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Abstract

Background: Recent advances in genomics have greatly increased research opportunities for non-model species.
For wildlife, a growing availability of reference genomes means that population genetics is no longer restricted to a
small set of anonymous loci. When used in conjunction with a reference genome, reduced-representation sequencing
(RRS) provides a cost-effective method for obtaining reliable diversity information for population genetics. Many software
tools have been developed to process RRS data, though few studies of non-model species incorporate genome
alignment in calling loci. A commonly-used RRS analysis pipeline, Stacks, has this capacity and so it is timely to compare
its utility with existing software originally designed for alignment and analysis of whole genome sequencing data. Here
we examine population genetic inferences from two species for which reference-aligned reduced-representation data
have been collected. Our two study species are a threatened Australian marsupial (Tasmanian devil Sarcophilus harrisii;
declining population) and an Arctic-circle migrant bird (pink-footed goose Anser brachyrhynchus; expanding population).
Analyses of these data are compared using Stacks versus two widely-used genomics packages, SAMtools and GATK. We
also introduce a custom R script to improve the reliability of single nucleotide polymorphism (SNP) calls in all pipelines
and conduct population genetic inferences for non-model species with reference genomes.

Results: Although we identified orders of magnitude fewer SNPs in our devil dataset than for goose, we found
remarkable symmetry between the two species in our assessment of software performance. For both datasets, all three
methods were able to delineate population structure, even with varying numbers of loci. For both species, population
structure inferences were influenced by the percent of missing data.

Conclusions: For studies of non-model species with a reference genome, we recommend combining Stacks output
with further filtering (as included in our R pipeline) for population genetic studies, paying particular attention to potential
impact of missing data thresholds. We recognise SAMtools as a viable alternative for researchers more familiar with this
software. We caution against the use of GATK in studies with limited computational resources or time.
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Background
Decreasing sequencing costs and increasing availability
of genomic resources mean that population genetic
studies are more often utilising genomic data. Whereas
in the past tens of microsatellites may have been used to
infer population structure and answer fundamental and ap-
plied questions, now thousands of single nucleotide poly-
morphisms (SNPs) can be generated and aligned to
reference genomes [1, 2]. Reduced-representation sequen-
cing (RRS), also referred to as genotyping-by-sequencing
(GBS), or restriction-site associated DNA sequencing
(RADseq, also ddRAD), is an approach to generate
genome-wide high-throughput sequencing data [3, 4]. This
is achieved by reducing the genomic data to be sequenced
using restriction enzyme digestion and next-generation se-
quencing (NGS) of the resultant fragments [4]. While RRS
provides a cost-effective method of sequencing a large
number of genome-wide loci across many individuals,
coupling this approach with an assembled reference gen-
ome improves the reliability of genotype calls [5] and sub-
sequently improves any downstream inferences [6].
One of the initial benefits of RRS approaches was the

lack of a need for a reference genome [4]. However, now
that the costs of generating reference genomes are
declining, genetics researchers may take a top-down
approach, whereby the genome sequencing project is
undertaken first to provide the scaffold for later popula-
tion genetic studies using RRS (e.g. [7–9]). In this con-
text, biologists who start with a reference assembly may
develop familiarity with, and in-house pipelines for, bio-
informatic software designed for whole genome sequen-
cing (WGS), such as SAMtools [10] and the Genome
Analysis Toolkit (GATK) [11]. While these software can
be used for analysing RRS data, specialist tools such as
Stacks [12] are purpose built for RRS, and designed for
use with or without a reference genome [12–14]. In
practice, the algorithms underlying software tools for
analysing WGS versus RRS data can differ considerably,
which in turn may influence conclusions drawn. For ex-
ample, calibration of GATK SNP calling parameters is
highly dependent on known variant datasets [15], mak-
ing parameterisation problematic for non-model species.
Many studies have found major differences in resultant

