
cofactor binding

oxidoreductase activity, acting on CH-OH group of donors

and thus lacking in functional specificity (Table 2),
likely due to the large gene target lists for most enhan-
cer sets (Additional file 1: Table S9). As a result, we
focus on the results from GREAT here, and report the
results based on JEME target mapping in Additional file
1: Figure S9-S10.

The majority of the top 30 significant annotations
from GREAT for each enhancer set are not enriched in
any other set in the same context, and no terms are
shared by all of the methods in a given context (Fig. 5e,
lower triangle). In all of these pairwise comparisons,
fewer than half of the GO terms are shared between a
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pair of enhancer sets. Furthermore, many of the terms
shared by multiple enhancer sets are near the root of the
ontology (e.g., nucleotide binding) and thus are less
functionally specific. These results provide evidence that
the different enhancer sets influence different functions
relevant to the target biological context. These trends
hold for both the Biological Process (BP) and Molecular
Function (MF) ontologies and considering the top 10
and 50 annotations for each set (Figs. S11-13).

To further compare the enriched GO MF and BP
annotations of each enhancer set in a way that accounts
for the distance between GO terms in the ontology hier-
archy and their specificity, we computed a semantic simi-
larity measure developed for GO annotations [59, 60].
The ChromHMM and EncodeEnhancerlike enhancer sets
are among the most functionally similar, with similarity
scores near 0.80 in most contexts (Figs. 5e, upper triangle;
Additional file 1: Figure S12). This is not surprising given
that their underlying assays overlap. The functional
similarity scores are lower for comparisons of the other
histone modification sets, around 0.50-0.75. In all com-
parisons, the FANTOM enhancers have the lowest func-
tional similarity with other enhancer sets—below 0.40 in
the vast majority of comparisons in K562, liver, and heart
(Fig. 5e; Additional file 1: Figure S12). FANTOM is more
similar to other methods in Gm12878, with an average
score of 0.59 (Additional file 1: Figure S12). As a bench-
mark, biological replicates of the Gm12878 H3K27ac
ChIP-seq peaks received a similarity of 0.93. This suggests
different functional influences for enhancer sets from the
same context identified by different methods, with FAN-
TOM as a particular outlier. We note that enhancer target
gene identification remains a challenging problem, and
both strategies for mapping enhancers to potential target
genes considered here (GREAT and JEME) likely include
false positives and negatives. However, insofar as they
reflect the genomic context of the different enhancer sets,
they reveal significant functional differences between en-
hancer identification methods.

Genomic and functional clustering of enhancer sets

Our analyses of enhancer sets within the same biological
context reveal widespread dissimilarity in both genomic
and functional features. To summarize and compare the
overall genomic and functional similarity of the enhan-
cer sets across contexts, we clustered them using hier-
archical clustering and MDS based on their Jaccard
similarity in genomic space and the GO term functional
similarity of predicted target genes (Methods).

Several trends emerged from analyzing the genomic
and functional distribution within and between bio-
logical contexts. First, the FANTOM eRNA and GRO-
cap enhancers are consistently distinct from all other
enhancer sets in both their genomic distribution and
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functional associations (Fig. 6). Differences between
eRNA and non-eRNA enhancer sets appear to dominate
any other variation introduced by biological, technical,
or methodological differences. This is also true when
comparing patterns of TF binding site motif enrichment
in different enhancer sets. FANTOM and GRO-cap are
consistent outliers with the largest differences in pre-
dicted TF binding site enrichment from the other
methods (Fig. S14; Additional file 2: Table S10).

A second trend in these comparisons is that similar-
ity in genomic distribution of enhancer sets does not
necessarily translate to similarity in functional space,
and vice versa. For example, although EncodeEnhan-
cerlike regions are close to ChromHMM and the
histone-derived H3K27acPlusH3K4mel set and the
machine learning models in the genomic-location-
based projection (Fig. 6a,c), they are located far from
those sets in the functional comparisons and hierarch-
ical clustering (Fig. 6b,d).

Finally, comparing enhancer sets by performing
hierarchical clustering within and between biological
contexts reveals that genomic distributions are generally
more similar within biological contexts, compared to
other sets defined by the same method in a different
context (Fig. 6e). For example, the ChromHMM set
from heart is more similar to other heart enhancer sets
than to ChromHMM sets from other contexts. In
contrast, the enhancer set similarities in functional space
are less conserved by biological context (Fig. 6f). Here,
the heart ChromHMM set is functionally more similar
to the H3K27acMinusH3K4me3 set from liver cells than
other heart enhancer sets. In general, cell line enhancer
sets (red and green) show more functional continuity
than heart and liver sets (blue and purple). However,
FANTOM enhancers are the exception to these trends;
FANTOM enhancers from each context form their own
cluster based on their genomic distribution, underscor-
ing their uniqueness. GRO-cap enhancers cluster with
FANTOM in the genomic location clustering and with
their cellular contexts in the functional clusters.

Combining enhancer sets does not strongly increase
evidence for regulatory function

Although there are large discrepancies in genomic and
functional attributes between enhancer sets identified by
different methods in the same context, we hypothesized
that the subset of regions shared by two or more sets
would have stronger enrichment for markers of gene
regulatory function. To test this, we analyzed whether
regions identified by multiple methods have increased
“functional support” compared to regions identified by
fewer methods. We evaluated three signals of functional
importance: (i) enrichment for overlap with evolutionar-
ily conserved elements, (ii) enrichment for overlap with
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Fig. 6 The genomic and functional similarities between enhancer sets are not consistent. (@) Multidimensional scaling (MDS) plot of liver
enhancer sets based on the Jaccard similarity of the genomic distributions (Fig. 3b). (b) MDS plot for liver enhancers based on distances
calculated from molecular function (MF) Gene Ontology (GO) term semantic similarity values with GREAT (Fig. 5e). (¢, d) Ranked hierarchical
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relationships between other sets are not conserved. Red branches denote identical subtrees within the hierarchy. (e) Hierarchical clustering based
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GWAS SNPs, and (iii) enrichment for overlap with
GTEx eQTL. For each, there are only small changes as
the number of methods identifying a region increases
(Fig. 7a-c). Regions identified as enhancers by more than
one method are slightly more enriched for conserved
elements compared to the genomic background, but
there is little difference among regions identified by 2-5
methods (Fig. 7a). Regions predicted by 6 or more
methods are significantly more enriched for conserved ele-
ments than those with less support, but effect size is mod-
est (1.36x for 1 vs. 1.62x for 6+). There is a modest increase
in the enrichment for overlap with GWAS SNPs among en-
hancers identified by more identification methods (1.50x

for 1 vs. 1.89x for 6+); however, given the relatively small
number of GWAS SNP overlaps, none of these differences
were statistically significant (Fig. 7b). We observed no
increase in the enrichment for overlap with eQTL as the
support for enhancer activity increased (Fig. 7c). Thus, we
do not find strong evidence of increased functional import-
ance in enhancers identified by multiple methods compared
to enhancers identified by a single method. Importantly,
this implies that intersecting enhancer identification strat-
egies will focus on a smaller set of enhancers with only
modest evidence for increased functional relevance.

