Long et al. BMC Genomics (2019) 20:470
https://doi.org/10.1186/s12864-019-5820-0

BMC Genomics

RESEARCH ARTICLE Open Access

ldentifying genetic determinants of
complex phenotypes from whole genome

sequence data

George S.Long', Mohammed Hussen', Jonathan Dench' and Stéphane Aris-Brosou

Check for
updates

1,2%

Abstract

Background: A critical goal in biology is to relate the phenotype to the genotype, that is, to find the genetic
determinants of various traits. However, while simple monofactorial determinants are relatively easy to identify, the
underpinnings of complex phenotypes are harder to predict. While traditional approaches rely on genome-wide
association studies based on Single Nucleotide Polymorphism data, the ability of machine learning algorithms to find
these determinants in whole proteome data is still not well known.

Results: To better understand the applicability of machine learning in this case, we implemented two such
algorithms, adaptive boosting (AB) and repeated random forest (RRF), and developed a chunking layer that facilitates
the analysis of whole proteome data. We first assessed the performance of these algorithms and tuned them on an
influenza data set, for which the determinants of three complex phenotypes (infectivity, transmissibility, and

pathogenicity) are known based on experimental evidence. This allowed us to show that chunking improves runtimes
by an order of magnitude. Based on simulations, we showed that chunking also increases sensitivity of the predictions,
reaching 100% with as few as 20 sequences in a small proteome as in the influenza case (5k sites), but may require at
least 30 sequences to reach 90% on larger alignments (500k sites). While RRF has less specificity than random forest, it
was never < 50%, and RRF sensitivity was significantly higher at smaller chunk sizes. We then used these algorithms to
predict the determinants of three types of drug resistance (to Ciprofloxacin, Ceftazidime, and Gentamicin) in a
bacterium, Pseudomonas aeruginosa. While both algorithms performed well in the case of the influenza data, results
were more nuanced in the bacterial case, with RRF making more sensible predictions, with smaller errors rates, than AB.

Conclusions: Altogether, we demonstrated that ML algorithms can be used to identify genetic determinants in small
proteomes (viruses), even when trained on small numbers of individuals. We further showed that our RRF algorithm
may deserve more scrutiny, which should be facilitated by the decreasing costs of both sequencing and phenotyping

of large cohorts of individuals.
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Background

An overarching goal in biology is to predict an individ-
ual’s phenotype from its genotype, in a given environment
[1], or from a given genetic makeup [2]. One possibility
is to find the genetic determinants of each phenotype of
interest — which is what genome-wide association studies
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(GWAS’s) have endeavored to achieve over the past ten
years [3]. At their foundation, GWAS’s rely on the anal-
ysis of millions of variants in the genome, without any
prior knowledge of their involvement with a particular
phenotype, over a sample of unrelated individuals: as such,
GWAS’s are often qualified of performing an “unbiased
scan of the genome” [4]. While GWAS’s have some limita-
tions that may be shared by alternative approaches (they
assume that common diseases are caused by common
variant [4], which may result in failing to explain most of
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the phenotypic variance [5]), their main issue may lie in
their reliance on Single Nucleotide Polymorphism (SNP)
data, that only offer a partial snapshot of the genome, and
that may not even contain the causative agents of the phe-
notype under study. The immediate alternative to using
SNP data would be resort to high throughput sequenc-
ing technology, and work directly with entire proteome
data [6], which are predicted to replace SNP data [3].
However, changing from focal SNP’s to whole proteome
information will radically increase the number of tests
to be performed, and might lead to statistical complica-
tions in controlling false discovery, as acknowledged at
the very outset of GWAS [7]. Recently, it was suggested
that machine learning could be used to predict suscepti-
bility to some cancers in humans [8]. Building upon these
developments, we here hypothesized that machine learn-
ing is able to go beyond predicting genomic inheritance
within a cohort of individuals, by predicting the genetic
determinants of particular phenotypes using proteome
data.

A large number of machine learning approaches exist
[9], and are gaining popularity in biology [10, 11]. For
instance, in the work just cited above, the authors resorted
to neural networks [8]. While some statisticians claim
that adaptive boosting (AB) [12] is the “best off-the-shelf
classifier in the world” [9, 13], it is probable that no
single classifier can be considered perfect in all situa-
tions — a situation known as the no free lunch theorem
[14]. Technically, AB relies on an iterated process where
linear decisions are fitted in the space of proteomic fea-
tures (amino acid positions in a protein alignment). At
each iteration, individual observations that were misclas-
sified in the previous iteration are emphasized, so that
the algorithm learns from past errors. While each itera-
tion typically leads to a weak classifier that is just a bit
better than chance, the final classifier takes advantage of
combining these weak classifiers to improve (boost) their
performance and construct a strong one [12], i.e. a clas-
sifier with an accuracy that can come close to 99% [15].
While our recent success with AB [16] prompted us to fur-
ther investigate this algorithm in the context of proteome
data, we also aimed at comparing its performance with
more popular algorithms, such as random forests [17]
(RF). The RF algorithm is essentially based on decision
trees [18], combined with a bootstrap procedure (bag-
ging) aimed at increasing the stability of the predictions,
and a random subsetting of predictors to decorrelate the
bagged trees, that are then averaged to produce the final
classifier.

As any supervised learning algorithm, AB and RF are
trained on labeled data, i.e. data for which the cor-
rect assignments are known. In our case, the proteome
data coming from an organism for which drug resis-
tance (the label / phenotype) is known. Before training
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the algorithm, the labeled data are usually split into two
subsets, a frain and a test data set, where only the for-
mer is used to train the classifier. This trained classifier is
then tested on the independent fest data set, to validate
its performances, and can then be used to classify new
individuals, which were neither part of the train nor of
the test data sets, as being “drug resistant” or not, based
solely on their proteomic information. Here however, our
goal is slightly different: we are not interested in classify-
ing individuals, but in finding the most important features
(again, these are the mutations at particular sites) that
the algorithm is learning from to correctly classify indi-
viduals. This is why training will be done on the entire
data, rather than splitting them as ¢rain and test data sets.
More specifically, during the learning process, features
(sites) are ranked by decreasing importance in fitting the
final model [19]. The algorithm weighs the influence of
each feature based on their relative importance during the
creation of the model [20], and thus uses only the most
important sites. The end result is that we have not merely
a model for predicting phenotype, but a means of identi-
fying a ranked list of the most important features [10] that
determine a particular phenotype.