datasets produced using various WGS [16, 17] or RRS
[5] software tools, but none have specifically compared
the analysis of reference-aligned RRS data in Stacks ver-
sus two widely used genome software packages, SAM-
tools and GATK. This knowledge gap has been noted by
the software developers themselves [14] and so our study
serves to fill this gap. Furthermore, comparisons be-
tween analysis tools have focused largely on computa-
tional efficiency and the total number of SNPs obtained
[5, 18] and few have examined the critical problem of
whether biological interpretations of real data are
affected by alternate pipelines [6]. This application is
important, because fundamental genomic differences
between threatened and non-threatened species (such as
variation in levels of diversity, inbreeding and linkage
disequilibrium) have the potential to impact our analyt-
ical choices, inference, and the transferability of popula-
tion genetic findings [19]. As concerns over the current
biodiversity crisis deepen, there has been a call for the
greater use of genetic and genomic data in the manage-
ment of species both in captivity and the wild [20, 21].
In this study, we employed three widely-used pro-

grams, Stacks, SAMtools and GATK, to call variants
from reference-aligned RRS data collected from two
species with very different demographic histories, and
determine how differences between these analysis pipe-
lines impact population interpretations across contexts.
Our first study species is a threatened Australian marsu-
pial, the Tasmanian devil Sarcophilus harrisii (hereafter
“devil”). The devil has exhibited a severe population
crash due to the emergence of a contagious cancer, devil
facial tumour disease (DFTD) in the 1990s [22, 23]. To
aid conservation of the species, the devil genome was
sequenced in 2012 [24]. We generate RRS data from
devil samples and anticipate moderate population
structure between wild devils of western and eastern
Tasmania origin, based on previous analyses using
microsatellites [25, 26] and genomics [27, 28]. Our
second study species is the pink-footed goose Anser
brachyrhynchus (hereafter “goose”), which breeds in the
Arctic and overwinters in Northern Europe and has a
reference genome available [29]. For the goose, we re-
analyse a subset of the data made available by Pujolar
et al. [8]. Their study used population genetic analyses
to examine connectivity between two putatively separate
populations and infer the effects of climate and human
activities on demography of this migrant species. The
purpose of our analysis here is not to specifically recapitu-
late the population genetic investigations for these two
species. Rather, we aim to discover how inferences in two
very different species, both with known population struc-
ture, are impacted by variation in analysis tools.

Results
Within-population diversity
We applied our three analysis pipelines (Stacks, SAMtools,
GATK; all further processed with the custom R script;
Fig. 1) to a total of 131 devil samples and 40 goose samples.
Our main results focus on two major study populations of
each species, which were expected to show genetic differ-
entiation (devil [25–28]; goose [8]). The devil dataset also
contains a third population of captive individuals which are
mixed provenance between east and west [30]. We used
this latter population to test how well each analysis pipeline
discriminates among populations with mixed lineages.



Fig. 1 Overview of methods used in this study to process reduced representation sequencing data with reference genomes, with some
alternatives to software used indicated where appropriate. * Reproducibility filtering only possible if replicates or technical replicates are
performed. ** Possible sex-linked SNP filter requires knowledge of sex of samples and is based on XX/XY system, but could be reversed for
ZZ/ZW systems
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Mean sequencing coverage was similar for both species,
although more variable for geese. Mean cover for devils
was 12.8x (S.D. = 3.5, range = 7.8–32.0). For geese mean
cover was 13.3x (S.D = 6.7, range = 1.4–26.4). Unsurpris-
ingly, considering the demographic histories of the two
species, the number of SNPs returned for each differed
substantially (Table 1), although we acknowledge that the
laboratory methods for the two datasets were also differ-
ent (see [8]; Additional file 1: Supplementary Methods).
After all filtering steps (including a 70% call rate), the
GATK pipeline obtained the highest number of SNPs for
both species: 1464 for devil and 277,362 for goose. Stacks
returned a similar number of SNPs as GATK for devils,
while Stacks and SAMtools approaches returned a sub-
stantially smaller number of SNPs than GATK for goose
(Table 1); we note we used the same stringency cut-offs
for all three data processing pipelines, as far as the user-
definable parameters of each software permitted (Fig. 1).
For both species, mean multilocus heterozygosity esti-

mates obtained using Stacks and GATK were noticeably
lower than for SAMtools (Table 1). Genotype ratios
(ratios of genotypes called as either of the two