Several enhancer identification methods provide
confidence scores that reflect the strength of evidence
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Fig. 7 Enhancers identified by multiple methods have little additional evidence of function. (a) Enrichment for overlap between conserved
elements (n=3,930,677) and liver enhancers stratified by the number of identification methods that predicted each enhancer. (b) Enrichment for
overlap between GWAS SNPs (n = 20,458) and liver enhancers stratified by the number of identification methods that predicted each enhancer.
(c) Enrichment for overlap between GTEx eQTL (n =429,964) and liver enhancers stratified by the number of identification methods that
predicted each enhancer. In (a-c), the average enrichment compared to 1000 random sets is plotted as a circle; error bars represent 95%
confidence intervals; and n gives the number of enhancers in each bin. The only significant differences are found in the enrichment for
evolutionary conservation (a), but the difference is modest in magnitude (1.36x for 1 vs. 1.62x for 6+). (d) Boxplots showing the distribution of
confidence score ranks for FANTOM enhancers in liver partitioned into bins based on the number of other methods that also identify the region
as an enhancer. Lower rank indicates higher confidence; note that the y-axis is flipped so the high confidence (low rank) regions are at the top.
The lack of increase in enhancer score with the number of methods supporting it held across all methods tested (Additional file 1: Figure S14-17)

A
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for each enhancer. We hypothesized that high confi-
dence enhancers from one method would be more
likely to overlap enhancers identified by other
methods. To test this, we ranked each enhancer based
on its confidence or signal, with a rank of 1 repre-
senting the highest confidence in the set. There was
no clear trend between the confidence score of an en-
hancer from one method and the number of methods
that identified the region as an enhancer (Fig. 7d,
Additional file 1: Figure S15-S18). Overall, enhancers
identified by multiple methods show a similar confi-
dence distribution when compared to regions identified by
a single method. Indeed, for some enhancer sets the me-
dian score decreases as the regions become more highly
shared (Additional file 1: Figure S15, S18). This provides
further evidence that building enhancer sets by simple
combinations of existing methods is unlikely to lead to a
higher confidence subset, and that filtering based on simple
agreement between methods may not substantially improve
the specificity of enhancer predictions.

Additionally, we do not find evidence that analyzing
only the top enhancer predictions from each method
changes the results reported here. Using the five enhan-
cer identification strategies with confidence or signal
rankings in each context we compared the top 100, 500,
and 800 enhancer predictions. There remains little shar-
ing between these subsets, with most enhancer regions
remaining unique to a single method. Furthermore, the
level of enrichment for overlap with functional attributes
remains largely similar, but less significant in many cases
(Additional file 1: Figure S19-S21).

A tool for evaluating of the robustness of conclusions
across enhancer identification strategies

Our findings imply that results of studies of enhancers
are sensitive to the enhancer identification strategy used.
To facilitate evaluation of the sensitivity and robustness
of results with respect to this choice, we provide an inte-
grated database (creDB) of predicted enhancer sets. It
contains all putative enhancer sets used in this study,
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and enhancer sets from multiple primary and meta-
analyses annotating enhancers across cellular contexts.
In contrast to other efforts providing large compilations
of enhancer sets [50, 51], creDB is not a web-server or
“enhancer browser”. Rather, it is an SQL database with a
convenient interface to the R programming language and
distributed as an R package. creDB is designed to enable
users to easily consider many different genome-wide sets
of predicted enhancers in their bioinformatics analyses
and to evaluate the robustness of their findings. The
current version of creDB contains more than 3.5 million
predicted enhancers and is available online (Methods).

Discussion

Accurate enhancer identification is a challenging
problem, and recent efforts have produced a variety of
experimental and computational approaches. Each
method, either explicitly or implicitly, represents a
different perspective on what constitutes an enhancer
and which identifiable signatures are most informative
about enhancer activity. For example, histone modifi-
cations characteristic of enhancers are found on
histones that flank active enhancers, while eRNA are
thought to be bidirectionally transcribed from the
active sequence itself. As a result, despite the use the
term “enhancer” to describe all these regions in the lit-
erature, we expected different assays and algorithms
to identify somewhat different sets of regions. Given
the lack of comprehensive genome-wide “gold stand-
ard” enhancer sets, evaluation of the accuracy of these
approaches is challenging. Thus, we compared existing
strategies with respect to one another and to proxies
for regulatory function. All pairs of enhancer sets
overlap more than expected by chance, but we found
substantial differences in the genomic, evolutionary,
and functional characteristics of identified enhancers
within similar tissues and cell types. Enhancer sets
vary significantly in their overlap with conserved gen-
omic elements, GWAS loci, and eQTL. Furthermore,
the majority of GWAS loci and eQTL have inconsist-
ent evidence of enhancer function across enhancer
sets. In addition, regions identified as enhancers by
multiple methods do not have significantly stronger
evidence of regulatory function.

The consistent lack of agreement between methods
demonstrates that many working definitions of “enhan-
cer” have very low overlap. Focusing on functional anno-
tations, we find agreement between methods about basic
functions, but substantial differences in more specific
annotations. This suggests that different strategies con-
tribute unique information towards the identification of
functionally important enhancers. In general, enhancers
defined by FANTOM have modestly more enrichment
for proxies of functional activity than other methods,
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but this comes at the expense of low sensitivity (e.g.,
Figs. S6-7). Our results argue that, given the lack of a
clear gold standard and the substantial disagreement
between strategies, it does not make sense to identify a
single “best” method given current knowledge.

Furthermore, because enhancer identification strategies
have such substantial differences, one strategy cannot and
should not be used as a proxy for another. Using different
strategies can yield substantially different biological inter-
pretations and conclusions, e.g., about the gene regulatory
potential of a genetic variant or the degree of evolutionary
constraint on enhancers. This is particularly important
given that studies of gene regulation commonly use only a
single approach to define enhancers. GWAS have identi-
fied thousands of non-coding loci associated with risk for
complex disease, and a common first step in the interpret-
ation of a trait-associated locus is to view it in the context
of genome-wide maps of regulatory enhancer function
[33, 38, 42, 52—54, 61, 62]. Thus, our findings complicate
the use of annotated enhancers to study the mechanisms
of gene regulation and to elucidate the molecular under-
pinnings of disease, most notably in non-coding variant
prioritization [30, 63, 64].

Technical and biological variation in the underlying
experimental assays or data processing pipelines likely
contribute to the variation between putative enhancer
sets. However, we minimized technical variation by
calling and comparing enhancers using consistent com-
putational pipelines. Furthermore, comparisons of bio-
logical replicates of histone modification ChIP-seq data
suggest that the level of difference we observe between
enhancer sets is larger than among biological replicates.
Genetic variation between individuals could also explain
some of the discordance. Previous work shows that
chromatin states associated with weak enhancer activity
exhibit some variation between individuals, and QTL
associated with changes in epigenetic modifications and
enhancer activity between individuals have been identi-
fied [65, 66]. However, the proportion of epigenetic
modifications that are variable across individuals is
estimated to be small (1-15%) [67]. Thus, variation be-
tween individuals is unlikely to be the main cause of the
lack of agreement we observe between methods, in par-
ticular for enhancer sets defined from cell lines. Further-
more, there are strong similarities between enhancers
and other regulatory elements, like promoters, and some
promoters even have enhancer activity [2, 68, 69]. We
focus on methods designed to distinguish enhancers to
reduce the impact of disagreement due to the compari-
son of different elements from the broader regulatory
spectrum; nevertheless, some identification strategies
may include or exclude functional elements with variable
activities. However, while the proxies we use for regula-
tory function (evolutionary conservation, GWAS loci, and
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eQTL) each have weaknesses, we observe similar disagree-
ment across each proxy. This supports the functional
relevance of the differences we demonstrate between en-
hancer sets. Taking each of these limitations into account,
the disagreements we observe remain striking.