To assess the ability of machine learning algorithms
to predict the genetic determinants of particular phe-
notypes, we implemented two such algorithms, AB and
a modified RF, and compared their performance in
two microbes, one for which most of these determi-
nants are known (the Influenza A virus), and one for
which little is known (the Pseudomonas aeruginosa bac-
terium). In both cases, we retrieved complete proteome
sequences of phenotyped individuals. These phenotypes
pertained either to their capacity to infect a human
host (influenza), or their resistance to particular antibi-
otics (pseudomonas). Although these two biological sys-
tems are very different, both are expected to have a
highly complex genetic basis: the molecular determi-
nants of influenza virulence and pathogenesis can span its
entire genome [21, 22], and bacterial drug resistance can
involve many distinct mechanisms [23]. We took advan-
tage of an influenza database backed by experimental
validations [24], and of a recent study of P.aeruginosa
genomics [25], to train both algorithms. We modified
both original algorithms to make them amenable to ana-
lyzing whole proteome data sets, and altered the RF
algorithm to further stabilize its predictions by intro-
ducing a Repeated Random Forest (RRF) algorithm. We
then evaluated the performance of these algorithms with
respect to either experimental validations (influenza),
or both gene annotations and cross-validations (pseu-
domonas). We discussed the advantages and limitations
of our modified algorithms in identifying the genetic
determinants of complex phenotypes from whole genome
sequence data.
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Results and discussion

Determination of the RRF thresholds on the influenza data

The influenza data represent our gold standard here, as
we can run our machine learning algorithms on them,
and compare the model predictions with experimental
evidence (Table 1). Because both algorithms (AB and
RRF) essentially return a list of sites by decreasing impor-
tance, we can use the influenza data to determine optimal
thresholds for predicting genuine genetic determinants.
Two thresholds were employed here: the percentile and
the consensus thresholds (AB only has the former). This
was done by maximizing the number of true positives,
i.e. (i) sites that are found in at least a certain number of
RF runs of the RRF (our “consensus threshold”) — given
of course that these sites are backed by experimental evi-
dence in the case of the influenza data (Table 1) — and (ii)
sites that have a high importance or mean Gini index (our
“percentile threshold”; Figure S1 in Additional file 1). By
varying both thresholds simultaneously, we determined

Table 1 Sensitivity of the algorithms on the analysis of the
influenza data

Site AB RRF Phenotype References
PB29 v v Infectivity [26]
PB2 105 v v Pathogenicity/Infectivity [27]
PB2339 v v Infectivity [28,29]
PB2 391 v Transmissibility [30]
PB2 627 v v Infectivity [31]
PB2 667 v Infectivity [32]
PB1 215 v v Pathogenicity [33]
PB1 375 v Pathogenicity [34]
PB1 757 v Infectivity [35]
HA 163 v Pathogenicity/Infectivity [36]
HA 212 v Pathogenicity/Infectivity [37]
HA 246 v v Transmissibility [38]
HA 536 v Infectivity [39]
NP 400 Pathogenicity [40]
NA 49 v Transmissibility [41]
NA 75 Transmissibility [42]
M2 31 v Pathogenicity/Infectivity [41]
NS1 127 Pathogenicity [43]
NS1 195 Transmissibility/Infectivity [44]
NS1 212 v Pathogenicity/Infectivity [45]

This table lists the genes and amino acid positions known to be involved in the
three phenotypes studied here, and which one of these were rediscovered by our
algorithms. For AB, chunk sizes of 75, 125, and 175 were used to calculate the
importance values of each site for adaptive boosting. An importance threshold of 1
was used to determine whether a site was a potential genetic determinant. For RRF,
chunk sizes of 80, 125, and 175 were used with a threshold of the 90 percentile
and a 60% consensus. Data on experimental validations are from the Influenza
Research Database [24]. Genes are ordered by segment size. See Figs. 2 and 3 for the
specificity of these algorithms
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that using a consensus threshold around 50% and the 90"
percentile (top 10% important sites) maximized the num-
ber of true positives while minimizing the false positives
(Additional file 1: Figures S2-S11). Increasing the per-
centile threshold to 95% dramatically increased false neg-
atives, while decreasing it to the 85T percentile only led
to more false positives. Likewise, we found that increasing
the consensus threshold only decreased the proportion
of false positives, without affecting sensitivity. We hence-
forth used these two RRF thresholds (50% consensus, 90
percentile).

Chunking improves runtimes, minimally affecting site
ranking

As these algorithms can have large computational require-
ments for whole proteome analyses (AB in particular),
we implemented a chunking algorithm (Additional file 1:
Figure S12). For this, each alignment was subdivided into
smaller alignments (chunks), on which each ML algorithm
was run in a first pass to determine a set of positions of
interests (AB: those with importance > 1.5; RRF: those
with a Gini index > 0.075). A second pass ran the same
ML algorithm on the entire set of positions of inter-
ests to determine the final important sites or selected
features over the entire data set. The consensus and per-
centile thresholds described above are then applied to
produce the list of genetic determinants (Additional file 1:
Figure S1).

To determine how chunking affected both the runtimes
and the predictions of the machine learning algorithms on
the influenza data, 20 chunk sizes were compared, ranging
from 75 (or 80 in the case of RRF) to 175 by increments
of five. Being much faster than AB, the RRF algorithm
was further tested beyond the initial 20 chunks, up until
the sequence alignment was analyzed in full. This was
repeated for each of the three influenza phenotypes. As
expected from its associated increased memory require-
ments, increasing chunk sizes also increased runtimes
exponentially for both AB (Fig. 1a) and RRF (Fig. 1b).
Smaller chunk sizes reduced runtimes by about an order
of magnitude (1 log;, unit) for both AB and RF. More
specifically, an analysis of covariance (ANCOVA) showed
that runtimes were similarly affected across all pheno-
types in AB (P = 0.855). However, while the slopes
of these regressions were similar, the analyses for the
pathogenicity phenotype ran the slowest (intercept: 3.85;
P = 1.12 x 107%), followed by transmissibility (inter-
cept: 2.68; P = 9.26 x 1077) and infectivity (intercept:
2.35; P = 4.61 x 107°). Similar results were observed
with RRF, where again all slopes were similar (P =
0.973), pathogenicity ran the slowest (intercept: 1.175, P <
2.00 x 10716), followed by infectivity (intercept: 1.174,
P < 2.00 x 1071%) and transmissibility (intercept: 1.168,
P < 2.00 x 10710). As the feature space was the same (the