Table 1 Summary statistics for the resultant SNP loci datasets of three pipelines, filtered at a 70% call rate (see Additional file 1:
Table S1 for data filtered on 30% call rate), for Tasmanian devil (N = 131) and pink-footed goose (N = 40), including total number of loci
(total loci), average number of loci sequenced across individuals (mean loci), amount of missing data (%), calculated error rates (%),
mean observed heterozygosity across loci (HO), mean expected heterozygosity across loci (HE), and average multilocus heterozygosity of
individuals (MLH)

Dataset Pipeline CPU hoursa Total loci Mean loci (min; max) % missing Error rate (%)b HO (± SD) HE (± SD) MLH (± SD)

Devil Stacks 16 1359 1177.3 (500; 1326) 13.4 2.9 0.207 (0.149) 0.248 (0.163) 0.205 (0.043)

SAMtools 55 251 205.8 (96; 236) 18.0 6.6 0.308 (0.160) 0.327 (0.115) 0.298 (0.092)

GATK 325 1464 1297.2 (604; 1442) 11.4 5.3 0.185 (0.139) 0.256 (0.161) 0.184 (0.040)

Goose Stacks 11 52,053 44,914.4 (954; 50,517) 13.7 NA 0.132 (0.127) 0.156 (0.136) 0.127 (0.026)

SAMtools 14 26,437 22,035.0 (732; 23,732) 16.7 NA 0.256 (0.160) 0.307 (0.142) 0.563 (0.158)

GATK 65 277,362 245,412.2 (6787; 270,0084) 11.5 NA 0.137 (0.121) 0.187 (0.149) 0.132 (0.034)
aCPU hours represent total computational time for each pipeline excluding alignment and the further filtering in R. Note that while some steps can be parallelised
for quicker computation, not all steps allow for this
bError rates could not be calculated for the pink-footed goose dataset as no replicates were included in the current analysis. Error rate is calculated after filtering
on SNPs with > 85% reproducibility, so is lower than initial error rates
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homozygotes or as heterozygotes) were similar between
species but varied across pipelines (Additional file 1:
Figure S1). SAMtools was more likely to call hete-
rozygous genotypes than either Stacks or GATK,
explaining the higher heterozygosity estimates for SAM-
tools (Table 1). Stacks was more likely to call the most
common homozygote (Additional file 1: Figure S1).
By aligning our datasets to reference genomes we were

able to unambiguously identify each SNP based on its
genomic position and determine the degree of con-
sistency among the three analysis methods. For devil,
across all three pipelines, a total of 2060 unique SNPs
were identified; 155 (7.5%) of these were identified by all
three methods (Additional file 1: Figure S2a). For goose,
this pattern was similar: 78,235 unique SNPs were iden-
tified, of which 3283 (4.2%) were common to all three
methods (Additional file 1: Figure S2b). Concordance
rates between genotype calls across pipelines, calculated
according to shared loci, were high (Table 2). Concord-
ance rates were slightly higher for devils (for which SNPs
Table 2 Genotypic differences between loci common to the 3 pipe
rates (identical genotype calls between samples) between pipelines
the percent of total genotypes

Stacks:SAMtools

Devil (97.77)

Homozygous → Homozygous 0.00005

Homozygous → Heterozygous 0.00039

Heterozygous → Homozygous 0.01719

Goose (97.06)