Conclusions

In light of the complexity of enhancer identification,
what should we do? First, we must resist the conveni-
ence of ignoring it. When interpreting non-coding vari-
ants of interest or characterizing the enhancer landscape
in a new biological context, we must be mindful that
using a single identification strategy is insufficient to
comprehensively catalog enhancers. Different assays and
algorithms have different attributes, and we suggest
employing a range of approaches to obtain a more ro-
bust view of the regulatory landscape. To facilitate this,
we have developed creDB, a comprehensive, easily quer-
ied database of over 3.5 million putative enhancer anno-
tations. However, simply focusing on variants with
multiple lines of evidence of enhancer activity will not
solve the problem, especially when our ability to quantify
the false positive rate in a genome-wide enhancer map is
limited. More sophisticated statistical models of en-
hancers and their properties are needed in order to in-
terpret non-coding variants of interest. Previous work
has shown that integrating diverse genomic, evolution-
ary, and functional data can improve the ability to distin-
guish validated enhancers from the genomic background
[29], but obtaining a concordant and functionally rele-
vant set of enhancers remains challenging. We are hope-
ful that new experimental techniques, like MPRAs, and
biologically motivated machine learning methods for
integrating different definitions of enhancers will yield
more consistent and specific annotations of regions with
regulatory functions.

Second, our study highlights the need for more refined
models of the architecture and dynamics of cis-regula-
tory regions. Many different classes of regions with
enhancer-like regulatory activities have been discovered
[4, 14, 19, 30, 34, 70, 71]. We argue that collapsing the
diversity of vertebrate distal gene regulatory regions into
a single category is overly restrictive. Simply calling all
of the regions identified by these diverse approaches
“enhancers” obscures functionally relevant complexity
and creates false dichotomies. While there is appreci-
ation of this subtlety within the functional genomics
community, there is still a need for more precise termin-
ology and improved statistical and functional models of
the diversity of cis-regulatory “enhancer-like” sequences
and their architectures. Given this diversity, we should
not expect all results to be robust to the enhancer iden-
tification strategy used.
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Finally, we believe that ignoring enhancer diversity
impedes research progress and replication, since “what
we talk about when we talk about enhancers” includes
diverse sequence elements across an incompletely
understood spectrum, all of which are likely important
for proper gene expression. Efforts to stratify enhancers
into different classes, such as poised and latent, are steps
in the right direction, but are likely too coarse given our
incomplete current knowledge. We suspect that a more
flexible model of distal regulatory regions is appropriate,
with some displaying promoter-like sequence architec-
tures and modifications and others with distinct regula-
tory properties in multiple, potentially uncharacterized,
dimensions [2, 72, 73]. Consistent and specific defini-
tions of the spectrum of regulatory activity and architec-
ture are necessary for further progress in enhancer
identification, successful replication, and accurate gen-
ome annotation. In the interim, we must remember that
genome-wide enhancer sets generated by current ap-
proaches should be treated as what they are—incomplete
snapshots of a dynamic process.

Methods

In this section, we first describe the different enhancer iden-
tification strategies that we consider. We then describe how
we obtained various annotations of functionally relevant at-
tributes for these enhancers. Finally, we describe the
analytical approaches used to compare the enhancer
sets to one another in terms of their genomic loca-
tions and annotations.

Enhancer identification methods

Here, we summarize how we defined human enhancer
sets across four biological contexts. All analyses were
performed in the context of the GRCh37/hg19 build of
the human genome. We used TSS definitions from
Ensembl v75 (GRCh37.p13).

We downloaded broad peak ChIP-seq data for three
histone modifications, H3K27ac, H3K4mel, and
H3K4me3 from the ENCODE project [32] for two cell
lines, K562 and Gm12878, and from the Roadmap Epi-
genomics Consortium [74] for two primary tissues, liver
and heart. The ENCODE broad peaks were generated by
pooling data from two isogenic replicates. The Roadmap
Epigenomics broad peaks were also generated with data
from two replicates. We chose broad peak files because
we expect histone modifications to flank active enhancer
regions, and the broad peaks represent wide regions of
relative enrichment that are likely to encompass the
functionally relevant sequences. See below for details on
consistent peak calling. We downloaded the “enhancer-
like” annotations from ENCODE (version 3.0); these
combine DHSs and H3K27ac ChIP-seq peaks using an
unsupervised machine learning model. We retrieved
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ChromHMM enhancer predictions [75] for the K562
and Gm12878 cell lines from the models trained on EN-
CODE data [15]. We downloaded ChromHMM predic-
tions for liver and heart tissues from the 15-state
segmentation performed by the Roadmap Epigenomics
Consortium. For all ChromHMM sets, we combined the
weak and strong enhancer states. We considered two en-
hancer sets for K562 and Gm12878 based on supervised
machine learning techniques—one described in Yip et al.
2012 [43], and the other in Ho et al. 2014 [44]. Yip12
predicted ‘binding active regions’ (BARs) using DNA ac-
cessibility and histone modification data; the positive set
contained BARs overlapping a ‘transcription-related fac-
tor’ (TRF), and the negative set contained BARs with no
TRF peaks. The predicted regions were filtered using
other genomic characteristics to determine the final set
of enhancers [43]. Hol4 used H3K4mel and H3K4me3
ChIP-seq peaks in conjunction with DHSs and p300
binding sites to predict regions with regulatory activity
both distal and proximal to TSSs. The distal regulatory
elements make up their published enhancer set [44]. For
K562 and Gm12878 we also downloaded p300 ChIP-seq
peaks from ENCODE [32]. We downloaded enhancer
regions predicted by the FANTOM consortium for the
four sample types analyzed [25]. We also downloaded
enhancer predictions in liver from Villar et al. 2015 [35].
We downloaded regions of nascent bidirectional tran-
scription from GRO-cap data generated for the two cell
lines, K562 and Gm12878 [39]. The transcribed regions
on matched positive and negative strands were merged
into a single annotation.

To represent enhancer identification strategies in com-
mon use, we created two additional enhancer sets for this
study using histone modification ChIP-seq peaks and
DNase-seq peaks downloaded from ENCODE and Road-
map Epigenomics. The H3K27acPlusH3K4mel track is a
combination of H3K27ac and H3K4mel ChIP-seq peak
files [4, 19, 34]. If both types of peaks were present (i.e.,
the regions overlap by at least 50% of the length of one of
the regions) the intersection was classified as an enhancer.
Similarly, to create the H3K27acMinusH3K4me3 set for
each context, we intersected H3K27ac and H3K4me3
ChIP-seq peak files and kept regions where H3K27ac
regions did not overlap a H3K4me3 peak by at least 50%
of their length. We derived the combination of H3K27ac
and H3K4me3 and the 50% overlap criterion from previ-
ous studies [14, 34, 35]. The DNasePlusHistone track is
based on the pipeline described in Hay et al. 2016 [36]. It
combines H3K4mel, H3K4me3, DNasel hypersensitive
sites (DHSs), and transcription start site (TSS) locations.
We filtered a set of DHSs, as defined by DNase-seq, for
regions with an H3K4me3 / H3K4mel ratio less than 1,
removed regions within 250 bp of a TSS, and called the
remaining regions enhancers.
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For all enhancer sets, we excluded elements overlap-
ping ENCODE blacklist regions and gaps in the genome
assembly [76]. Additionally, due to the presence of
extremely long regions in some enhancer sets, likely
caused by technical artifacts, we removed any regions
more than three standard deviations above or below the
mean length of the dataset. This filtering process re-
moved relatively few annotations (Table S11).