Long et al. BMC Genomics (2019) 20:470 Page 4 of 17
(A)
T}
i
P =0.0554 +
o
— 6 ]
%)
°
5
[SITe}
ﬁ < A A A
o
o)
- <
<
+ Infectivit
g _ + IN #:ncslr\llwligsibility
A Pathogenicity
T T T T
80 100 120 140
(B)
@
P << 0.0001
2 o |
s «
Qo
o
D
&2
o < |
S <
N + Infectivity
-~ 7 A Transmissibility
Pathogenicity
T T T T T
0 1000 2000 3000 4000
Chunk Size

account by performing linear regressions (solid lines); their P-values are also
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same amino acid alignment), it must be the distribution
of the phenotypes (labels) that impacted runtimes. How-
ever, base runtimes (i.e., their intercepts) did not increase
due to class imbalance, as the most imbalanced phenotype
(transmissibility; Table 5) had an intermediate intercept
(Fig. 1a). Finally, note that RRF was actually so fast at small
chunk sizes that there was a significant overhead associ-
ated with our parallelization of the algorithm (Methods),
as linear models fitted to only chunk sizes less than 200
were highly significant (P < 2.00 x 1071°), with negative
slopes (Fig. 1b).

Not only were runtimes significantly and similarly reduced
by chunking across phenotypes and algorithms, but dif-
ferences in terms of which amino acids were predicted
to be the most important were also similar (Figs. 2-3;
see Venn diagrams in insets, and distributions of impor-
tance values for the largest chunk size). In the case of
AB, the six most important sites determining infectivity

at the smallest chunk size (75) were among the top fifteen
sites at intermediate (125) and largest (175) chunk sizes
(Fig. 2a). Furthermore, the top site, HA 108, was the most
important at all of these chunk sizes, while PB2 627 and
667 were always ranked second or third. The RRF results
showed a similar pattern in terms of which sites were the
most important (Fig. 3). In the case of infectivity, the four
top sites (HA 108, HA 536, NA 84 and NA 340) were
consistently the most important. After the fourth site, a
large drop in importance was observed, suggesting that
limited information was available at those sites. But while
this drop was also observed for transmissibility at extreme
chunk sizes, it was not observed anywhere else, suggesting
that the first large drop in ranked importance should not
be used to evaluate the relative merit of these predictions.
As expected from its repeated nature, the RRF predictions
were more stable than those under AB across chunk sizes
(compare Venn insets in Figs. 2 and 3, respectively).
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Fig. 2 Effect of chunk size on the distribution of importance of sites for the AB algorithm. The genes and sites identified as genetic determinants of
influenza phenotypes are shown for: a infectivity, b transmissibility, and € pathogenicity. Only results for the smallest (75 amino acids), intermediate
(125), and largest (175) chunk sizes are shown. Only the most important sites (importance > 1.5) are shown in each panel, with sites backed by with
experimental evidence highlighted in red. Insets show the whole distribution of importance values (left and right columns), and the Venn diagrams
of the most important sites at all three chunk size (middle column)

One tendency that emerged when increasing chunk
sizes was a decrease in sensitivity for the first pass of
the algorithm, and perhaps an increase in its final speci-
ficity for both AB and RREF. In the case of infectivity for
instance, the algorithms found a total of about 275 sites
at chunk size 75, and roughly 150 sites at chunk size 175
(Fig. 2, insets with complete distributions) for AB, and
130 sites with RRF (Fig. 3, likewise). The same pattern
was observed for the two other phenotypes, transmissibil-
ity and pathogenicity. Although beyond the scope of this
work, it is possible that an optimal chunk size exists in
terms of area under the Receiver Operating Characteristic
curve (balance between sensitivity and specificity); how-
ever, larger labeled data sets would be required for testing
this possibility.

Rediscovery of influenza determinants
So far the results showed that the predictions made by
AB were less stable across chunk sizes than those from

RRE, but they did not tell us anything about their accuracy.
While the results in Figs. 2 and 3 suggested that more true
positive sites were found by AB (with an average across
chunk sizes of 5.7, 2, and 2 for each phenotype) than by
RRF (with similar averages at 3.7, 1.3, and 4.3), Table 1 sug-
gests a more nuanced view, where RRF found 44% more
sites than AB that are backed by experimental evidence
(thirteen with RRF, nine with AB). Note finally that AB
seemed to be better at finding sites in PB2 (the longer
gene), while RRF’s rediscoveries were more evenly spread.
Unfortunately, with such small numbers, the significance
of these results is difficult to gauge.

Focusing on each phenotype, infectivity had the largest
number of sites detected, the largest number of experi-
mentally validated positions, and was the phenotype with
the most stable predictions among the three phenotypes
— see Table 1 for a full list. However, a number of sites
detected by our approach, sometimes with consistent high
importance values (e.g., HA 108 for infectivity; NA 29
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Fig. 3 Effect of chunk size on the distribution of importance of sites for the RRF algorithm. The genes and sites identified as genetic determinants of
influenza phenotypes are shown for: a infectivity, b transmissibility, and ¢ pathogenicity. Only results for the smallest (80 amino acids), intermediate
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for transmissibility), are, to our knowledge, not supported
by any experimental evidence. As a result, it is possible
that these predictions are false positives, even if absence
of experimental evidence is not evidence of absence. We
noted that with this small data set, cross-validation could
not be performed to gauge the validity of these results: by
splitting the samples ten times (equivalent to a leave-one-
out resampling strategy), class imbalance increased dra-
matically, and the probability of drawing monomorphic
alignment chunks (which lead the algorithm to fail) also
increased. On the other hand, a number of key sites listed
in the Influenza Research Database were also missed by
our machine learning algorithms (Table 1). Furthermore,
additional sites, which were not detected here, are known
genetic determinants, but in other species. For instance,
PB2 256 is known to increase polymerase activity, and
hence boost infectivity, at least in pigs [46]. Likewise, PB2
28,274, 526, and 607 do the same, but in birds [47]. As our
alignment essentially contains sequences isolated from
humans, it is possible that some of the sites we uncover

are highly specific to this particular host. However, among
these last five positions in PB2, only 526 was found to
be polymorphic. Our results are therefore promising in
that most of the known influenza sites (16 out of 20, or
80%), i.e. those supported by experimental evidence, were
rediscovered by our algorithms.