Homozygous → Homozygous 0.00019

Homozygous → Heterozygous 0.00395

Heterozygous → Homozygous 0.01920

Homozygous → Homozygous refers to those loci where an AA is called a TT in the
calls that are homozygous in the first pipeline but called heterozygous in the other
calls that are heterozygous in one pipeline but called homozygous in the other for
were filtered on their reproducibility; see below) than
goose (where no replicates were performed so the error
rate could not be reduced). Concordance was also higher
between both Stacks and GATK and Stacks and SAM-
tools than for GATK and SAMtools for both species
(Table 2). Comparing the genotypes that differed be-
tween samples across the different pipelines, Stacks was
more likely to call a genotype heterozygous that was
called homozygous in either SAMtools or GATK. There
were very few homozygous to alternate homozygous dis-
cordant genotype calls between all pipelines (Table 2).
For devil only, a subset of 35 individuals were sequenced

twice, allowing us to compare the reproducibility of geno-
type calls from our three pipelines. The Stacks pipeline
had the highest reproducibility, with an error rate prior to
filtering on reproducibility of 5.9%, which reduced to 2.9%
after filtering out loci with poorest reproducibility. The
error rate between technical repeats was 12.3% for both
SAMtools and GATK. Error rates improved to 6.6 and
5.3% respectively after filtering on reproducibility.
lines for devils (155 loci) and geese (3283 loci). Concordance
are in parentheses. Discordant genotype calls are presented as

Stacks:GATK GATK:SAMtools

(98.15) (98.92)

0.00010 0.00005

0.00227 0.00197

0.01369 0.00670

(97.64) (97.85)

0.00018 0.00043

0.00628 0.00394

0.01355 0.01327

other pipeline for example. Homozygous → Heterozygous are any genotype
for that sample at the same locus. Heterozygous → Homozygous are those
that sample at the same locus
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Between-population divergence
All three pipelines recovered the expected population
structuring of both study species, with some variation
among analysis methods. For both species, differenti-
ation visualised using a principle coordinates analysis
(PCoA) was clearest with the GATK pipeline, relative
to the Stacks and SAMtools pipelines (Fig. 2). For
devils, we also reanalysed our dataset with the
addition of N = 66 captive animals (with a mixture of
genetic heritage) and found that these fell intermediate to
the two major populations, as expected (Additional file 1:
Figure S3).
When analysed utilising pairwise FST, we saw higher

differentiation between our two major populations for
devil than for goose (Table 3). Nevertheless, patterns
across the three analysis methods were similar for both
species: data processed by all three pipelines provided
FST values that were similar (Table 3). These findings are
consistent with our PCoA results, described above. Both
species showed evidence of statistically significant popu-
lation differentiation (Table 3).
Each analysis method produced a varying amount of

missing data (Table 1), but filtering less stringently (30%
vs 70% call rate) to allow more missing data (and thus a
greater number of loci) did not generally change the
qualitative interpretation of our results by PCoA nor FST
for either species. The exception is the Stacks analysis
for goose, where the inclusion of many thousands more
SNPs with low call rate obscured population inference
(Additional file 1: Figure S4).
Fig. 2 PCoAs of the two datasets after processing through three pipelines
For devils, red is the “west” (N = 47) and blue is the “east” (N = 18) populati
(N = 20) population. Inertia ellipses illustrate groupings and do not necessa
Discussion
We examined population genetic inferences drawn from
RRS data for two very different species with reference
genomes using three analytical pipelines. Reference-
aligned RRS analyses are poised to become much more
common as a greater number of reference genomes be-
come available. Genomes are no longer restricted to
model species, and global initiatives such as the Earth
Biogenome Project [31] aim to sequence all eukaryotic
life, whilst targeted initiatives focus either on regionally
important species (such as the Oz Mammals Genome
Project [32]) or on particular taxa (such as the Birds 10K
Project [33]). With an increasing proliferation of refer-
ence genomes, researchers skilled in the use of WGS
alignment and assembly software (such as SAMtools
[10] and GATK [11]) may prefer to use these tools when
expanding their studies to include population-level RRS
data. However, our results demonstrate the utility of
purpose-built RRS pipelines with reasonable computa-
tional demands (such as combining Stacks with our cus-
tom R script) intended for use in non-model organisms.
Although all of the analytical pipelines we examined

were able to detect genetic structure between the two
populations of both species, there were differences in
the resultant datasets. Due to the greater number of
SNPs obtained, GATK may perform better for conduct-
ing analyses such as genome-wide associations that re-
quire a high marker density, however we note that
computational resources required may be a limiting fac-
tor for use of GATK when studying non-model
with a call rate of 70% and the custom R script as outlined in Fig. 1.
on. For goose, red is the “Iceland” (N = 20) and blue is the “Denmark”
rily indicate confidence