When considering the agreement between biological
replicates for K562, Gm12878, and liver H3K27ac ChIP-
seq data, we downloaded the FASTQ files from
ENCODE [32] and Villar et al. 2015 [35], respectively,
aligning each to GRCh37.p13 using BWA [77] (v.0.7.15,
default options). We called peaks of broad enrichment
using MACS [78] (v.1.4.2, default options). We proc-
essed each of the replicate peak files using the same
pipeline as the published peak files.

Enhancer attribute data

We downloaded evolutionarily conserved regions de-
fined by PhastCons, a two-state hidden Markov model
that defines conserved elements from multiple sequence
alignments [45]. We concatenated primate and verte-
brate PhastCons elements defined over the UCSC align-
ment of 45 vertebrates with humans into a single set of
conserved genomic regions. We downloaded the full list
of 20,458 unique GWAS SNPs from the GWAS Catalog
(v1.0, downloaded 08-10-2016) [79]. We also manually
curated the set of GWAS SNPs into subsets associated
with phenotypes relevant to liver or heart for context-
specific analyses (Table S4). We downloaded all GTEx
eQTL from the GTEx Portal (v6p, downloaded 09-07-
2016) [80]. We concatenated the data from all 44 repre-
sented tissues and ran the enrichment analysis on
unique eQTL, filtering at four increasingly strict signifi-
cance thresholds: 107% 107'%, 10°*°, and 10°°°. We
present the results from the p-value threshold of 107 °,
although the choice of threshold did not qualitatively
alter the results. We also performed separate context-
specific analyses on liver and heart specific eQTL from
GTEx (p <10 ). To identify other variants tagged by
the GWAS SNPs and eQTL, we expanded each set to
include SNPs in high LD (r*>0.9) in individuals of
European ancestry from the 1000 Genomes Project
(phase 3) [81].

Experimentally validated enhancer sequences with
activity in the heart and all negative enhancer sequences
were downloaded from the VISTA enhancer browser
(downloaded 11-16-2017) [46]. We also downloaded
sequences and Sharpr-MPRA activity levels for 15,720
putative enhancer regions tested for regulatory activity
in K562 cells using a massively parallel reporter assay
(MPRA) [47]. The Sharpr-MPRA algorithm infers a
regulatory score for each base pair in a region using a
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probabilistic model, with positive scores indicating
activating regulatory regions and negative scores indicat-
ing repressive regions. Following Ernst et al., we summa-
rized the overall regulatory activity of a given enhancer
region as the activity value with the maximum absolute
value and classified the enhancer regions into activating
(n=5373) and repressive (n=10,347) based on the
score’s sign [47].

Genomic region overlap and similarity

To quantify genomic similarity, we calculated the base
pair overlap between two sets of genomic regions, A and
B, by dividing the number of overlapping base pairs in A
and B by the total number of base pairs in B. We also
performed this calculation on element-wise level, by
counting the number of genomic regions in B overlap-
ping regions in A by at least 1bp, and dividing by the
number of genomic regions in B. We performed both
calculations for each pairwise combination of enhancer
sets. All overlaps were computed using programs from
the BEDtools v2.23.0 suite [82].

We also evaluated the similarity between pairs of gen-
omic region sets using the Jaccard similarity index. The
Jaccard index is defined as the cardinality of the inter-
section of two sets divided by cardinality of the union.
In our analyses, we calculated the Jaccard index at the
base pair level. We also computed the relative Jaccard
similarity as the observed Jaccard similarity divided by
the maximum possible Jaccard similarity for the given
sets of genomic regions, i.e., the number of bases in the
smaller set divided by the number of bases in the union
of the two sets. To visualize overlaps, we plotted heat-
maps for pairs of methods using ggplot2 in R [83].

Genomic region overlap enrichment analysis

To evaluate whether the observed base pair overlap be-
tween pairs of enhancer sets is significantly greater than
would be expected by chance, we used a permutation-
based approach. We calculated an empirical p-value for
an observed amount of overlap based on the distribution
of overlaps expected under a null model of random
placement of length-matched regions throughout the
genome. We used the following protocol: let A and B
denote two sets of genomic regions; count the number
of bp in A that overlap B; generate 1000 random sets of
regions that maintain the length distribution of B,
excluding ENCODE blacklist regions and assembly gaps;
count the number of bp in A that overlap regions in
each of the random sets; compare the observed bp
overlap count with the overlap counts from each iter-
ation of the simulation and compute a two-sided empir-
ical p-value. We used the same framework to evaluate
element-wise comparisons by counting the number of
regions in A that overlap B rather than the bps. This
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approach was performed using custom Python scripts
and the Genomic Association Tester (GAT) [84]. We
note that this measure of overlap significance is not
symmetric, and accordingly we confirmed results of our
element-wise results for both orderings of the pairs of
enhancer sets.

Enhancer conservation, GWAS catalog SNP, and GTEx
eQTL enrichment

In addition to comparing the overlap between pairs of
enhancer sets, we also computed enrichment for overlap
of evolutionarily conserved regions, GWAS SNPs, and
GTEx eQTL with each of the enhancer sets. For con-
served elements, we proceeded as described above for
comparisons between pairs of enhancer sets, but consid-
ered the conserved elements as set A and the enhancers
as set B. For GWAS tag SNPs, we considered each vari-
ant as a region in set A and the enhancer regions as set
B. We used the same approach for testing all variants in
LD (r*>09) with GWAS tag SNPs and for testing
enrichment for liver- and heart-specific GWAS tag SNP
sets. We also tested for enrichment using only the vari-
ant with the maximum number of enhancer set overlaps
for each GWAS SNP’s LD block. In this analysis, A was
the set of variants with maximum enhancer set overlap
for each LD block and B was the set of enhancers. En-
richments were computed for the eQTL SNP sets using
the same strategy as described for GWAS SNPs.

Enhancer set gene ontology annotation and similarity

We used GREAT to find Gene Ontology (GO) annota-
tions enriched among genes nearby the enhancer sets.
GREAT assigns each input region to regulatory domains
of genes and uses both a binomial and a hypergeometric
test to discover significant associations between regions
and associated genes’ GO annotation terms [57]. Due to
the large number of reported regions in each enhancer
set, we considered significance based only on the bino-
mial test with the Bonferroni multiple testing correction
(<0.05). We downloaded up to 1000 significant terms
for each enhancer set from the Molecular Function
(MF) and Biological Process (BP) GO ontologies. We
calculated the similarity between lists of GO terms using
the GOSemSim package in R [60]. GOSemSim uses
sematic similarity metric that accounts for the hierarch-
ical organization and relatedness of GO terms when
calculating the similarity score [59]. For each pair of en-
hancer sets, we calculated the similarity between their
associated GO terms, and converted the resulting simi-
larity matrix into a dissimilarity matrix. We also calcu-
lated the number of shared GO terms between pairs of
methods and manually compared the top ten significant
terms for each enhancer set.
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Since enhancers often target genes over long distances,
we also considered target predictions generated by the
JEME algorithm to assign enhancers to potential target
genes in each context [58]. JEME is a two-step process
that considers the superset of all enhancers across
contexts as well as context-specific biomarkers to make
its predictions. By intersecting each enhancer set with the
corresponding enhancer-target maps from JEME, we cre-
ated a set of putatively regulated genes for each method in
a given context. We performed GO enrichment analyses
on the gene sets using the online tool WebGestalt [85].
We downloaded the top 1000 significant terms (p < 0.05
after Bonferroni correction) for each enhancer set from
the BP and MF GO ontologies and calculated the pairwise
similarity between lists of GO terms using the same
semantic similarity metric as above.