High sensitivity of RRF with chunking

In order to better understand the performance of the
RRF algorithm, we conducted a simulation study (a sim-
ilar study for AB could not be performed because of its
high computational cost). For this, we generated sequence
alignments on a 20-letter alphabet, representing the 20
amino acids found in the influenza proteome, with a
single site whose amino acids match perfectly a binary
phenotype (Additional file 1: Figure S13). We first gen-
erated alignments under a balanced design, where half
of the sequences were from the first phenotype, just as
in the influenza data. The results show that for align-
ments with at least 30 sequences, irrespective of their
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sequence lengths, RRF has maximum sensitivity (Fig. 4a),
and high specificity (Fig. 4b). With data sets containing
20 sequences or fewer, sensitivity decreases quickly as
sequence length increases, but as suggested by the empir-
ical results, smaller chunk sizes can maintain sensitivity
to at least 50% at 5000 sites. With ten sequences 5000
sites in length, as in our influenza data set, sensitivity is
pretty much 0, even for the smallest chunk size tested
in our simulations (10%). Additional simulations showed
that, at a chunk size of 2%, as in the influenza analysis
above, sensitivity could reach 10%, but also that dou-
bling the number of sequences in the alignment could
increase sensitivity to 80% (Additional file 1: Figure S14).
As expected, class imbalance decreased both sensitivity
and specificity (Fig. 4c-d), which justifies why we tried to
achieve a balanced distribution of phenotypes.

With such a balanced distribution, the specificity of RF
was always larger than that of RRF (Additional file 1:
Figure S15). However, sensitivity of RRF was higher than
that of RF (Fig. 4e), and could reach 100% with as few as
20 sequences if DNA data were analyzed (Fig. 4i-j), even
in the presence of class imbalance (Fig. 4k-1). In the bal-
anced case, the difference between RF and RRF was highly
significant (P <« 0.01), except for chunk sizes > 40%
(Additional file 1: Figure S16). Again, there was a very sig-
nificant interaction between chunk size and the number of
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sequences, with sensitivity increasing with smaller chunk
sizes and larger numbers of sequences, reaching 100%
with as few as 30 sequences and chunk sizes as large as
10% (Additional file 1: Figure S16).

Altogether, our simulations are in line with the empir-
ical results obtained on the influenza data containing
few sequences, in that our true positive rates were low
between 4 and 25% (Fig. 3), but that a small increase
in the number of sequences would significantly boost
performances (Additional file 1: Figures S14-16).

Unimpressive performance of AB on P. aeruginosa

Given these encouraging simulation and empirical results
on the influenza data, for which experimental evidence
supported some of the identified genetic determinants
of three complex phenotypes (infectivity, transmissibility,
and pathogenicity) with a small number of strains (n =
10), we analyzed an alignment of previously sequenced
bacteria (n = 26), for which we had access to minimum
inhibitory concentration (MIC) values for three antibi-
otics (Ciprofloxacin, Ceftazidime, and Gentamicin) [25] —
and for which simulations suggested that we could reach
a sensitivity > 80% with a specificity ~ 100% (Fig. 4).
We first employed AB, as this algorithm performed well
in a recent small sample size application [16]. For each
phenotype (MIC value; Fig. 5, top row), we ran the AB
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algorithm twice with a chunk size of 5000 (“runs A”; ~ 1%
of total alignment length), and twice with a chunk size of
1000 (“runs B”; ~ 0.2% of total alignment length). This
allowed us to further test how chuck size affects which
sites are detected, and how stable this detection is across
different chunk sizes. As with the influenza alignment,
increasing chunk size tended to lower sensitivity in the
first pass of the algorithm, as fewer positions of interest
had high importance (Additional file 1: Figure S17, insets).
On the other hand, sensitivity seemed to be restored, in
larger chunk sizes, after the second pass, as more sites
with importance values > 1 were found for all phenotypes
(Additional file 1: Figure S17, main panels). Additional
file 1: Figure S18 shows that only the most important sites
were identified with very similar importance values across
the four runs (and hence the two chunk sizes). When only
the top 25 sites were compared across these four runs,
only five to seven sites were shared (Additional file 1:

Figure S19). Some of these predictions are sensible: DNA
gyrase subunit B (gyrB) is known to be involved in drug
resistance [48, 49], hypothetical protein PA14_40040 (see
Ceftazidime phenotype runs) is known for its involvement
in antibiotic biosynthesis processes [50], and tonB2 is
inferred to be an iron transporter which potentially affects
bacterial drug resistance [51]. Detecting genes that were
previously unknown to be involved in drug resistance
is not uncommon, as a recent study of antibiotic resis-
tant P aeruginosa found that 12% of the assayed strains
carried novel genetic determinants [52]. What is more
unexpected though is that some of these genes are not
supposed to be involved in the mode of action of these
specific drug: for instance, Ciprofloxacin, as a fluoro-
quinolone, is known to disrupt gyrB [49], but it is also the
only drug in our results for which gyrB was not identified
(Table 3). Likewise, sbrR is a factor involved in swimming
ability [53], and would hence had been expected to be
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involved in the resistance to cephalosporins such as Cef-
tazidime, not the aminoglycoside Gentamicin (Table 3).

All these results were obtained with AB under one way
of discretizing the MIC distributions (setting 1; Table 2).
By using two other discretization schemes of the MIC
distributions, it is striking that there was almost no con-
sistency among the results (Table 3). The only proteins
identified under all three settings were PA14._40040, for
Ceftazidime, and tonB2 for Gentamicin. Even well-known
factors such as gyrB were not identified under any of the
three settings. Potential nonexclusive reasons for this lack
of consistency include class imbalance and a rather small
number of strains (n = 26) leading to unstable training.

To better quantify general performance of AB in the
case of P aeruginosa, we finally performed a ten-fold
cross-validation (CV) analysis on the 26 strains. The con-
fusion matrix, which depicts the predicted number of
strains in each MIC category (low / medium / high) in
rows, and observed numbers in columns, showed that
under setting 1, class imbalance can be quite high for
resistance to the three drugs, systematically leading to one
of the three MIC categories with absolutely no prediction.
This can be seen for instance at medium MIC values for
Ceftazidime and Gentamicin (middle row):

000 (911
Ciprofloxacin : | 0 3 3 | Ceftazidime: | 0 0 0
2612 1149
91 2]
Gentamicin: | 00 0
5110

The resulting error rates for predicting the correct MIC
categories were 42.31%, 30.77%, and 26.92%, respectively.
As there are three discrete MIC categories, with little
class imbalance, the error rate for a random classifica-
tion should be close to 67%. The AB algorithm did not
have a good performance, even if it still did better than
chance alone at predicting the MIC category (low / high)
of an unknown bacterial strain from its proteome only.
Yet, these performances explained neither the instability
of the pseudomonas results, nor their lack of complete
biological sensibility.