Table 3 Population pairwise FST values for each analysis with 95% confidence intervals generated over 2000 bootstraps. In devils,
Pop1 refers to the Western population (N = 47), Pop2 refers to the Eastern population (N = 18), and Pop3 refers to the insurance
population (N = 66). In geese, Pop1 refers to the Iceland population (N = 20) and Pop2 refers to the Denmark population (N = 20)

Dataset Pipeline Pop 1:Pop 2 Pop 1:Pop 3 Pop 2:Pop 3

Devil (70% call rate) Stacks 0.100 (0.090, 0.110) 0.030 (0.027, 0.034) 0.025 (0.021, 0.029)

SAMtools 0.071 (0.056, 0.088) 0.019 (0.014, 0.025) 0.025 (0.017, 0.033)

GATK 0.094 (0.084, 0.103) 0.029 (0.026, 0.033) 0.025 (0.021, 0.029)

Devil (30% call rate) Stacks 0.091 (0.084, 0.100) 0.026 (0.023, 0.029) 0.025 (0.021, 0.029)

SAMtools 0.067 (0.057, 0.078) 0.026 (0.022, 0.030) 0.015 (0.011, 0.021)

GATK 0.091 (0.083, 0.099) 0.028 (0.025, 0.031) 0.026 (0.022, 0.030)

Goose (70% call rate) Stacks 0.034 (0.032, 0.035)

SAMtools 0.038 (0.036, 0.039)

GATK 0.033 (0.032, 0.033)

Goose (30% call rate) Stacks 0.017 (0.016, 0.019)

SAMtools 0.092 (0.091, 0.093)

GATK 0.046 (0.045, 0.047)
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organisms (Table 1). Both SAMtools and GATK had
higher initial error rates than Stacks, which could impact
reliability for individual-level analyses, although our cus-
tom R script allows SNPs to be filtered out based on re-
producibility to improve error rates, if replicates are
performed. Stacks produced a comparable number of
SNPs to GATK for devils, but far fewer for geese, and yet
performed similarly well in detection of population struc-
ture in both species, with far less computational invest-
ment (Table 1, Fig. 2).
For both species, we observed a low percentage of

shared loci across pipelines, which may introduce a
source of ascertainment bias if extending a study to in-
clude more samples and using a prior set of defined loci.
This observation may raise a potential red flag for many
types of analyses (such as estimating allele frequencies
or calculating linkage disequilibrium [34]), although it
did not impact the population structure analyses we
conducted here. Nevertheless, we note that genotype con-
cordance across the shared loci was high. The tighter clus-
tering of the two devil populations demonstrated by the
SAMtools PCoA and the lower estimations of pairwise
FST relative to Stacks and GATK, is likely influenced by
the greater proportion of heterozygous genotype calls in
that dataset. The apparent over-representation of hetero-
zygous genotype calls in SAMtools can of course be ad-
dressed with additional data filtering which would be
specific to each study so should be parameterised at the
outset in future population genetic studies. Considering
compute time and downstream population inferences,
Stacks combined with the custom R script was the best
performer of the three software packages we tested, and
provided results that were independent of number of loci
or percentage missing data for devils, but was influenced
by missing data for geese.
In this study, we compared analysis pipelines using
real datasets for two very different study species. Tas-
manian devils are known to have low genetic diversity
[27] and their numbers are declining due to DFTD [22].
The pink-footed goose, on the other hand, has higher
genetic diversity and an expanding population [8]. As
shown here, there are differences between the three
pipelines observed in the PCoAs and pairwise FST com-
parisons. These may result in different recommenda-
tions, which may impact the genetic outcomes of the
populations in question. We used the same parameters
for each species for the purpose of comparison and note
that our MAF thresholds may not be suitable for both
populations given expected levels of diversity and sample
sizes. The sample sizes were quite different and may have
resulted in more alleles being sampled in the devil dataset,
which has likely influenced population-level results [35].
We recommend MAF thresholds are parameterised at the
outset of studies using RRS approaches.
Here we provide researchers with a customisable R