Enrichment for known transcription factor motifs

We used AME from the MEME suite to quantify enrich-
ment for known motifs from the HOCOMOCO (v11)
core database in each enhancer set [86, 87]. Enrichment
was calculated based on a comparison to background
sequences generated by randomly shuffling the enhancer
sequences while maintaining their dinucleotide fre-
quency distribution. We used the default E-value thresh-
old of 10 to define significant enrichment. We calculated
the similarity between sets of enriched motifs using the
Jaccard index.

Genomic and functional clustering of enhancer sets

To identify groups of similar enhancers in genomic and
functional space, we performed hierarchical clustering
on the enhancer sets. For genomic similarity, we con-
verted the pairwise Jaccard similarity to a dissimilarity
score by subtracting it from 1 and then clustered the
enhancer sets based on these values. For functional simi-
larity, we clustered the lists of GO terms returned by
GREAT for each enhancer set or sets of enriched TF
binding motifs from AME. We calculated similarity of
GO terms using the GoSemSim package in R and con-
verted it to dissimilarity by subtracting the similarity
score from 1. For both the genomic and GO similarity,
we used agglomerative hierarchical clustering in R func-
tion with the default complete linkage method to itera-
tively combine clusters [88]. We visualized the cluster
results as dendrograms using ggplot2 and dendextend
[83, 89]. We performed multidimensional scaling (MDS)
on the Jaccard, GO term, and TF motif dissimilarity
matrices using default options in R [88].

Combinatorial analysis of enhancer sets and enrichment
for functional signals

We stratified genomic regions by the number of enhan-
cer identification strategies that annotate them in order
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to determine whether regions predicted to be enhancers
by more methods show greater enrichment for three
signals of function—evolutionarily conserved base pairs,
GWAS SNPs, or GTEx eQTL—compared to regions
with less support. We divided all regions predicted by
any enhancer identification method in a given context
into bins based on the number of methods that pre-
dicted it. Some enhancer regions had varying prediction
coverage and were split across multiple bins. While
infrequent (< 3% of regions), we removed all regions less
than 10 bp in length since these are unlikely to function
as independent enhancers. For each enhancer support
bin, from 1 to the number of prediction methods, we
calculated the enrichment for overlap with each func-
tional signal using the permutation framework described
above. We considered three different proxy sets: evolu-
tionarily conserved base pairs as defined by PhastCons
elements, GWAS SNPs, and GTEx eQTL. In each
enrichment analysis, the functional signal regions were
set A and the enhancer regions with a given level of
support were set B. We report the average enrichment
for each enhancer support bin with the empirical 95%
confidence intervals.

For enhancer sets with quantitative enhancer-level
scores available across contexts, we ranked each enhan-
cer by its score, and then analyzed whether regions that
have higher scores are more likely to be predicted by
other identification methods. We calculated the rank
using the ChIP-seq or CAGE-seq signal scores for a sub-
set of methods (H3K27acPlusH3K4mel, H3K27acMi-
nusH3K4me3, DNasePlusHistone, FANTOM), and the
machine learning derived score for EncodeEnhancerlike
regions. Within each set, we sorted the enhancer regions
by score and assigned ranks starting at 1 for the top-
scoring region. We then partitioned the enhancer
regions in each set by the number of other enhancer sets
that overlap at least one base pair in that region. To
compare the most confident enhancer predictions, we
subset each of the ranked methods into the top 100,
500, or 800 top enhancers. We used these subsets to cal-
culate the level of enrichment for overlap with GWAS
Catalog SNPs, GTEx eQTL, and evolutionary conserva-
tion based on the number of methods that agree on each
annotated region.

Enhancer database

We created creDB, a database of predicted cis-regulatory
elements. It currently contains all 1,371,867 predicted
enhancers analyzed in this study and representative sets
from other common contexts. It is implemented as an
SQLite database with an R interface and distributed as
an R package. Our design facilitates the integration of
creDB into a wide range of genome-wide bioinformatics
workflows, alleviating the vetting and processing that is
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necessary with flat file downloads. This sets it apart
from other efforts that collect enhancers but focus on
providing interfaces for searching a small number of
candidates or for “browsing” enhancers on a case-by-
case basis. For all enhancers, creDB contains informa-
tion about genomic location, identification strategy, and
tissue or cell type of activity. We envision creDB as a
growing community resource and encourage other re-
searchers to contribute.

Additional files

Additional file 1: Figure S1. Enhancer sets across all contexts considered
differ in both number (A) and length (B): Gm12878; Heart. Figure S2.
Enhancer sets have low amounts of overlap with each other in bp-wise
comparisons. Figure S3. Enhancer sets overlap more than expected by
chance in element-wise comparisons. Figure S4. Enhancer sets have low
amounts of overlap with each other in element-wise comparisons. Figure
S5. Enhancers identified by different methods differ in enrichment for base
pair overlap with functional attributes. Figure S6. Enhancer identification
strategies recognize different subsets of validated enhancers. Figure S7.
K562 enhancer sets have similar low levels of enrichment for activating
regions validated by Sharpr-MPRA. Figure S8. Even among the variants in
each functional LD block (* > 0.9) with the most enhancer set overlap, there
is substantial disagreement between enhancer identification methods.
Figure S9. Pairwise similarity for GO Molecular Function (MF) enrichments
for enhancer sets based on JEME's putative mappings to target genes in
K562 (A), Gm12878 (B), liver (C), and heart (D). Figure S10. Pairwise similarity
for GO Biological Process (BP) for enhancer sets based on JEME's putative
mappings to target genes in K562 (A), Gm12878 (B), liver (O), and heart (D).
Figure S11. Pairwise similarity for GO Molecular Function (MF) enrichments
from GREAT for liver enhancer sets. Figure S12. There is low pairwise
similarity between GO Molecular Function (MF) enrichments calculated with
GREAT for enhancer sets in the same context. Figure $13. There is low
pairwise similarity between GO Biological Process (BP) enrichments
calculated with GREAT for enhancer sets in the same context. Figure S14.
Clustering enhancer sets on similarity of enriched transcription factor
binding motifs illustrates different clustering of methods. Figure S15.
Regions identified as enhancers by multiple methods do not have higher
confidence scores than regions identified by a single method. Figure S16.
Score distributions for K562 enhancer sets are similar between regions
identified as enhancers by a single method and those identified by multiple
methods: (A) H3K27acPlusH3K4mel, (B) H3K27acMinusH3K4me3, (C) DNase-
PlusHistone, (D) EncodeEnhancerlike, and (E) FANTOM. Figure S17. Score
distributions for Gm12878 enhancer sets are similar between regions
identified as enhancers by a single method and those identified by multiple
methods: (A) H3K27acPlusH3K4mel, (B) H3K27acMinusH3K4me3, (C) DNase-
PlusHistone, (D) EncodeEnhancerlike, and (E) FANTOM. Figure S18. Score
distributions for heart enhancer sets are similar between regions identified
as enhancers by a single method and those identified by multiple methods:
(A) H3K27acPlusH3K4mel, (B) H3K27acMinusH3K4me3, (C) DNasePlusHis-
tone, (D) EncodeEnhancerlike, and (E) FANTOM. Figure S19. Enrichment for
functional attributes is not significantly different between regions identified
as enhancers by a single method and those identified by multiple methods
when focusing on the top 100 predictions from each method. Figure S20.
Same as Fig. S19, but considering the top 500 predictions from each
method. Table S1. The average distance (in bp) to the closest TSS over all
enhancers identified by each method in each cellular context. Table S2.
Summary statistics for pairwise percent overlap, both in a base pair and
element-wise comparison. Table S3. Number of observed VISTA heart
positive and VISTA negative overlaps for each context and enhancer
identification method. Table S4. Curated list of relevant GWAS phenotypes
for liver (n = 50) and heart (n = 169). Table S5. Enrichments for overlap with
context-specific SNPs in liver and heart. Table S6. Number of overlapping
GWAS SNPs per enhancer identification method and context. Table S7.
Enrichments for overlap with context-specific eQTL in liver and heart. Table
$8. Number of overlapping GTEx eQTL per enhancer identification method
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and context. Table S9. Number of target genes mapped to each enhancer
set by JEME. For K562 and Gm12878, p300 and GRO-cap are not included in
this mapping. Table S11. Number of enhancers removed by length filtering.
(DOCX 36740 kb)