Table 2 The different sets of MIC thresholds employed to assess
the robustness of the classification results with AB in the case of
P. aeruginosa

Drug Setting 1 Setting 2 Setting 3
Ciprofloxacin -1/1.5 0/2 -1/72
Ceftazidime 4/6 6/8 4/8
Gentamicin 4/6 6/8 4/8
Shown are the thresholds 61 / 6, used on a log, MIC scale: for instance, setting 1 for
Ciprofloxacin means that MIC is low when < —1 (8; = —1), high when MIC > 1.5
(0> = 1.5), and medium in-between
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One possibility is that AB was actually overfitting the
data: this happens when a particular classifier accommo-
dates all the most minute singularities of a train data
set, and performs poorly on a test data set. While AB is
generally considered to be robust to overfitting [15, 54],
this can occur when too many iterations are performed
[19] — which prompted some authors to consider m,
as the AB’s main tuning parameter [55]. To assess
whether overfitting was responsible for the poor pseu-
domonas results, we reran the AB analyses under setting
1 (Table 2) with different numbers of iterations (714,41 €
{10, 25,50, 100, 200}), both in the first and second passes
of the chunking algorithm. To further assess the poten-
tial interaction with chunking, these additional analyses
were run for both chunk sizes (1000 and 5000). Additional
file 1: Figure S20 shows that most analyses show a con-
vex (concave up) CV error rate, which entails the existence
of an optimal my;,,, that allowed optimal errors rates
to be as low as 25%. Different chunk sizes had differ-
ent optimal 715, for Ciprofloxacin, e.g., the minimum
CV error rate was at mf,y = 50 at chunk size of 5000,
but at the edge of the mp,, interval tested for chunk
size 1000. Importantly, under both chunk sizes, the only
unambiguously identified protein was trpl (PA14._00460,
Table 3, underlined), a transcriptional activator impli-
cated in Tryptophan biosynthesis. Mutations in this gene
lead to reduced (albeit modest) swimming motility [56],
implicated in ciprofloxacin resistance [57]. Table 3 shows
that for the two other drugs, under optimal m15,,; values,
the genes identified with both chunk sizes were already
among the top ten genes identified by the previous analy-
sis, which suggests that, for a given discretization scheme
of the MIC values (phenotypes), these gene lists were
fairly robust to the number of iterations (171,4), and that
overfitting was probably not an issue in this application.

RRF outperforms AB on P. aeruginosa

AB showed some obvious shortcomings when analyzing
the pseudomonas data, some of which could be linked
to our discretization of the MIC curves, in addition to
large memory footprints and runtimes. RRF allowed us to
address all these issues: as this algorithm ran almost four
orders of magnitude faster than AB (Fig. 1), it was possible
to perform a more thorough search of the discretiza-
tion space by varying systematically the position of the
two thresholds (61, 62) (Fig. 5a-c). The pattern of Out-of-
bag error, with triangles of low errors along the diagonal
(Fig. 5d-f), showed that these data should be analyzed with
a single MIC threshold: dissimilar (61,6;) thresholds led
to high errors; similar (61, 62) thresholds led to low errors.
This pattern was not unexpected given the coarseness of
the MIC distributions (Fig. 5a-c). While both Ceftazidime
and Gentamicin had clear threshold minimizing the Out-
of-bag error, multiple choices existed for Ciprofloxacin.
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Table 3 Gene lists of the most important candidates for drug resistance in P. aeruginosa

Drug Setting 1

Setting 2

Setting 3

Ciprofloxacin trpl, transcriptional requlator Trpl

lysin domain-containing protein
tag, DNA-3-methylad. glycosidase |
recF, recombination protein F

D,D-heptose 1,7-bisphos. phosphatase

Ceftazidime hemolysin activ./secret. prot
hypothetical protein (PA_40040)
gyrB, DNA gyrase subunit B

Gentamicin Rossmann fold nucleotide-bind. prot.

gyrB, DNA gyrase subunit B

hemagglutinin
acyltransferase

tonB2, hypothetical protein

nirN, c-type cytochrome

hypothetical protein
HIS/PHE ammonia-lyase

LysR family transcriptional regulator

hypothetical protein (PA_40040)

sensor/response regulator hybrid

sbrR, SbrR
tonB2, hypothetical protein
hemagglutinin

tufA, elongation factor Tu

trpl, transcriptional requlator Trpl
tag, DNA-3-methylad. glycosidase |
lysin domain-containing protein
glutamine synthetase

hypothetical protein

hemolysin activ./secret. prot
hypothetical protein (PA_40040)
gyrB, DNA gyrase subunit B
hemagglutinin

recQ, ATP-depend. DNA helicase

tonB2, hypothetical protein
hemagglutinin
sbrR, SbrR

hemolysin activ./secret. prot

hemolysin activ./secret. prot

Shown are the genes identified in all four runs under the four settings defined in Table 2. For each drug, the genes identified in all three settings are highlighted (boldface), as
well as those found in two out of the three settings (italics). Gene names that are underlined (setting 1 only) are those identified during the cross-validation experiment,

under both chunk sizes

To identify genetic determinants at high drug levels (the
mutations conferring the highest levels of resistance), a
high threshold was chosen (Fig. 5a, d).

Figure 5g-i shows the most important sites identified by
RRF. To determine which of these sites are potential can-
didates for drug resistance, we used the empirical rules
derived from the analysis of influenza data, as those anal-
yses were informed by experimental evidence, and vali-
dated by our simulations (Fig. 4). As above, we expected
that most of the true positive sites are (i) found in at
least 50% of the repeated parts of RRF, and (ii) in the
top 10% of the global distribution of importance (Gini)
values. For influenza, these two rules allowed us to cap-
ture all but one of the experimentally-validated sites, while
minimizing the number of false positives (see Additional
file 1: Figure S19). Under these two rules of thumb for
site discovery, we found lists of sites (Fig. 5) that are
completely different from those found with AB (Table 3).
However, these lists of sites were very stable across a
wide range of chunk sizes (Additional file 1: Figure S21),
and their content made sense in light of what is known
about these three drugs, which are commonly employed
to treat P. aeruginosa infections of cystic fibrosis patients
(Table 4). Note that Out-of-bag errors rates were all < 10%
(Fig. 5), when CV error rates under AB were at least 25%.
These lists of candidate genetic determinants for drug

resistance are still long, with many hypothetical proteins,
and hence remain problematic for experimental valida-
tion, but large and deep mutational screens have already
started to revolutionize the field [70].