pipeline (Additional file 2) that can be used for down-
stream analysis with data outputs in VCF format from
any of these, or similar, software packages. The R pipe-
line works with VCF outputs from either initial align-
ment to a reference genome or de novo assembly and
SNP calling. Our script allows for flexibility in choosing
filtering thresholds by visual assessment of SNP data, as
appropriate thresholds will differ between species, geno-
typing methods and downstream applications [36].
Filtering options include minimum read depth of both
alleles (a feature that can be controlled in de novo align-
ment in Stacks with the -m parameter, but which is not
implemented within Stacks for reference alignment),
coverage difference, call rate, minor allele frequencies
(MAF), heterozygosity and potentially sex-linked SNPs



Wright et al. BMC Genomics          (2019) 20:453 Page 7 of 10
(based on XX/XY sex determination, though this could
easily be reversed for ZZ/ZW organisms). An additional
feature designed specifically to make use of the technical
replicates performed by DArT PL is the reproducibility
filter and error rate calculation, which can be extended
to any RRS project where replicates have been used. The
dartR package [37] contains functions for many of these
filtering steps, however requires the proprietary DArT
PL results spreadsheet as input for full functionality.
Our custom R script can reproduce metrics provided by
DArT PL from user-processed data, including SNP data
from other RRS methods, allowing researchers to fully
customise their analytical pipelines. The R script can be
run on a standard personal computer in most scenarios,
or on high performance computers, as is required with
the thousands of SNPs output from GATK. We have
specifically designed this pipeline so that researchers
who work closely with conservation managers [38] can
use genomic data to assist in making informed manage-
ment decisions for species of conservation concern.

Conclusion
While all pipelines performed well, they each have pros
and cons which differ depending on the diversity present
in the population and the amount of missing data.
Stacks was less than optimal when missing data levels
were high for goose as the populations could no longer
be discriminated. SAMtools did not perform as well
when the number of SNPs were low for devils so the
diversity present was not great enough to discriminate
between the populations as well as Stacks and GATK.
GATK performed well but computational burden may
exclude its use in some species of conservation concern
where access to high performing compute resources may
be limited and management decisions need to be made
quickly following data collection. For our datasets, the
Stacks pipeline combined with our custom R script is a
robust and computationally efficient method for analysis
of RRS data for both conservation-dependent and wide-
spread species.

Methods
Datasets
Devil RRS data were obtained using DArTseq following
[39], with full details provided at Additional file 1:
Supplementary Methods (see Additional file 1: Figure S5
for sample quality). The restriction enzyme combination
used was PstI-SphI, with fragments sequenced on an
Illumina HiSeq 2500 as 77-bp single-end reads. Our
devil dataset included animals originating from Western
Tasmania (“Population 1”, N = 47) and Eastern Tasmania
(“Population 2”, N = 18). In a further analysis we also
considered data from N = 66 captive animals, which col-
lectively comprised a mix of these two source
populations and offspring thereof (“Population 3”).
Methods for the goose RRS are reported at [8]. In brief,
a ddRAD protocol was used with restriction enzymes
Pst-HF and MSp1, and libraries sequenced on an Illu-
mina HiSeq 2500 as 79-bp paired-end reads. We used
data [40] for the Iceland (“Population 1”, N = 20) and
Denmark (“Population 2”, N = 20) sites, as reported
in [8].

Data cleaning
Stacks process_radtags was used on both devil and
goose datasets to clean reads, removing those with any
uncalled bases or low quality scores prior to aligning,
and remove barcodes if necessary (devil data only,
goose data already de-barcoded; see Additional file 1:
Supplementary Methods).