Additional file 2: Table S10. Motif IDs and E-values for significantly
enriched transcription factor binding motifs from the HOCOMOCO (v11)
core database for enhancer identification strategies across four biological
contexts. (XLSX 176 kb)

Abbreviations

BAR: Binding active region; BP: Biological process; CAD: Coronary artery
disease; CAGE: Cap analysis of gene expression; ChIP-seq: Chromatin
immunoprecipitation sequencing; creDB: Cis-REgulatory Elements DataBase;
DHS: DNase | hypersensitivity site; DNase-seq: DNase | hypersensitivity site
sequencing; eQTL: Expression quantitative trait loci; eRNA: Enhancer RNA;
GAT: Genomic Association Tester; GO: Gene ontology; GREAT: Genomic
Regions Enrichment of Annotations Tool; GRO-seq: Global run-on sequen-
cing; GWAS: Genome-wide association study; JEME: Joint Effect of Multiple
Enhancers; LD: Linkage disequilibrium; LDL: Low-density lipoprotein;

MDS: Multidimensional scaling; MF: Molecular function; MI: Myocardial
infarction; MPRA: Massively parallel reporter assay; TRF: Transcription-related
factor; TSS: Transcription start site

Acknowledgements
Not applicable.

Authors’ contributions

DK and JAC. designed and supervised the study. M.LB. carried out the
analyses and made all Figs. M.LB, DK, and J.A.C. wrote the manuscript. S.CT.
and DK designed and implemented the creDB database and software. All
authors read and approved the final manuscript.

Funding

M.LB. was supported by the National Library of Medicine [T32LM012412].
DK was supported by the National Institutes of Health [RO1GM115836] and
a Basil O'Connor Starter Scholarship from the March of Dimes. JAC. was
supported by the National Institutes of Health [RO1GM115836,
R35GM127087], a March of Dimes Innovation Catalyst award, and the
Burroughs Wellcome Fund. The funders did not play any role in the study
design, collection, analysis and interpretation of data, or in writing the
manuscript.

Availability of data and materials
All data analyzed in this manuscript are available in the creDB R package and
database (http://www kostkalab.net/software.html).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

1Departmem of Biomedical Informatics, Vanderbilt University, Nashville, TN
37235, USA. “Department of Developmental Biology, University of Pittsburgh
School of Medicine, Pittsburgh, PA 15201, USA. 3Departmem of
Computational & Systems Biology, Pittsburgh Center for Evolutionary Biology
and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
15201, USA. “Departments of Biological Sciences and Computer Science,
Vanderbilt Genetics Institute, Center for Structural Biology, Vanderbilt
University, Nashville, TN 37235, USA.


https://doi.org/10.1186/s12864-019-5779-x
https://doi.org/10.1186/s12864-019-5779-x
http://www.kostkalab.net/software.html

Benton et al. BMC Genomics

(2019) 20:511

Received: 4 January 2019 Accepted: 7 May 2019
Published online: 20 June 2019

References

1.

20.

22.

23.

24.

25.

Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties
to genome-wide predictions. Nat Rev Genet [Internet]. 2014;15(4):272-86.
Andersson R, Sandelin A, Danko CG. A unified architecture of transcriptional
regulatory elements. Trends Genet. 2015;31:426-33.

Ong C, Corces V. Enhancer function: new insights into the regulation of
tissue-specific gene expression. Nat Rev Genet [Internet]. 2011;12(4):283-93.
Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et
al. Histone H3K27ac separates active from poised enhancers and predicts
developmental state. Proc Natl Acad Sci U S A. 2010;107(50):21931-6.
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al.
Systematic localization of common disease-associated variation in
regulatory DNA. Science (80-) [Internet]. 2012;337(6099):1190-95.

Corradin O, Scacheri PC. Enhancer variants: evaluating functions in common
disease. Genome Med [Internet]. 2014;6(10):85.

Sholtis SJ, Noonan JP. Gene regulation and the origins of human biological
uniqueness. Trends Genet [Internet]. 2010;26(3):110-8.

Reilly SK, Noonan JP. Evolution of gene regulation in humans. Annu Rev
Genom Hum Genet [Internet]. 2016;1-23.

Mack KL, Nachman MW. Gene regulation and speciation. Trends Genet
[Internet]. 2016;33(1):68-80.

Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G. Enhancers:
five essential questions. Nat Rev Genet [Internet]. 2013;14(4):288-95.
Kleftogiannis D, Kalnis P, Bajic VB. Progress and challenges in bicinformatics
approaches for enhancer identification. Brief Bioinform. 2016 Nov;17(6):967-79.
Inoue F, Kircher M, Martin B, Cooper GM, Witten DM, McManus MT, et al. A
systematic comparison reveals substantial differences in chromosomal versus
episomal encoding of enhancer activity. Genome Res. 2017,27(1):38-52.
Inoue F, Ahituv N. Decoding enhancers using massively parallel reporter
assays. Genomics [Internet]. 2015;106(3):159-64.

Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. Distinct
and predictive chromatin signatures of transcriptional promoters and
enhancers in the human genome. Nat Genet [Internet]. 2007;39(3):311-8.
Hoffman MM, Ernst J, Wilder SP, Kundaje A, Harris RS, Libbrecht M, et al.
Integrative annotation of chromatin elements from ENCODE data. Nucleic
Acids Res. 2013;41(2):827-41.

Dogan N, Wu W, Morrissey CS, Chen K-B, Stonestrom A, Long M, et al.
Occupancy by key transcription factors is a more accurate predictor of
enhancer activity than histone modifications or chromatin accessibility.
Epigenetics Chromatin [Internet]. 2015;8(1):1-21.

Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S, et al. Genome-wide
mapping of DNase hypersensitive sites using massively parallel signature
sequencing (MPSS). Genome Res. 2006 Jan;16(1):123-31.

Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al.
The accessible chromatin landscape of the human genome. Nature
[Internet]. 2012:489(7414):75-82.

Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, et al.
Histone modifications at human enhancers reflect global cell-type-specific
gene expression. Nature [Internet]. 2009;459(7243):108-12.

Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, et al.
Highly conserved non-coding sequences are associated with vertebrate
development. PLoS Biol. 2005;3(1).