Lastly, to evaluate the overall performance of RRF on
the pseudomonas data set, we conducted additional sim-
ulations, as above, but with a smaller chunk size (0.2%, as
in “runs B”), varying the number of sequences between
24-30, and increasing sequence lengths all the way to
10° sites. Only 25 replicates were done in these condi-
tions, but these results suggest that we would need at
least 30 pseudomonas proteomes (of length 500k sites)
to reach a sensitivity of 90%, and a specificity just above
60% (Additional file 1: Figure S22). With the data set that
we had access to (26 proteomes), sensitivity was < 15%.
Larger proteomes, containing a million polymorphic sites
or more, will require sequencing at least 30 individuals to
reach sensitivity values of at least 80%.

Conclusions

In order to find the genetic determinants of particular
phenotypes whole genome or proteome data, we imple-
mented and tested two machine learning algorithms based
on adaptive boosting, and random forests. Our use of
these machine learning algorithms can be characterized
as unbiased, in that they gauge the importance of every



Long et al. BMC Genomics

(2019) 20:470

Table 4 Characterization of RRF drug resistance candidates in the pseudomonas data from the literature
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Drug Gene Evidence References
Ciprofloxacin pchE Siderophore family, extracellular iron-acquisition system, upregulation associated with [58]
exposure to natural quinolones
Iron is required for virulence and is deficient in the human lung environment of these [59]
clinical strains
cupB3 Part of an outer membrane porin family, mutation that reduce membrane permeability [60]
are linked to Gram-negative bacterial mechanisms for antibiotic resistance
permease Reduces accumulation of drug inside cell by decreased cell wall permeability or by [61]
pumping drug out
ABC transporter See permease [61]
SH3 Controls numerous protein-protein interactions, some implicated in virulence of [62]
pathogenic bacteria
alkB DNA repair system (fluoroquinolones prevent proper winding and unwinding of DNA dur- [60]
ing replication), also affects outer membrane lipids - and thus permeability - it may affect
antibiotic resistance
sbrR Anti-sigma factor, identified as necessary during the chronic infection of respiratory tracts [53]
mnmC Part of tRNA modification, and thus protein synthesis, no obvious antibiotic or lung
environment connection
Ceftazidime MFS Membrane translocases, include many multidrug resistant proteins of Gram-positive [63]
bacteria
pscC Type Ill secretion outer membrane protein, probable general resistance candidate [60, 64]
algw Mutations are known to confer susceptibility to the beta-lactam family of antibiotics [65]
glyA2 Produces anti-oxidant coenzymes, involved in cell response to TiO2-based nanocompos- [66]
ite antimicrobials
lysR Associated with minimum inhibitory concentration of antibiotics and oxidative stress [67,68]
chemicals
Gentamicin mt This ribonuclease would have a logical role in degrading 30S bound by the antibiotic
algw Correlated to Ceftazidime resistance?
quinone OR Antibiotic resistance in response to antibiotics that inhibit protein synthesis - including [69]

binding of the 505 ribosomal subunit

single position in a proteome without any a priori assump-
tions — in the same way as are often characterized GWAS
[4] or RNA-seq studies [71-73]. However, because each
proteome contains a very large number of positions, these
algorithms could not be run ‘as is’ on the entire alignment,
even after removing invariant positions. In regulatory
genomics, where the objective is to uncover splice junc-
tions, such machine learning algorithms typically focus
on sequence windows centered on the traits of inter-
est, thereby reducing the feature space [74, 75]. Here, we
did not consider such prior knowledge (when it existed)
to pre-define features, and instead took a more agnos-
tic approach, focusing on the entire alignment of poly-
morphic positions. The resulting computational burden
prompted us to develop the chunking algorithm, espe-
cially in the case of AB, where the initial alignment is
chopped up into smaller parts or chunks. Each algorithm,
AB and RRE is run in a first pass on each chunk, to
determine a set of positions of interest, which are then
collated for a second pass to rank these positions by their
importance in predicting a particular phenotype. Here we

showed that chunking improves runtimes, without qual-
itatively affecting performance, both in terms of which
positions are identified, and their importance values —
and may even increase sensitivity of model predictions.
Although our RRF algorithm is based on random forests,
it is not equivalent to this latter algorithm run on more
trees because we combine the results of each repeat by
taking their consensus. RRF may also be reminiscent of
the iterated RF algorithm (iRF) [76], but while RRF is
less sophisticated, the stability of model predictions are
definitely improved.

We then showed by analyzing a data set in which the
genetic determinants of complex phenotypes are known
(influenza) that both AB and RRF correctly identified
some positions supported by experimental evidence [77],
but that the top results also included some potential
false positives, and missed some known sites. Simu-
lations suggested that excellent performance could be
obtained, with sensitivity and specificity both close to
100%, but with larger data sets (> 20 sequences). The
analysis of a second and larger data set (26 sequences),
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for which the genetic determinants of complex pheno-
types are not so well known (pseudomonas) allowed
us to identify positions in genes known, or predicted
to be, involved in the phenotypes assayed, with more
sensible results obtained with RRF than with AB. Alto-
gether, predictions based on machine learning algo-
rithms can allow for a quicker discovery process of
the genetic determinants of complex phenotypes, but
should be more thoroughly compared with traditional
GWAS approaches. Far from being restricted to find-
ing resistance genes and mutations, our approach is
amenable to predicting any kind of phenotype/genotype
relationships, including disease-causing mutations. How-
ever, such a use of machine learning to determine phe-
notype/genotype relationships might only blossom when
both phenotyping and genome sequencing costs become
low enough to perform these analyses on many more
individuals.