Alignment to reference genomes
Stacks pipeline
For both species, we used the Burrows-Wheeler aligner
(BWA) v0.7.15 ‘aln’ function [41] to align single-end
reads (devil) or paired-end reads (goose) following [14]
to the respective reference genome [24, 29]. For our
devil data, bias in per base sequence content was de-
tected in the first 5 bases of reads (adaptor region) with
FastQC so these were trimmed during the genome
alignment step (−B 5) to remove the restriction enzyme
cut site (PstI-HpaII). The BWA ‘samse’ function (devil,
single-end reads) or ‘sampe’ function (goose, paired-end
reads) was used to generate alignments in SAM format,
which were converted to BAM format and ordered and
indexed using SAMtools v1.6. Cleaned, trimmed, aligned
data were then used as input for further analyses.

SAMtools and GATK pipelines
For our devil data, the first 5 bases were trimmed prior
to alignment using bbDUK [42]. The ‘mem’ function in
BWA was used to align reads following best practise
guidelines [15], to the devil reference genome [24]
followed by the SAMtools ‘sort’ function [10] to sort by
genomic coordinate. Local realignment around indels
was conducted using GATK IndelRealigner [11]. For our
goose data, cleaned reads were aligned to the pink-
footed goose genome [29] with BWA ‘mem’ followed by
SAMtools sort and local realignment with GATK as per
the devil data.

Calling loci
Our three bioinformatic pipelines use slightly different
methods to identify SNPs. To summarise, Stacks builds
a catalogue of loci grouped across individuals [12], and
applies a Bayesian maximum-likelihood approach devel-
oped by [43] that incorporates population genotype fre-
quency information. GATK and SAMtools implement
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Bayesian approaches to call genotypes. GATK considers
all reads covering a locus, as well as expected heterozy-
gosity, to compute the posterior probability of a
genotype [11]. SAMtools additionally includes Hidden
Markov models to calibrate SNP calls using base align-
ment quality (BAQ) scores [44, 45].

Stacks pipeline
We used the Stacks v2.0b pipeline to process the sorted
BAM files. The ‘gstacks’ module was run with default
parameters (--model marukilow and --var-alpha 0.05) to
create a catalogue of SNPs across our sample set as a
single population. We ran the ‘populations’ module with
the following parameters: a minimum call rate of 70%
(−r 0.70), a maximum observed heterozygosity of 70%
for devils (--max_obs_het 0.70) or 80% for goose (a
higher threshold was chosen due to the much lower
sample size), a minimum minor allele frequency (MAF)
of 0.01 (--min_maf 0.01), and the --write_random_snp
flag to randomly select only one SNP per locus.

SAMtools pipeline
SNPs were called from the realigned, sorted BAM files
using SAMtools mpileup [10] with minimum base and
mapping quality scores of 30. The coefficient for down-
grading mapping quality of reads with excessive mis-
matches was set to 50 and bcftools call -m 6 was used to
set a minimum depth of six reads to call a locus. This
value was chosen to most closely simulate the Stacks
parameter m = 3, which is minimum depth to call an
allele, hence this was doubled to equate to minimum
depth to call a locus. BCFtools merge [10] was used to
merge single sample VCFs into a multi-sample VCF and
filter on genotyping rate (min 70%, similar to Stacks -r)
and MAF of 1% with VCFtools [46], to reflect the values
used in the Stacks pipeline.
GATK pipeline
The realigned, sorted BAM files were used as input into
GATK’s HaplotypeCaller [11] to produce individual gvcf
files that were input into GATK’s GenotypeGVCFs to
create a multi-sample gvcf file. VCFtools was again used
to conduct preliminary data filtering using the same pa-
rameters as the SAMtools pipeline.

Custom R script
Within our custom R script (Additional file 2), we con-
verted the VCF files from each of the three pipelines for
the two species using the vcfR package [47] in order to
extract the genotypes and associated metadata such as
read depth. We further filtered the SNP set on average
allelic depth, coverage difference, reproducibility and
sex-linked SNPs. For SAMtools and GATK datasets, we
also filtered on maximum observed heterozygosity as
per the parameters used in Stacks. We set a minimum
average read depth for both the reference and SNP allele
as 2.5×. We calculated coverage difference as the per-
centage difference at each SNP between the read depth
of the reference allele and SNP allele, and used a cover-
age difference of ≤80% as our cut-off. DArT PL performs
technical replicates during the sequencing process, so
for our devil dataset we calculated a measure of repro-
ducibility as the genotype call error rate at each SNP be-
tween technical replicates once missing data is removed
and filtered at > 85% reproducibility. We then recalcu-
lated error rate post-filtering. The goose dataset did not
have replicates available for calculation of error rates or
filtering on reproducibility.
In mammals, females are the homogametic sex with