L a P, Ahituv N, Moses AM, Prabhakar S, M a N, Shoukry M, et al. In vivo
enhancer analysis of human conserved non-coding sequences. Nature.
2006;444(7118):499-502.

Visel A, Prabhakar S, Akiyama JA, Shoukry M, Lewis KD, Holt A, et al.
Ultraconservation identifies a small subset of extremely constrained
developmental enhancers. Nat Genet [Internet]. 2008;40(2):158-60.

Visel A, Blow MJ, Li Z, Zhang T, J a A, Holt A, et al. ChIP-seq accurately
predicts tissue-specific activity of enhancers. Nature [Internet]. 2009;
457(7231):854-8.

Blow MJ, McCulley DJ, Li Z, Zhang T, Akiyama JA, Holt A, et al. ChIP-Seq
identification of weakly conserved heart enhancers. Nat Genet [Internet].
2010;42(9):806-10.

Andersson R, Gebhard C, Miguel-Escalada |, Hoof |, Bornholdt J, Boyd M, et
al. An atlas of active enhancers across human cell types and tissues. Nature
[Internet]. 2014;507(7493):455-61.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

39.

40.

42.

43.

44,

45.

46.

47.

48.

Page 21 of 22

Li W, Notani D, Rosenfeld MG. Enhancers as non-coding RNA
transcription units: recent insights and future perspectives. Nat Rev
Genet. 2016 Apr;17(4):207-23.

Young RS, Kumar Y, Bickmore WA, Taylor MS. Bidirectional transcription
marks accessible chromatin and is not specific to enhancers. Genome Biol
[Internet. 2017;18.

Arner E, Daub CO, Vitting-Seerup K, Andersson R, Lilje B, Drablgs F, et al.
Transcribed enhancers lead waves of coordinated transcription in
transitioning mammalian cells. Science (80- ). 2015,347(6225):1010 LP-1014.
Erwin GD, Oksenberg N, Truty RM, Kostka D, Murphy KK, Ahituv N, et al.
Integrating diverse datasets improves developmental enhancer prediction.
PLoS Comput Biol. 2014;10(6).

Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, et al.
Mapping and analysis of chromatin state dynamics in nine human cell
types. Nature [Internet]. 2011;473(7345):43-9.

Klein JC, Keith A, Agarwal V, Durham T, Shendure J. Functional
characterization of enhancer evolution in the primate lineage. Genome Biol.
2018 Jul;19(1):99.

The ENCODE Project Consortium. An integrated encyclopedia of DNA
elements in the human genome. Nature [Internet]. 2012,489(7414):.57-74.
Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, et al.
9p21 DNA variants associated with coronary artery disease impair interferon-
gamma signalling response. Nature [Internet]. 2011;470(7333):264-68.
Rada-Iglesias A, Bajpai R, Swigut T, Brugmann S a, Flynn R a, Wysocka J. A
unique chromatin signature uncovers early developmental enhancers in
humans. Nature [Internet]. 2011;470(7333):279-83.

Villar D, Berthelot C, Aldridge S, Rayner TF, Lukk M, Pignatelli M, et al.
Enhancer evolution across 20 mammalian species. Cell [Internet]. 2015;
160(3):554-66.

Hay D, Hughes JR, Babbs C, Davies JOJ, Graham BJ, Hanssen LLP, et al.
Genetic dissection of the a-globin super-enhancer in vivo. Nat Genet
[Internet]. 2016;1-12.

Zhernakova DV, Deelen P, Vermaat M, van Iterson M, van Galen M,
Arindrarto W, et al. Identification of context-dependent expression
quantitative trait loci in whole blood. Nat Genet [Internet]. 2017;49:139-45.
Weinhold N, Jacobsen A, Schultz N, Sander C, Lee W. Genome-wide analysis
of noncoding regulatory mutations in cancer. Nat Genet [Internet]. 2014;
46(11):1160-65.

Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, Lis JT. Analysis of
nascent RNA identifies a unified architecture of initiation regions at
mammalian promoters and enhancers. Nat Genet. 2014.

Parker SCJ, Stitzel ML, Taylor DL, Orozco JM, Erdos MR, Akiyama JA, et al.
Chromatin stretch enhancer states drive cell-specific gene regulation and
harbor human disease risk variants. Proc Natl Acad Sci U S A [Internet].
2013;110(44):17921-926.

Gusev A, Lee SH, Trynka G, Finucane H, Vilhjalmsson BJ, Xu H, et al.
Partitioning heritability of regulatory and cell-type-specific variants across 11
common diseases. Am J Hum Genet. 2014;95(5):535-52.
Onengut-Gumuscu S, Chen W-M, Burren O, Cooper NJ, Quinlan AR,
Mychaleckyj JC, et al. Fine mapping of type 1 diabetes susceptibility loci
and evidence for colocalization of causal variants with lymphoid gene
enhancers. Nat Genet [Internet]. 2015;47(4):381-86.

Yip KYKKY, Cheng C, Bhardwaj N, Brown JJB, Leng J, Kundaje A, et al.
Classification of human genomic regions based on experimentally
determined binding sites of more than 100 transcription-related factors.
Genome Biol [Internet]. 2012;13(9):R48.

Ho JWK, Jung YL, Liu T, Alver BH, Lee S, Ikegami K, et al. Comparative
analysis of metazoan chromatin organization. Nature [Internet]. 2014;
512(7515):449-52.

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K; et al.
Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome Res. 2005;15(8):1034-50.

Visel A, Minovitsky S, Dubchak I, Pennacchio LAVISTA. Enhancer browser - a
database of tissue-specific human enhancers. Nucleic Acids Res. 2007 Jan;
35(SUPPL. 1):D88-92.

Ernst J, Melnikov A, Zhang X, Wang L, Rogov P, Mikkelsen TS, et al.
Genome-scale high-resolution mapping of activating and repressive
nucleotides in regulatory regions. Nat Biotechnol. 2016;34(11):1180-90.
Ward LD, Kellis M. Interpreting noncoding genetic variation in complex
traits and human disease. Nat Biotechnol [Internet]. 2012;30(11):1095-1106.



Benton et al. BMC Genomics

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

(2019) 20:511

Edwards SL, Beesley J, French JD, Dunning M. Beyond GWASs:
illuminating the dark road from association to function. Am J Hum
Genet. 2013;93:779-97.

Ashoor H, Kleftogiannis D, Radovanovic A, Bajic VB. DENdb: database of
integrated human enhancers. Database. 2015;2015.

Gao T, He B, Liu S, Zhu H, Tan K, Qian J. EnhancerAtlas: a resource for
enhancer annotation and analysis in 105 human cell/tissue types.
Bioinformatics [Internet]. 2016;(August):btw495.

Pasquali L, Gaulton KJ, Rodriguez-Segui SA, Mularoni L, Miguel-Escalada |,
Akerman |, et al. Pancreatic islet enhancer clusters enriched in type 2
diabetes risk-associated variants. Nat Genet. 2014 Feb;46(2):136-43.
Hazelett DJ, Rhie SK, Gaddis M, Yan C, Lakeland DL, Coetzee SG, et al.
Comprehensive functional annotation of 77 prostate Cancer risk loci. PLoS
Genet. 2014 Jan;10(1):1004102.

Farh KK-H, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, et al.
Genetic and epigenetic fine mapping of causal autoimmune disease
variants. Nature [Internet]. 2015,518(7539):337-43.

Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, et
al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol
locus. Nature. 2010.