Methods
The influenza data
The complete proteome of # = 10 Influenza A strains,
containing the twelve canonical genes usually found in
these viruses [18], were retrieved from the Influenza
Research Database [24] using their search tool based on
phenotype characteristics. The retrieved strains included
all viral samples with experimental evidence supporting
an increase of infectivity, transmissibility, and pathogenic-
ity, the three main phenotypes in this database (retrieved
Sep 2016). The detection of a polybasic cleavage site
was used as a proxy for pathogenicity; while the pres-
ence of such a site alone does not indicate an increase
of pathogenicity, it is nonetheless present in highly
pathogenic strains [78]. The phenotypes were encoded as
binary variables, since phenotypic data were only avail-
able as a Yes / No statement. Our analyses were performed
blindly, as no indication of any particular mutation was
included in the strain name (Table 5). Note that our selec-
tion of strains tried to minimize class imbalance, so that
both infectivity and pathogenicity have a 1:1 ratio, while
transmissibility data are a bit more uneven (3:7; Table 5).
The corresponding proteomic data were downloaded
from the Influenza Virus Resource [79]. We focused on
amino acid data, assuming that phenotypic differences are
caused by nonsynonymous mutations. Only the ten most
common proteins found in all influenza strains (PB2, PB1,
PA, HA, NP, NA, M1, M2, NS1, and NS2) were retrieved.
This was done to ensure that the results obtained could
be applied to the widest selection of strains possible. The
selected viral strains were essentially from human hosts.
This was done to prevent any potentially confounding fac-
tors from arising due to the different cellular targets [80],
or due to the large sequence difference between avian and
mammalian subtypes [81]. Strains containing only one
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Table 5 List of the Influenza A strains and their associated
phenotypes, as used in the training of the machine learning
algorithms

Strain name Infectivity Transmissibility Pathogenicity
A/HongKong/156/97 No Yes Yes
A/HongKong/213/2003 No Yes Yes
A/Indonesia/5/2005 No No No
A/Indonesia/7/2005 No No No
A/PuertoRico/8/34 Yes No No
A/Swine/Indiana/1726/1988  Yes Yes No
A/Turkey/15/2006 No No No
A/NVietNam/1203/2004 Yes No Yes
A/VietNam/3046/2004 Yes No Yes
A/VietNam/3062/2004 Yes No Yes

For pathogenicity, polybasic cleavage was used as a proxy

segment (e.g., PA/Fort Monmouth/1/47-MA(HIN1)) were
discarded.

The segments of each strain were individually aligned
with MUSCLE 3.8.31 [82] to ensure accuracy, and were
then concatenated into a single alignment. Any missing
segment in any strain was replaced with a row of gap char-
acters to (i) ensure proper concatenation, and (ii) prevent
a mismatching of protein segments between the differ-
ent influenza strains, and thus prevent distortion of the
alignments. After the segment concatenation, invariant
sites were removed from the alignment. This was done
to reduce the computational time required for adaptive
boosting, as sites without mutations do not contain any
information relevant to the analysis.

Simulations

Protein alignments were simulated based on a 20-letter
alphabet by drawing amino acids with replacement from
a uniform distribution. Only one site was perfectly asso-
ciated with a binary phenotype. Simulations could be
balanced, where each phenotype is in a 1:1 ratio, or unbal-
anced, where only two sequences are from the first phe-
notype. Number of sequences were taken in {10, 20, 30,
40, 50}, the length of each alignment took values in {100,
250, 500, 1000, 2500, 5000, 10,000}, and the chunk size
changed from 10 to 50% of the total alignment length in
10% increments. One hundred replicates were performed
under each condition. Sensitivity and specificity of each
simulation condition were recorded, both under RRF, and
RF for comparison purposes. To evaluate the impact of
the size of the alphabet on performance, another round of
simulations were performed on a 4-letter alphabet (RRF
only), representing DNA data. These simulations allowed
us to count True Positive (TP), False Negative (FN), True
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Negative (TN) and False Positive results, and deduce sen-
sitivity (TP / (TP + EN)) and specificity (TN / (TN + FP))
from these.

The pseudomonas data

The proteome alignment of P. aeruginosa was generated by
concatenating the coding regions of the n = 26 P. aeruginosa
genomes previously published [25]. With a reference
database of PA14 (http://www.pseudomonas.com; [83]),
an alignment for each open reading frame (ORF) was cre-
ated using an in-house pipeline that: (i) stored BLASTn
2.2.30 [84] results for each ORF of each non-PAl4
genome, (ii) discarded any results with identity < 90%, (iii)
assembled alignments for each ORF ensuring a genome’s
sequence was used only once. This was achieved by first
building a scaffold from genomic sequence with only one
BLASTn result, then extending incomplete scaffolds, i.e.,
those that did not cover the full range of their respective
PA14 reference sequence. Extensions were done using
BLASTn results that did not correlate with higher percent
identity to another incomplete scaffold nor overlapped
the current scaffold by more than 30 nucleotides. Scoring
of genomic ranges and overlaps was performed using Bio-
conductor’s function GRanges [85]). Following scaffold
assembly, (iv) sequences were aligned using MUSCLE
3.8.31 [82]. Any aligned ORF with < 50% of strains hav-
ing non-gap characters in at least 90% of reference sites
(established via PA14 sequence) were discarded. Lastly,
the remaining aligned ORFs were concatenated with the
perl script catfasta2phyml.pl (by Johan Nylander:
https://github.com/nylander/catfasta2phyml/commit/
5035eb). This resulted in an alignment containing 5944
of the 5977 ORFs in the PA14 reference genome, and a
total of 1,974,843 amino acid positions. Gene annota-
tions were obtained from the file UCBPP-PA14.csv
available at http://www.pseudomonas.com/downloads/
pseudomonas/pgd_r_18_1/Pseudomonas/complete/gtf-
complete.tar.gz.

Each of these 26 strains had previously been character-
ized phenotypically, with respect to their antibiotic resis-
tance to three different drugs: Ciprofloxacin, Ceftazidime,
and Gentamicin [25]. All three are broad-spectrum
drugs, used to treat patients infected by P aeruginosa,
and all three belong to different families of antibiotics
(Ciprofloxacin is a fluoroquinolone, Ceftazidime is a
cephalosporin, and Gentamicin is an aminoglycoside). As
such, each drug has a different mode of action: fluo-
roquinolones inhibit enzymes such as DNA gyrase and
topoisomerase IV, involved in the replication of DNA [49];
cephalosporins interrupt the synthesis of the peptidogly-
can layer forming the bacterial cell wall [86]; aminoglyco-
sides bind to the 30s ribosomal subunit and inhibit protein
synthesis [87]. Hence, different genes can be expected
to be involved in the resistance to these antibiotics.
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Resistance had been quantified by means of MIC assays,
where a growth medium containing antibiotics is seri-
ally diluted, in two-fold steps, before an equal volume of
overnight bacterial culture be inoculated into each dilu-
tion. After at least 16 h of growth in these conditions, the
MIC is defined as the minimum antibiotic concentration
that does not permit growth.