two X chromosomes, and males are heterogametic XY,
whilst in birds females are heterogametic ZW and males
are homogametic ZZ. We had accurate sex data for all
devil samples and could therefore identify and filter out
SNPs that may be sex-linked if no heterozygotes were
present in the heterogametic sex but at least one hetero-
zygote was present in the homogametic sex. We note
however that this is a stringent filter and could be ad-
justed for sequencing errors. We did not have this infor-
mation for goose and so did not apply any further
filtering in this respect.

Within-population diversity
The three resulting SNP datasets (Stacks, SAMtools and
GATK) for each species were assessed for their ability to
examine our study populations using a set of markers
mapped to the genome. Data filtering and transforma-
tions were conducted using the custom R script for all
datasets. For each of the datasets, summary statistics of
observed (HO) and expected heterozygosity (HE) across
loci were calculated using the adegenet package for R
[48, 49]. The multilocus observed heterozygosity of indi-
vidual devils (MLH) was calculated as a proportion of
heterozygous loci across each individual. We extracted
the shared loci between each pipeline for both species
and used the ‘merge’ function in PLINK [50] to identify
concordance rates between genotype calls across pipe-
lines and output differing genotype calls for comparison.

Between-population divergence
We performed principle coordinate analyses (PCoA) to
discriminate population structuring and genetic cluster-
ing in the adegenet and ade4 [51] packages. This method
calculates squared pairwise Euclidean distances between
individuals allowing visualisation of population differen-
tiation. PCoAs were run using population information to
examine the structuring between “west”, “east”, or “IP”
(insurance population, captive-born) samples for devil,
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and Iceland and Denmark for goose. For devils, two dif-
ferent analyses were performed for each of the three
pipelines, the first including all individuals sequenced
(N = 131), and the second only the founding wild-born
individuals (N = 65). For devil samples with a technical
replicate (N = 35), the sample with the least missing data
from the SAMtools pipeline was selected (same sample
selected across all pipelines). Pairwise fixation indices
(FST) were calculated using the StAMPP package for R
[52], with 95% confidence intervals calculated via 2000
bootstraps across loci.

Impact of missing data
For both species, we refiltered all three pipelines less
stringently (genotyping rate of 30% rather than 70%) to
examine the impacts of missing data on population in-
ference. Calculation of summary statistics and FST, and
visualisation with PCoA were performed as above on the
less stringently filtered SNP datasets.

Additional files

Additional file 1: Supplementary Methods: Tasmanian devil reduced-
representation sequencing. Table S1. Summary statistics for the resultant
SNP loci datasets of three pipelines, filtered less stringently at a higher
allowable missing data (30% call rate; cf Table 1), for Tasmanian devil
(N = 131) and pink-footed goose (N = 40). Figure S1. Ratios of genotype
calls between the three different pipelines for devils and geese. Figure
S2. Venn diagram depicting number of shared loci between the three
different pipelines for (a) devil and (b) goose. Figure S3. PCoA of the
devil dataset only for the three pipelines, considering all three popula-
tions. Row one shows data processed with a call rate of 70%, row two
shows data processed less stringently with a call rate of 30%. Figure S4.
PCoAs of the two datasets after processing through three pipelines fil-
tered less stringently, allowing more missing data (30% call rate). Figure
S5. a) Gel image example of sample quality from 1 (highest) to 8 (no ap-
parent DNA); b) - d) Gel quality rank (rank 7 and 8 not included as too
low quality to include in study) vs. the amount of missing data of a sam-
ple for the b) Stacks, c) SAMtools and d) GATK pipelines. (ZIP 346 kb)

Additional file 2: Custom R script. (TXT 17 kb)
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