Almontashiri NAM, Antoine D, Zhou X, Vilmundarson RO, Zhang SX, Hao
KN, et al. 9p21.3 coronary artery disease risk variants disrupt TEAD
transcription factor-dependent transforming growth factor 8 regulation of
p16 expression in human aortic smooth muscle cells. Circulation. 2015.
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT
improves functional interpretation of cis-regulatory regions. Nat Biotechnol
[Internet]. 2010;28(5):495-501.

Cao Q, Anyansi C, Hu X, Xu L, Xiong L, Tang W, et al. Reconstruction of
enhancer-target networks in 935 samples of human primary cells, tissues
and cell lines. Nat Genet. 2017:49(10):1428-36.

Wang JZ, Du Z, Payattakool R, Yu PS, Chen C-F. A new method to measure
the semantic similarity of GO terms. Bioinformatics [Internet]. 2007;23(10):
1274-81.

Yu G, LiF, QinY, Bo X, Wu Y, Wang S. GOSemSim: an R package for
measuring semantic similarity among GO terms and gene products.
Bioinformatics. 2010;26(7):976-8.

Weedon MN, Cebola |, Patch A-M, Flanagan SE, De Franco E, Caswell R, et
al. Recessive mutations in a distal PTFTA enhancer cause isolated pancreatic
agenesis. Nat Genet. 2014 Jan;46(1):61-4.

Yao L, Tak YG, Berman BP, Farnham PJ. Functional annotation of colon
cancer risk SNPs. Nat Commun [Internet]. 2014;5:5114.

Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genome
engineering to understand the functional relevance of SNPs in non-coding
regions of the human genome. Epigenetics Chromatin. 2015,8(1):57.
Chatterjee S, Ahituv N. Gene regulatory elements , major drivers of human
disease. Annu Rev Genom Hum Genet. 2017:1-19.

McVicker G, Van De Geijn B, Degner JF, Cain CE, Banovich NE, Raj A, et al.
Identification of genetic variants that affect histone modifications in human
cells. Science (80- ). 2013;342(6159):747-9.

Kasowski M, Kyriazopoulou-Panagiotopoulou S, Grubert F, Zaugg JB,
Kundaje A, Liu Y, et al. Extensive variation in chromatin states across
humans. Science (80- ) [Internet]. 2013;342(6159):750-52.

Taudt A, Colomé-Tatché M, Johannes F. Genetic sources of population
epigenomic variation. Nat Rev Genet [Internet]. 2016;17(6):319-332.
Available from: https://doi.org/10.1038/nrg.2016.45

Catarino RR, Stark A. Assessing sufficiency and necessity of enhancer
activities for gene expression and the mechanisms of transcription
activation. Genes Dev. 2018;32(3-4):202-23.

Dao LTM, Galindo-Albarrén AO, Castro-Mondragon JA, Andrieu-Soler C, Medina-
Rivera A, Souaid C, et al. Genome-wide characterization of mammalian promoters
with distal enhancer functions. Nat Genet [Internet]. 2017:49(7):1073-81.
Pradeepa MM, Grimes GR, Kumar Y, Olley G, Taylor GCA, Schneider R, et al.
Histone H3 globular domain acetylation identifies a new class of enhancers.
Nat Genet [Internet]. 2016;48:681-86.

Zhou J, Troyanskaya OG. Probabilistic modelling of chromatin code
landscape reveals functional diversity of enhancer-like chromatin states. Nat
Commun [Internet]. 2016;7:1-9.

Kim TK, Shiekhattar R. Architectural and functional commonalities between
enhancers and promoters. Cell. 2015;162(5):948-59.

73.

74.

75.

76.

77.

78.

79.

80.

82.

83.

84.

85.

86.

87.

88.

89.

Page 22 of 22

Andersson R. Promoter or enhancer, what's the difference? Deconstruction
of established distinctions and presentation of a unifying model. BioEssays.
2015;37(3):314-23.

Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J,
Bilenky M, Yen A, et al. Integrative analysis of 111 reference human
epigenomes. Nature [Internet]. 2015;518(7539):317-30.

Ernst J, Kellis MCHMM. automating chromatin-state discovery and
characterization [Internet], Nat Methods. 2012,9:215-6.

Kundaje A. A comprehensive collection of signal artifact blacklist regions in
the human genome. Site/Anshulkundaje/Projects/Blacklists (Last Accessed
30 [Internet]. 2013; Available from: https://sites.google.com/site/
anshulkundaje/projects/blacklists.

Li H, Durbin R. Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics. 2009;25(14):1754-60.

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al.
Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9).

Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The
NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic
Acids Res. 2014;42(D1).

The GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat
Genet [Internet]. 2013;45(6):580-85.

1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM,
Garrison EP, Kang HM, et al. A global reference for human genetic variation.
Nature [Internet]. 2015;526(7571):68-74.

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;,26(6):841-2.

Wickham H. ggplot2 [Internet]. Elegant Graphics for Data Analysis.
2009. p. 221

Heger A, Webber C, Goodson M, Ponting CP, Lunter G. GAT: a simulation
framework for testing the association of genomic intervals. Bioinformatics.
2013;29(16):2046-8.

Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more
comprehensive, powerful, flexible and interactive gene set enrichment
analysis toolkit. Nucleic Acids Res. 2017;45(W1):W130-7.

McLeay RC, Bailey TL. Motif enrichment analysis: a unified framework and an
evaluation on ChIP data. BMC Bioinformatics. 2010.

Kulakovskiy IV, Vorontsov IE, Yevshin IS, Sharipov RN, Fedorova AD,
Rumynskiy El, et al. HOCOMOCO: towards a complete collection of
transcription factor binding models for human and mouse via large-scale
ChIP-Seq analysis. Nucleic Acids Res. 2018.

R Core Team. R Core Team (2015). R: a language and environment for
statistical computing. R found stat Comput Vienna, Austria. R Foundation for
Statistical Computing; 2015. http://www.Rproject.org/

Galili T. Dendextend: an R package for visualizing, adjusting and comparing
trees of hierarchical clustering. Bioinformatics. 2015;31(22):3718-20.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.1038/nrg.2016.45
https://sites.google.com/site/anshulkundaje/projects/blacklists
https://sites.google.com/site/anshulkundaje/projects/blacklists
http://www.Rproject.org/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	A panel of enhancer identification strategies across four biological contexts
	Enhancers identified by different strategies in the same context differ substantially
	The genomic coverage of different enhancer sets varies by several orders of magnitude
	Enhancer sets overlap more than expected by chance but have low genomic similarity
	Enhancer sets have different levels of evolutionary conservation
	Identification strategies highlight different subsets of experimentally validated enhancers

	Interpretation of GWAS hits and eQTL is contingent on the enhancer identification strategy used
	Enhancers identified by different strategies have different functional contexts
	Genomic and functional clustering of enhancer sets
	Combining enhancer sets does not strongly increase evidence for regulatory function
	A tool for evaluating of the robustness of conclusions across enhancer identification strategies

	Discussion
	Conclusions
	Methods
	Enhancer identification methods
	Enhancer attribute data
	Genomic region overlap and similarity
	Genomic region overlap enrichment analysis
	Enhancer conservation, GWAS catalog SNP, and GTEx eQTL enrichment
	Enhancer set gene ontology annotation and similarity
	Enrichment for known transcription factor motifs
	Genomic and functional clustering of enhancer sets
	Combinatorial analysis of enhancer sets and enrichment for functional signals
	Enhancer database

	Additional files
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