Predictive modeling

Two machine learning algorithms were used to construct
a model to predict each phenotype from the proteomic
information (proteome) in both data sets, influenza and
pseudomonas. The first was AB [12], as implemented in
the R package adabag [88], while the second was the RF
[17] algorithm from the R package randomForest 4.6-14
[89]. All scripts were run in R 3.5 [90], and are available
from https://github.com/sarisbro, alongside the data used.

The features included in both machine learning algo-
rithms were the same: the amino acids of each proteome
alignment. To keep track of site identity, each alignment
was stored as a matrix, where column names contained
the name of each ORF and the amino acid position within
each ORF. As only polymorphic positions in the align-
ments are potentially informative, invariant sites were
first discarded. This left 4392 polymorphic positions in
the influenza alignment, and 511,780 in the P. aeruginosa
alignment.

While the AB algorithm used was unaltered, with the
total number of iterations left to its default value (1, =
number of sites in the alignment), we slightly modified the
RF algorithm. Indeed, due to the stochastic nature of this
algorithm, RF can lead to different rankings of the most
important features across different runs of the same model
on the same data. To alleviate this issue, we ran each
random forest model ten times, and kept only sites that
have a Gini index > 0.075. These ten sets of features are
then combined by (i) taking their consensus at a certain
threshold, and (ii) keep only the top 10% consensus fea-
tures (Additional file 1: Figure S1). A similar modification
of AB could have been attempted, but was not pursued
here due to large memory footprint and runtimes of this
algorithm.

Indeed, one limitation of most machine learning algo-
rithms is that they can require a large amount of memory
to run, especially in the case of data sets with large num-
bers of features, such as with the P. aeruginosa alignment.
To alleviate this issue, alignments were split into sequen-
tial chunks of pre-specified sizes, ranging from 75 to
175 amino acids (by increments of five) for the influenza
data, and chunk sizes being either 1000 or 5000 (AB), or
ranging from 80 to 4000 (RRF) amino acids for the pseu-
domonas data. Note that these splits are largely random
as segments of the influenza genome were “randomly”
concatenated (by convention, segments are ordered by
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decreasing length, just like chromosomes in Eukaryotes),
and protein-coding genes in pseudomonas were “ran-
domly” concatenated (based on their order in the PA14
strain). All the computing in this step can be parallelized,
so that each classifier can be run on each chunk inde-
pendently by distributing the analyses over eight threads
with the R foreach package 1.4.4 [91]. The RRF algorithm
was first run on each chunk during the first pass of the
chunking algorithm, hereby producing a set of positions
of interest. Only those with a Gini index > 0.075 were
kept (first pass of the chunking algorithm), collated, and
the classifier was run a second time on these (i.e., dur-
ing pass 2 of the chunking algorithm), to produce the final
set of most important sites (i.e., predictors of each pheno-
type in the top 10% Gini indices in the second pass of the
chunking algorithm).

The performance of the machine learning algorithms
was assessed using ten-fold cross-validations (AB) and
Out-of-bag errors (RRF). For cross-validations, the align-
ment was divided into ten sets of sequences (samples),
nine sets being used for training and the remaining one
for testing. That process was then repeated for all ten
subsets [88]. In the context of our chunking procedure,
cross-validation was performed on the second pass of the
AB algorithm. Out-of-bag errors were computed on the
predictions based on the bootstrapped trees that were not
included during training.

As the evolution of antimicrobial resistance in
P aeruginosa can include many understudied sites [92],
only the influenza data have sufficient experimental
validations to which we can compare our predictions and
thus determine their accuracy. In order to learn from this
data set how to best balance true positives (sites that are
known to be experimentally validated and are detected)
and false positives (sites that are detected but are not
experimentally validated) from the distribution of their
importance values, we defined two thresholds (Additional
file 1: Figure S1). First, the expectation is that the most
important sites will mostly have true positives, so the first
threshold used the influenza data to determine what top
percentile of ranked importance values maximizes the
number of true positive. We refer to this threshold as the
“percentile threshold” Then, to minimize the number
of false positives among these top sites based on the
repeated nature of the RRF, we implemented a second
threshold, the “consensus threshold,” which works as
follows: all replicates of the RRF were run independently,
and only sites that were predicted at a certain percentile
threshold (i.e., a consensus) of all the runs were logged.
Among these, only those that were found, say in 90% of
the runs (9 runs out of 10), were considered as “genetic
determinants” Intuitively, the higher this consensus
threshold, the lower the number of false positives. We
then varied both threshold on the influenza data to (i)
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maximize the number of true positives (percentile thresh-
old) while (ii) minimizing the number of false positive
(consensus threshold). We employed these thresholds to
identify genetic determinants in the pseudomonas data.

Finally for the pseudomonas data, one additional step
was required. As the algorithms used to identify the
genetic determinants of phenotypes require categorical
data, MIC distributions were discretized. To do so, and in
the case of AB first, the distribution of log, MIC of each
drug was first plotted, and appeared to be trimodal; hence,
it seemed natural to design a classification with three cat-
egories: ‘low, ‘medium; and ‘high’ MIC. The boundaries
between these categories were determined to minimize
class imbalance, and hence guarantee that each discrete
category had similar numbers of samples. Because of the
relative subjectivity in determining these categories, three
different sets of MIC thresholds were employed to assess
the robustness of the results. All analyses were run four
times to further assess robustness, and stability of which
sites were identified. However, when doing so, the num-
ber of classification categories goes from two (influenza)
to three (pseudomonas), without any statistical justifica-
tion. To address this point, a more thorough search was
performed using RRF — as RRF is much faster than AB. For
this, the range of MIC values for each drug was discretized
into bins of width 0.125 (on a log, scale of MIC values),
and two thresholds (6;,62) were defined, hereby divid-
ing the distribution of MIC values into three domains.
An initial classifier was then run for all combination of
thresholds with 6; < 65, and classification errors (RRF:
Out-of-bag errors) were logged, and used to define MIC
thresholds to perform the final analyses. A small chunk
size (100) and a regular RF algorithm was used to speed
up these computations (see Results).

Additional file

Additional file 1: Supplementary figures. (PDF 11,306 kb)
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